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Guiding Diffusion Models for Antibody Sequence and Structure Co-design
with Developability Properties
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Recent advances in deep generative methods have allowed antibody sequence and structure co-design. This
study addresses the challenge of tailoring the highly variable complementarity-determining regions (CDRs) in
antibodies to fulfill developability requirements. We introduce a guidance approach that integrates property
information into the antibody design process using diffusion probabilistic models. This approach allows us
to simultaneously design CDRs conditioned on antigen structures while considering critical properties like
solubility and folding stability. Our property-guided diffusion model offers versatility by accommodating
diverse property constraints, presenting a promising avenue for computational antibody design in therapeutic
applications.
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I. INTRODUCTION

Antibodies are Y-shaped proteins produced by the immune
system in response to pathogens called antigens [1]. Antibod-
ies are composed of two heavy and two light chains, with a
constant and a variable region [Fig. 1(a)]. The variable region
in the antibody constitutes the paratope, which interacts with
the antigen’s epitope. Within the variable domains, there are
six complementarity-determining regions (CDRs), denoted
as H1, H2, H3, L1, L2, and L3. These regions show high
variability in both sequence and structure across antibodies
(especially CDR-H3) and determine the specificity of an anti-
body for a particular antigen.

Antibody engineering involves the refinement of the CDRs
to enhance functionality or certain properties. From a ther-
apeutic perspective, there is a significant interest in the in
silico design of CDRs capable of binding to specific antigens.
Traditional approaches rely on energy-based optimization by
minimizing the Rosetta energy function over multiple se-
quence samples [2], which is computationally intensive and
time-consuming. To overcome these limitations, deep gen-
erative language models have been proposed to discover
CDR amino acid sequences [3,4]. Subsequently, leveraging
deep-learning-based structure modeling methods, the anti-
body three-dimensional (3D) structure can be predicted from
the designed CDR sequence [5,6]. Recent advancements in
deep generative methods offer enhanced performance by
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co-designing both the sequence and the structure of CDRs
simultaneously [7–9]. One notable advantage of co-design
over sequence-based approaches is the capability to condition
on both the antigen epitope and antibody framework struc-
tures during generation, which has proven useful for affinity
optimization [8,9].

Next to the antigen-targeting performance of antibodies,
measured as binding affinity and specificity, their developa-
bility properties are essential for therapeutic developments.
These include factors such as solubility, aggregation propen-
sity, thermal stability, and immunogenicity. These properties
are vital to ensure that the antibody can be manufactured
and is suitable for clinical applications [10,11]. Some aspects
of the antibody developability depend on amino-acid-related
attributes, such as hydrophobicity or electrostatic charges.
A subset of these attributes is integrated into the therapeu-
tic antibody profiling [12] to filter out candidate antibodies
with poor developability. Other aspects of developability de-
pend on the interplay of antibody sequence and structure.
Some machine-learning approaches leverage this information
to predict general developability [13]. In addition, various pre-
diction tools have been proposed for specific developability
properties, such as for solubility and aggregation [14], for
immunogenicity risks [15], or for binding affinity and stability
[16]. It is worth noting that, while existing antibody design
methods partially optimize for antigen-targeting properties,
the integration of developability parameters remains an open
and crucial challenge.

Consequently, in this study, we employ deep generative
models for antibody design to generate de novo sequences
and structures for the CDR loops. Beyond conditioning on
the antigen structure, our approach involves guiding the model
to produce candidate antibodies with favorable developability
attributes. We propose a property-guided denoising diffusion
probabilistic model (DDPM). DDPMs [17,18] have demon-
strated their capability to generate realistic protein sequences
and structures [19,20], including antibodies [8]. As outlined
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FIG. 1. (a) Illustration of an antibody, featuring the two heavy (in blue) and two light (in pink) chains. The variable regions in the enlarged
area encompass the antigen-binding site including the six CDR loops. (b)–(d) Visualization of the generative diffusion process, showcasing the
prior distributions for each modality and the designed CDR, for (b) the property-unguided mode, (c) the property-aware prior approach, and
(d) the sampling by property approach. (Note: The neural network parametrization is omitted from the figures but is present before sampling
at each generation timestep t .)

in Ref. [20], DDPMs are well suited to protein design due
to their ability to generate highly diverse outputs, guide each
generation step towards specific design objectives, and explic-
itly model protein 3D structures using rotationally equivariant
networks [19,21]. These capabilities are essential for co-
designing antibody CDRs using property information.

