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Biological systems often choose actions without an explicit reward signal, a phenomenon known as intrinsic
motivation. The computational principles underlying this behavior remain poorly understood. In this study, we
investigate an information-theoretic approach to intrinsic motivation, based on maximizing an agent’s empower-
ment (the mutual information between its past actions and future states). We show that this approach generalizes
previous attempts to formalize intrinsic motivation, and we provide a computationally efficient algorithm for
computing the necessary quantities. We test our approach on several benchmark control problems, and we
explain its success in guiding intrinsically motivated behaviors by relating our information-theoretic control
function to fundamental properties of the dynamical system representing the combined agent-environment
system. This opens the door for designing practical artificial, intrinsically motivated controllers and for linking
animal behaviors to their dynamical properties.

DOI: 10.1103/PRXLife.2.033009

I. INTRODUCTION

A. Motivation

Living organisms are able to generate behaviors that solve
novel challenges without prior experience. Can this ability
be explained by a single, generic mechanism? One proposal
is that novel, useful behaviors can be generated through in-
trinsic motivation [1], which is defined informally as a set
of computational algorithms that are derived directly from
the intrinsic properties of the organism-environment dynamics
and not specifically learned.

Increasingly, there is a move away from reinforcement
learning and its extrinsically specified reward structure [2,3]
in the theory and practice of artificial agents, robots, and ma-
chine learning more generally [4–20]. A specific class of such
intrinsic motivation algorithms for artificial systems is known
as empowerment maximization. It proposes that agents should
maximize the mutual information [21] between their potential
actions and a subsequent future state of the world [22]. This
corresponds to maximizing the diversity of future world states
achievable as a result of the chosen actions, potentiating a
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broader set of behavior options in the future. This measure
replaces the traditional value function of reinforcement learn-
ing. However, importantly, it does not assume the definition of
a problem-specific cost function, which would, for instance,
encode additional domain knowledge. Instead, empowerment
derives from the intrinsic properties of the system dynamics
itself.

Intrinsically motivated synthetic agents develop behaviors
that are atypical for inanimate engineered systems and of-
ten resemble those of simple living systems. Interestingly,
potentiating future actions is also a key part of the success
of modern reward-based training algorithms [8,23,24]. As an
example relevant to the current work, consider a pendulum at
the up-vertical orientation. Here, the agent can kick it easily
in both directions—the information between the actions and
the future states is now high, as the entropy of futures is high,
while the variety of end states still can be controlled by the
actions. Compare this to the pendulum pointing down. Here
the futures are basically fluctuating around the equilibrium
point. As any actions have to work uphill, the variety of end
states is lower than for an up-pendulum.

Despite the successes of empowerment maximization, it
remains unclear how well it can be used as a general intrinsic
motivation principle. There are many different versions of
intrinsic motivation related to empowerment, and their rela-
tion to each other is unknown [20,23,25]. Additionally, most
work on empowerment maximization has relied on simula-
tional case studies and ad hoc approximations, and analytical
results are scarce. To gain insight, it is important to link
empowerment to other, better-understood characterizations of
the systems in question. Finally, calculating the mutual infor-
mation between two interlinked processes in the general case
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is a challenging task [26,27], which has so far limited the use
of empowerment maximization to simple cases.

In this work, we unify different versions of intrin-
sic motivation related to the empowerment maximization
paradigm. Here our main contribution is in showing ana-
lytically that empowerment-like quantities are linked to the
sensitivity of the agent-environment dynamics, which is mea-
sured by the generalization of Lyapunov exponents that we
introduce. This connects empowerment maximization to well-
understood properties of dynamical systems. Since highly
sensitive regions of the dynamics potentiate many diverse
future behaviors, the connection to dynamical systems also
explains why empowerment-based intrinsic motivations suc-
ceed in generating behaviors that resemble those of living
systems.

The analytical results allow us to develop a practical
computational algorithm for calculating empowerment for
complex scenarios in continuous space and the continuous
time limit, which is the second major contribution of the
paper. We apply the algorithm to standard benchmarks used
in intrinsic motivation research [14,16,28]. Specifically, a
controller based on the efficient calculation of empowerment
manages to balance an inverted pendula without extrinsic
rewards, and without fine-tuning the control strategy to the
dynamical equations describing the system. This opens the
door for designing complex robotic intrinsically motivated
agents with systematically computed—rather than heuristi-
cally estimated—empowerment.

B. Overview of the method

Consider the mutual information between a control process
of a given duration (“time horizon”) and a subsequent result-
ing process dynamics. If we start in a given system state x0

and maximize the mutual information over all possible control
processes, we obtain the empowerment in state x0 for the
given time horizon. While the computation of this quantity is,
in principle, a numerically solvable problem in systems with
discrete time and state spaces, its computational complexity
scales exponentially with the time horizon, and transferring
this to continuous time and space poses significant additional
challenges.

In this paper, we propose an efficient method for the
computation of empowerment in continuous space and the
continuous time limit, under some assumptions. For this,
we discretize time and consider the analyzed system in the
linear regime approximation for small Gaussian control and
perturbation signals around an unperturbed trajectory. This
approximation allows us to formulate the mutual information
maximization as calculating the capacity of a linear Gaussian
channel, with the channel properties computed from the lin-
earization of the dynamics around the zero-control trajectory.
This capacity can be computed efficiently, and our numerical
experiments show that its values converge benignly as the
discretization time step interval approaches zero, thereby ob-
taining a numerical value for empowerment in the continuum.

To match the discretized representation with the formula-
tion of the original continuous system, we introduce a parallel
notation for the continuous versus the discretized version of
the system in the next section.

II. RESULTS

A. Preliminaries

1. Notation

We consider an agent that takes on states x(t ) ∈ X := Rdx ,
evolving in time under the dynamics f with (small) stochastic
perturbations η(t ) ∈ Rdx . Via its (small) actions, a(t ) ∈ A :=
Rda filtered through the control gain g, the agent can affect the
dynamics of the system:

dx(t ) = f (x(t ))dt + g(x(t ))da(t ) + dη(t ) . (1)

Here dη denotes the system noise, modeled as a Wiener
process. The agent’s actions a(t ) are modeled by a stochastic
control process with variance σ 2

t controlled by the agent and
with a mean of zero. This models the potential effect of actions
centered around the null action.

To compute various quantities of interest, we will consider
a discretized version of this system, for which we adopt a
modified notation. To distinguish it from the continuous ver-
sion, we replace the continuous time in parentheses by an
integer index, xk := x(t + k · �t ). Here �t denotes the phys-
ical time step, and we adopted the convention that x0 = x(t ),
so that the index corresponding to the current physical time,
t , is chosen as 0. We will consider trajectories of a fixed
duration, and the agent will apply actions over a part of that
trajectory. Note that we switch between referring to action as
da or a depending on whether we consider the continuous or
the discrete case, and we hope this does not lead to confusion.
We denote by Te the time index of the very last state of the
trajectory, which we also refer to as the time horizon. We
further use Ta to denote the (discretized) duration of the action
sequence. Then state, control, and perturbation trajectories
at finite equidistant times, {t + k · �t}T

k=0, are denoted by
xTe

0 ≡ {xk}Te
k=0, aTa

0 ≡ {ak}Ta
k=0, and η

Te
0 ≡ {ηk}Te

k=0, respectively.
For consistency with the control theory literature, we write a
trajectory in the reverse order, e.g., xTe

0 = (xTe , . . . , x0). When
we wish to emphasize the continuous nature of the underlying
process, we will write te ≡ t + Te · �t and ta ≡ t + Ta · �t for
explicitly continuous times.

2. Reinforcement learning vs intrinsic motivation

To elicit a desired behavior in an agent, one typically uses
reinforcement learning (RL). RL is task-specific, and an agent
needs an extrinsic feedback about its performance from a re-
ward function to learn the behavior. The precise construction
of this reward function is critical to achieve a desired perfor-
mance in a short training time [2]. Some of the complications
include a significant degree of arbitrariness when choosing
among reward functions with equivalent performance [29] and
the difficulty of translating an often vague desired behavior
into a concrete reward function. Furthermore, complex behav-
iors consist of combinations of shorter sequences. Designing a
reward function capable of partitioning the solution into such
parts and hence learning it in a realistic time is hard [30]. In
contrast to this, in living systems, acquisition of skills often
starts with task-unspecific learning. This endows organisms
with potentiating skills, which are not rewarding on their
own. This is then followed by task-oriented specialization,
which combines task-unspecific behaviors into complex and
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explicitly rewarding tasks [1,31]. While specific tasks are
often refined with the help of an extrinsic reinforcement, the
potentiating tasks usually are intrinsically motivated [9,32].