Here, we use guidance to control the diffusion model out-
put as opposed to conditioning. Although these two terms are
often used interchangeably in the literature, there is a key
difference between them [22]. In guidance-based approaches,
the diffusion model is trained to generate generic proteins,
and the controlling (i.e., inclusion of property information) is
performed during sampling. In contrast, conditioning involves
training the diffusion model to accept specific information
as input, requiring retraining or fine-tuning if another type
of information is needed for controlling the output. In our
particular case, the diffusion model for CDR co-design is con-
ditioned on the rest of the antibody-antigen structure during
both training and generative sampling, while we guide it us-
ing developability properties exclusively during the sampling
process. This eliminates the need for retraining the diffusion
model.

As the central contribution of our work, we introduce two
distinct approaches to guide the generative diffusion process:
one incorporates a property-aware prior, while the other in-
volves sampling by property. Notably, our proposed solutions
are adaptable to any property or set of properties that can be
computed or predicted based on the intermediate designs at
the sequence or structure level. We observe that by imposing
property constraints, our model yields antibodies with more
favorable developability profiles while preserving their struc-
tural integrity compared to the reference antibodies [44].

II. RELATED WORK

A. Generative models for antibodies

In the wake of advancements in deep generative modeling
for proteins [19,20,23–25], there has been a surge in the de-
velopment of antibody-specific models. Some of these models
focused solely on generating antibody sequences, often for
tasks like affinity maturation [3] or CDR infilling [4,26,27].
Saka et al. [3] employed a long short-term memory model
to discover antibody sequences with high affinity. Mean-
while, Shuai et al. [4] proposed an antibody language model
to redesign CDR sequences using bidirectional context and
conditioning on chain type and species. Melnyk et al. [26]
repurposed a general pretrained language model for antibody
CDR design. Additionally, Gruver et al. [27] introduced a
method for controllable categorical diffusion using a masked
language model-style denoising approach. In contrast to these
methods, Eguchi et al. [28] delved into antibody structure gen-
eration utilizing variational autoencoders to encode-decode
information from the backbone torsion angles and pairwise
distances.

As both CDR sequences and structures are typically
unknown, more recent models have adopted a co-design ap-
proach where antibody sequence and structure are generated
concurrently. Co-design emerges from the necessity to gener-
ate optimal sequences with corresponding structures, without
relying on a priori knowledge of the structure since it is rarely
available [7]. However, one key challenge lies in the scarcity
of antibody structure data, which is limited to several thou-
sand examples in the SAbDab database [29], hindering the
learning ability of deep models to predict the relationship be-
tween sequence and structural data [30]. Within this co-design
regime, some methods [7,30] adopted iterative approaches to
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generate CDR sequences and structures through alternating
steps. Jin et al. [7] employed a graph neural network (GNN)
to co-design CDRs in the heavy chain given the rest of the
framework region. In contrast, Gao et al. [30] combined
an antibody pretrained language model with a hierarchical
message-passing network (HMPN), incorporating the antigen
epitope as input data. In subsequent works, Jin et al. [31] also
used an HMPN model to generate CDR-H3 structures and
sequences that bind to a specified antigen epitope structure.
Kong et al. [32] additionally included the light chain of the
antibody as input to an E(3)-equivariant GNN framework for
heavy-chain CDR generation. In their follow-up work, Kong
et al. [9] integrated the epitope-docking step in their model,
generating a full-atom representation of the antibody struc-
ture alongside the paratope sequence. In alignment with these
strategies, Luo et al. [8] proposed a diffusion-based generative
model for CDR sequence-structure co-design (in both the
heavy and light chains), incorporating information from the
antigen epitope and the antibody framework while modeling
amino acid orientations in SO(3). More recently, Martinkus
et al. [33] demonstrated in vitro the expressibility and binding
of antibodies generated by diffusion models. While some of
these methods, such as the method in Ref. [7], incorporate
specific property-guided optimization for virus neutralization,
none of them offer a platform for general therapeutic antibody
sequence-structure co-design that integrates information be-
yond antigen-targeting performance.

B. Conditional and guided generation using diffusion models

DDPMs learn stochastic processes to generate data by de-
noising samples from a prior distribution [17,18]. For image
synthesis, Song et al. [18] and Dhariwal and Nichol [34] used
the gradients of an image classifier pretrained on noisy inputs
from various timesteps of diffusion to control the generation
process, and they compared it to a conditionally trained diffu-
sion model. For protein design, Lisanza et al. [35] employed
sequence-based potentials, such as user-defined charge com-
position, isoelectric points, or hydrophobicity, as functions
to control the generation process. However, these methods
often require additional training with conditioning parameters
in a fine-tuning stage. In contrast, we adopt gradient-free
guidance approaches for integrating property information into
diffusion models for antibody generation without the need for
retraining. Bypassing the retraining phase provides flexibility,
enabling a single diffusion model to generate samples that
fulfill a broader range of criteria. In this context, our sampling
by property approach shares more similarities with concurrent
works utilizing sequential Monte Carlo (SMC) methods for
particle filtering to address inpainting problems such as the
motif-scaffolding problem in proteins [21,36]. More specifi-
cally, Wu et al. [36] introduce a precise method for conditional
sampling. They use a diffusion model trained without condi-
tioning as the sample generator (prior) and a classifier trained
on clean data as the target predictor (likelihood distribution).
By employing a method called twisted SMC, they simulate
a group of weighted trajectories (particles) in the diffusion
process. These trajectories are guided by proposals from the
classifier (samples given the target) and weighted according
to specific schemes.

III. METHODS

A. Diffusion model for antibody design

Our work builds upon an existing method for antibody
sequence and structure co-design using diffusion models.
Specifically, we used the DiffAb model [8], which enables
the joint generation of CDR sequences and structures while
conditioning on the antibody framework and bound antigen.
The model requires three inputs: amino acid types denoted
as si ∈ {ACDEFGHIKLMNPQRSTVWY}, Cα atom positions de-
noted as xi ∈ R3, and amino acid orientations denoted as
Oi ∈ SO(3), where i is the position of the amino acid in the
sequence. We generate one CDR loop at a time, denoted as
R = {(s j, x j, O j )| j = l + 1, . . . , l + m}, given the rest of the
antibody-antigen complex C = {(si, xi, Oi )|i �= j}.

The forward diffusion process (t = 0, . . . , T ) gradually
introduces noise into each modality through different distri-
butions q towards the prior distributions. For the amino acid
types, q(st

j |s0
j ) follows a multinomial distribution; for the Cα

positions, q(xt
j |x0

j ) is modeled as Gaussian; and for the amino
acid orientations, q(Ot

j |O0
j ) is an isotropic Gaussian. Starting

from the prior distributions, the generative diffusion process
(t = T, . . . , 0) transforms each modality toward the data dis-
tribution, as depicted in Fig. 1(b). In this process, parametric
models pθ are employed to approximate the posterior distribu-
tions at each generation timestep. Different neural networks
are used for the three modalities, with a shared encoder and
separate decoders. A summary of the main equations can
be found in Table I. For an in-depth understanding of the
diffusion process, neural network architectures, and training
of the models, we refer readers to Ref. [8].

B. Antibody design guided on properties

We develop two distinct strategies for integrating property
information into the generative process of the trained diffusion
model, DiffAb [8]. The first strategy, property-aware prior,
involves replacing the noninformative uniform distribution for
amino acid types (see Table I) with a multinomial distribution
informed by a specific property of interest. The second strat-
egy, sampling by property, involves sampling multiple times
at each generation step and subsequently selecting the sample
with the most optimal property values.

1. Property-aware prior

The prior distribution for the amino acid types follows
a uniform distribution across 20 classes representing the 20
types of amino acids. In this approach, we propose starting the
generation of amino acid types (at t = T ) by sampling from a
property-aware prior in the following form:

sT
j ∼ Multinomial(p̄)

= (1 − b) · Uniform(20) + b · Multinomial(p). (1)

Here, p = [p1, . . . , p20], where pk represents the probability
of the amino acid type k given a property of interest. The uni-
form and multinomial components are weighted by a constant
b that can be adjusted based on the application requirements.
This approach is depicted in Fig. 1(c). Given the prior in
Eq. (1), the posterior probabilities at each generation timestep
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TABLE I. Summary of equations defining the forward and generative diffusion processes, the prior distributions, and the training objectives
of the three different modalities used in DiffAb [8]. Here, Fθ (·), Gθ (·), and Hθ (·) are the neural network models for the amino acid types, Cα

atom positions, and orientations, respectively; DKL is the Kullback-Leibler divergence; N (·) is the Gaussian distribution; ε j is the standard
Gaussian noise added to the input to obtain the noisy version xt

j = √
ᾱt x0

j + √
1 − ᾱtε j ; IGSO(3)(·) is the isotropic Gaussian distribution in

SO(3); and ScaleRot(·) is the rotation scaling function defined in Ref. [8, Appendix B.3].

Feature modality Equation

Amino acid type Forward: q(st
j |s0

j ) = Multinomial[ᾱt · onehot(st
j ) + (1 − ᾱt ) · 1

20 ]

Prior: sT
j ∼ Uniform(20)

Generative: pθ (st−1
j |Rt , C) = Multinomial{Fθ (Rt , C)[ j]}

Objective: Lt
type = E{ 1

m

∑
j DKL[q(st−1

j |st
j, s0

j )||pθ (st−1
j |Rt , C)]}

Cα position Forward: q(xt
j |x0

j ) = N [xt
j |

√
ᾱt · x0

j , (1 − ᾱt )I]

Prior: xT
j ∼ N (0, I3)

Generative: pθ (xt−1
j |Rt , C) = N [xt−1

j | μp(Rt , C), (1 − ᾱt )I]

μp(Rt , C) = 1√
αt (xt

j − 1−αt√
1−ᾱt Gθ (Rt , C)[ j])

Objective: Lt
pos = E[ 1

m

∑
j ||ε j − Gθ (Rt , C)[ j]||2]

Orientation in SO(3) Forward: q(Ot
j |O0

j ) = IGSO(3)[Ot
j | ScaleRot(

√
ᾱt , O0

j ), 1 − ᾱt ]

Prior: OT
j ∼ Uniform[SO(3)]

Generative: pθ (Ot−1
j |Rt , C) = IGSO(3){Ot−1

j | Hθ (Rt , C)[ j], 1 − ᾱt }
Objective: Lt

ori = E[ 1
m

∑
j ||(O0

j )
T Hθ (Rt , C)[ j] − I||2F ]

t are defined as

q
(
st−1

j

∣∣st
j, s0

j

) = Multinomial
{[

αt · onehot
(
st

j

) + (1 − αt )p̄
]

� [
ᾱt−1 · onehot

(
s0

j

) + (1 − ᾱt−1)p̄
]}

. (2)

Here, ᾱt = ∏t
τ=1 ατ = ∏t

τ=1(1 − βτ ), with βt denoting
the cosine variance schedule (ranging from 0 to 1 as t in-
creases from 0 to T ). s0

j is the amino acid type approximated
by the neural network model during the generative diffusion
process. This posterior enforces resampling to rely more on
the property-aware prior at the start of the process (t → T )
and more on the previously sampled amino acid st

j towards
the end of the process (t → 0). Note that we need to divide the
posterior probabilities by their sum to ensure they add up to 1.

Although this approach can accommodate any amino acid-
related property, in this study, we focused on the hydropathy
score [37] as a proxy for solubility and aggregation. We
use this score as it effectively describes the hydrophilic or
hydrophobic nature of amino acids on a single scale. Conse-
quently, negative values indicate greater hydrophilicity, while
positive hydropathy values indicate greater hydrophobicity.
In the Supplemental Material, Fig. S1 [38] presents the hy-
dropathy score for each amino acid type and its translation
to probabilities (for different values of b). Here, hydrophilic
amino acids (i.e., with low hydropathy scores) are assigned
higher probabilities, and vice versa.

2. Sampling by property

Given that not all properties can be defined solely at the
amino acid level, we introduce a second strategy incorporating
properties associated with the antibody sequence and struc-
ture. By leveraging the stochastic nature of DDPMs, in this
approach we sample N times at each generation timestep and

then select the sample with the most desirable property value,
as shown in Fig. 1(d). For instance, we choose the minimum if
we aim to minimize the property value. When multiple prop-
erties are considered, we opt for the sample with the minimum
sum of all property values (known as the Pareto optimal solu-
tion [39]). Alternatively, one could consider using a weighted
sum of properties to allow for different importance ratios
among properties. In a more flexible version, we convert the
N property values into probabilities through the softmax func-
tion and then sample the next timestep from this distribution.
Here, the assumption is that all R samples generated at the
same step in the process are equally valid in terms of (s, x, O).

For the sampling by property approach, we guide our
model using both the hydropathy score and the folding en-
ergy (�G). To compute the difference in folding energy, we
employ the ��G predictor from Ref. [16], which relies on
a graph convolutional network (GCN) model to predict the
energy difference between the reference and generated anti-
bodies. To obtain predicted ��G values for the n-sampled
CDR, we feed the model with the amino acid sequence and Cα

atom positions at the current generation timestep (st−1, xt−1),
as well as those from the previous timestep (st , xt ). The pseu-
docode for the sampling by property approach can be found
in Algorithm 1.

C. Benchmark dataset and trained model

To benchmark our guided approaches, we employ the
test set described in Ref. [8], which comprises 19 antibody-
antigen complexes sourced from the SAbDab database [29].
The CDR-H3 sequences of the test antibodies share a max-
imum of 50% sequence identity with each other and with
the training data. The test set includes protein antigens from
various pathogens, including influenza and SARS-CoV-2.
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ALGORITHM 1. Generative diffusion process with the sampling by property approach combining two
properties (hydropathy score and predicted ��G).

1: sT
j ∼ Uniform(20), xT

j ∼ N (0, I3), OT
j ∼ Uniform(SO(3)), ∀ j = l + 1, . . . , l + m

2: for t = T : 0 do

3: ∀ j, s̃0
j = Fθ (Rt , C)[ j], ε̃t−1

j = Gθ (Rt , C)[ j], Õt−1
j = Hθ (Rt , C)[ j]

// run neural network models

4: for n = 1 : N do

5: ∀ j, st−1
j [n] ∼ q(st−1

j |st
j, s̃0

j ) // sample amino acid type from posterior [Eq. (2)]

6: z[n] ∼ N (0, I) // sample noise for Cα position

7: ∀ j, xt−1
j [n] = 1√

αt (xt
j − 1−αt√

1−ᾱt ε̃
t−1
j ) + σ t z[n] // compute Cα position

8: E[n] ∼ IGSO(3)(I, σ 2) // sample noise for orientation

9: ∀ j, Ot−1
j [n] = E[n]Õt−1

j // compute orientation

10: h[n] = ∑l+m
j=l+1 fhydro(st−1

j [n]) // compute hydropathy score [37]

11: g[n] = GCNφ{(st−1[n], xt−1[n]), (st , xt )} // run ��G predictor GCNφ [16]

12: end for

13: n̂ ← arg min
n

([h[1], . . . , h[n]] + [g[1], . . . , g[n]]) // select sample based on properties

14: {st−1, xt−1, Ot−1} ← {st−1[n̂], xt−1[n̂], Ot−1[n̂]}
15: end for

16: return ∀ j, {s0
j , x0

j , O0
j}

To guide the generation diffusion process, we leverage the
codesign_single model from DiffAb, which has been
trained to generate all CDRs, one at a time randomly selected
for each training sample. Using this model, we design single
CDRs from random values given the rest of the antibody-
antigen complex.

D. Evaluation

For each test complex, we generate 100 designs for each of
the six CDRs through T = 100 timesteps of generation, each
one maintaining the same length as the reference test CDR.
We evaluate the designs using the following metrics.

(i) The AAR (amino acid recovery) measures the sequence
identity between the reference and generated CDR sequences.

(ii) The root-mean-square deviation (RMSD) computes
the Cα atom distance between the reference and generated
CDR structures.

(iii) The hydropathy score averages the hydropathy val-
ues over the generated CDR sequences. Note that negative
scores indicate hydrophilicity, while positive scores indicate
hydrophobicity.

(iv) The predicted ��G [16] measures the difference in
folding energy (�G) between the reference and generated
CDRs, considering atoms (N, Cα , C, O) after reconstructing
the backbone structure from Cα atom positions and orienta-
tions (see Ref. [8]).

We use the predicted ��G as it is computationally more
efficient and has moderate to high correlation with experi-
mental measures of antibody energy upon mutations [16]. For
AAR, higher values are preferable, while lower values are
desired for RMSD, hydropathy score, and predicted ��G.
Note that we aim to generate CDRs with improved property
values (low hydropathy score and predicted ��G) without
deteriorating the structural integrity (we expect slight devia-
tions in AAR and RMSD to the reference CDR).

IV. RESULTS AND DISCUSSION

A. Guidance on properties is effective

We assess our property-aware prior approach using the
hydropathy score, with b = 0.8 (see Fig. S2 [38] for the
impact of b on the hydropathy score of the final designs).
The sampling by property approach is tested for both the
hydropathy score and ��G. As suggested by Fig. S3 [38], we
select the sample with minimum predicted ��G in N = 20
samples at each generation timestep. In Fig. S3 [38], we
empirically show that selecting the most optimal sample (i.e.,
the one with minimum predicted ��G) at every timestep
produces the best results. Additionally, the metrics do not
improve when increasing the number of samples N at every
timestep. These findings contradict the results in Ref. [36],
where improvements are observed when increasing the num-
ber of particles. Also, they used all particles at every timestep
to resample the next set, whereas we select the most optimal
one, resulting in a single guided trajectory. This approach
also facilitates the joint optimization of multiple properties
by selecting the Pareto optimal solution. In addition to ana-
lyzing individual properties, we test the combination of both
properties in two ways: sampling by ��G with a hydropathy-
aware prior, and jointly sampling by ��G and hydropathy
score (selecting the minimum of the unweighted sum, see
Algorithm 1).

Figure 2 illustrates the performance metrics for interme-
diate CDR-H3 designs at every 10 timesteps of generation,
comparing the unguided generation from the original DiffAb
model [Unguided], which serves as our baseline to all our
guided models:

(i) hydropathy-aware prior with b = 0.8 [Hydro. (b =
0.8)],

(ii) sampling by hydropathy (minimum over 20 samples)
[Hydro. (20 Min)],
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FIG. 2. Per-timestep metrics on the 19 test complexes (design CDR-H3). The boxplots represent the distribution of metric values (AAR,
RMSD, hydropathy score, and predicted ��G) over 100 designed CDRs for each test complex. Here, we compare the unguided mode with
different property-guided models: hydropathy-aware prior, sampling by hydropathy or ��G, and combinations of both.

(iii) sampling by ��G (minimum over 20 samples)
[��G (20 Min)],

(iv) sampling by ��G with a hydropathy-aware prior
[��G (20 Min) + Hydro. (b = 0.8)], and

(v) jointly sampling by ��G and hydropathy [��G +
Hydro. (20 Min)].

As observed in Fig. 2, sampling by hydropathy results
in a larger change in the hydropathy score and the AAR,
compared to the unguided mode, than using a hydropathy-
aware prior, even with a high value of b. This indicates that
the most substantial differences between the generated CDR
sequences and the reference CDR occur when sampling by
hydropathy. Furthermore, we note that, in comparison to the
unguided mode, exclusive sampling by ��G improves the
hydropathy score, whereas exclusive sampling by hydropathy
does the same for the predicted ��G. When both properties
are combined, the most favorable outcomes are achieved, with
the majority of designs exhibiting hydropathy scores and pre-
dicted ��G values below 0. This implies that the designed
CDRs have more hydrophilic profiles and improved energy
relative to the reference CDRs. These results are further sup-
ported by Mann-Whitney statistical tests, revealing significant
differences in the final metric distributions (at t = 0) across
different models for the entire test set (see Fig. S4 [38]).
Meanwhile, the values of AAR and RMSD are consistent
across models, which is desirable to avoid significant devia-
tions from the reference CDR. While the sequence similarities
within guided designs deviate from the unguided ones (as ex-
pected, Fig. S5 [38]), the RMSD values remain close (Fig. S6
[38]).

These observations apply to all other CDRs as well. Fig-
ure S7 [38] displays per-timestep metrics and Table S1 [38]
includes the performance metrics for the final designs of all
CDRs. We can see that AAR decreases and RMSD increases
slightly after guidance, which is expected. Furthermore, each
CDR exhibits some variations in response to the guidance. For
CDR-H2 and L2, sampling by hydropathy results in signifi-
cantly lower AAR, leading to better predicted ��G compared
to sampling by ��G.

B. Amino acid composition changes with hydropathy guidance

Hydropathy guidance aims to design CDR sequences con-
taining hydrophilic amino acid types (with lower hydropathy
values) without deteriorating the target binding affinities. This
effect is illustrated in the amino acid compositions in Fig. 3.
We note that sampling by hydropathy causes the most signif-
icant shift in the final amino acid distribution toward arginine
(R) and aspartic acid (D), two of the most hydrophilic amino
acids. Furthermore, this approach eliminates most of the hy-
drophobic amino acids. Using the hydropathy-aware prior, the
effect is not as strong, primarily because the model relies
less on the prior towards the end of the generation process.
Sampling by ��G, whether alone or in combination with
hydropathy, also increases the number of hydrophilic amino
acids, such as tyrosine (Y). These results, along with Table
S1 of the Supplemental Material [38], indicate a correlation
between both properties. Improved hydropathy profiles (more
negative and thus more hydrophilic) lead to greater expo-
sure of solvent-accessible surface areas within the antibody
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FIG. 3. Amino acid composition for the 19 test complexes (100 CDR-H3 designs each). Amino acid types are ordered by ascending
hydropathy score, while counts are colored by negative (blue) or positive (pink) hydropathy. Note that negative scores indicate hydrophilicity,
while positive scores indicate hydrophobicity.

CDRs, facilitating the accessibility to antigens. While exposed
hydrophobic amino acids generally promote protein-protein
interaction [40], in the context of antibodies, extensive hy-
drophobic patches can result in aggregation with both self and
other molecules [41], primarily due to nonspecific interactions
[42].

C. Energy distributions shift with ��G guidance,
even after relaxation

The objective of ��G guidance is to generate CDR
loops with enhanced folding stability, potentially improving

antibody-antigen binding. Figure 4(a) shows the relationship
between the predicted ��G and the hydropathy score for
the final CDR-H3 designs, revealing the positive correlation
between these two properties. Considering that lower values
are desirable for both properties, we calculated the Pareto
frontiers for the three approaches. Notably, we observe that
the three frontiers are clearly separated, with the guided ap-
proaches exhibiting a trend towards the lowest values. Thus,
they outperform a naive filter on top-scoring samples from
the unguided model. The most favorable Pareto solutions are
obtained when jointly sampling by ��G and hydropathy.
This behavior is also observed for all other test complexes

FIG. 4. Distribution of hydropathy scores and predicted ��G for test complex 7chf_A_B_R (design CDR-H3), (a) before and (b) after
Rosetta relaxation. The highlighted points (diamond markers) correspond to the Pareto optimal solutions.
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FIG. 5. Sequence-structure designs from the Pareto frontier over hydropathy score and predicted ��G after Rosetta relaxation (test
complex 7chf_A_B_R, design CDR-H3). The antigen epitope is displayed in red.

(see Fig. S8 [38]). The empirical run-time comparisons for
the test complex in Fig. 4 can be found in Table S2 of the
Supplemental Material [38].

We then reconstruct the side-chain atoms using Rosetta
[43], resulting in a refined structure. Figure 4(b) shows that
even though the three Pareto frontiers become closer after
relaxation, the distributions of the guided models are still
nearer to the lower-left part than the unguided mode. Further-
more, compared to prerelaxation, we attain a larger number of
Pareto optimal solutions for the combined sampling by ��G
and hydropathy. The performance metrics for both the pre-
and postrelaxed designs are in Table S3 of the Supplemental
Material [38]. For this example, we also visualize the resulting
CDR-H3 structures in relation to the antigen epitope. We
select those designs that are present in both Pareto frontiers,
before and after relaxation. As observed in Fig. 5, different
CDR sequences lead to similar structures compared to the ref-
erence, but exhibit improved hydropathy and predicted ��G
values.

V. CONCLUSION

We successfully developed two methodologically distinct
strategies for guiding diffusion models in the field of an-
tibody design. Most notably, we can guide the generative
process toward novel CDR designs with desired properties.
An advantage of our approaches is their pure integration
into the generative diffusion process, eliminating the need
for retraining the models. While we assess our approaches

using two specific properties, hydropathy (accounting for
the hydrophilic or hydrophobic nature of amino acids) and
folding energy, our methodological framework can seamlessly
accommodate any desired property derived from the amino
acid sequence, the structure, or both. We also demonstrate
that our guided approaches enable the optimization of mul-
tiple properties at once, leading to a better set of Pareto
optimal solutions. While empirical results support our mod-
eling choices, exploring a mathematical foundation remains
of interest to better understand the validity and biases in the
designs introduced by our sampling approach, compared to
similar approaches [21,36]. Finally, while our computational
models and metrics provide valuable insights into the potential
improvements of the designed CDRs, they are limited in cap-
turing the complexity of real biological systems. Therefore,
experimental validation in a wet laboratory is necessary to
verify that the predicted changes in solubility, aggregation,
and folding/binding energy values translate to actual im-
provements in practice.

The code used in this research is available at GitHub [44].
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