3. Empowerment

The type of intrinsic motivation we focus on is em-
powerment. Empowerment is based on information-theoretic
quantities [4,20,23,32–39]. It defines a pseudoutility function
on the state space, based on the system dynamics only, without
resorting to a reward. Formally, we express the dynamics of
the system by the conditional probability distribution p(xTe |
aTe−1

0 , x0) of the resulting state when one starts in a state x0 and
subsequently carries out an action sequence aTe−1

0 (recall that
the notation is defined in the Notation section above). Then the
empowerment C(x0) is a function of the starting state, x0. It is
given by the maximally achievable mutual information (the
channel capacity [21]) between the control action sequence of
length Te and the final state when starting in the state x0:

C(x0) := max
p(aTe−1

0 |x0 )
I
(
XTe ; ATe−1

0

∣∣x0
)
. (2)

Here p(·) denotes a probability density or a probability distri-
bution function, and I is the mutual information [21]

I
(
XTe ; ATe−1

0

∣∣x0
) = H

(
XTe

∣∣x0
) − H

(
XTe

∣∣ATe−1
0 , x0

)
. (3)

H is the entropy, and conditioning an entropy on a random
variable means the entropy of the conditional distribution,
averaged over the conditioning variable.

In effect, empowerment measured information that the ac-
tion sequence has about the end state. High empowerment
requires high entropy of the end state, but also small entropy
of the states conditional on the action sequence producing the
final state. In other words, it is not enough to have diverse end
states, but these must have been induced by the actions. Vari-
ability only counts in the empowerment if it can be specifically
caused by the agent.

In contrast, if only the end state entropy were important,
an agent would be induced to seek out, say, staying in front of
a white-noise TV screen. However, unless the “pixels” of the
screen are controllable by the agent, this white noise would
not contribute to the empowerment.

The empowerment C(x0) depends on both the state, x0, and
the time horizon, Te. However, for notational convenience, we
omit all parameters from the notation except for the depen-
dency on x0.

Locally maximizing empowerment (e.g., by following its
gradient over x0) guides an agent to perform actions atypi-
cal within the natural dynamics of the system. Indeed, since
empowerment measures the diversity of achievable future
states, maximizing it increases this diversity (“empowers” the
agent—hence the name). Thus it is expected to be particularly
useful for learning potentiating tasks [9]. Crucially, empow-
erment quantifies the relation between the final state and the
intentional control, rather than the diversity of states due to
the stochasticity of the system. In particular, it is not just the
entropy of a passive diffusion process in the state variables,
but of the subprocess that the agent can actively generate.
Furthermore, it quantifies diversity due to potential future
action sequences, which are not then necessarily carried out.

Empowerment is typically used in conjunction with a sen-
sor through which the agent observes the states resulting from
an action sequence. In the continuum, this can be modeled via
observation noise applied to the outcome states.

Empowerment is typically used in the form of the empow-
erment maximization principle [17], where C(x0) is treated as
a pseudoutility function. At each time step, the agent chooses
an action to greedily optimize its expected empowerment at
the next time step, climbing up in its empowerment landscape,
to eventually achieve a local maximum of C,

a∗(x(t )) = argmax
a∈A

Eη[C(x(t ) + f (x(t ))�t ′

+ g(x(t ))a�t ′ + η�t ′ )]. (4)

Here A is the set of permitted actions, �t ′ is a small time step
used to simulate the actual behavior of the system, a ∈ A is
the candidate action kept fixed for the duration of �t ′, and η�t ′

is the Wiener process integrated over the time interval �t ′.
An empowerment-maximizing agent generates its behavior
by repeating this action selection procedure for each decision
step it takes.

The time step �t ′ for the empowerment-greedy action is
selected as a small fixed value. Note that it is selected inde-
pendently from the time step �t that is used to discretize (1)
for the purpose of computing empowerment. Empowerment
in continuous scenarios will be computed by letting �t → 0.

Crucially, no general analytical solutions or efficient algo-
rithms for numerical estimation of empowerment for arbitrary
dynamical systems are known, limiting adoption of the em-
powerment maximization principle. Our goal is to provide a
method to calculate it under specific approximations.

B. Empowerment in dynamical systems

1. The linear-response approximation

To relate empowerment to traditional quantities used to
describe dynamical systems, we assume that the control signal
a and process noise η in (1) are small. This is true in some of
the most interesting cases, where the challenge is to solve a
problem with only weak controls that cannot easily “force”
a solution. Under this assumption, (1) is approximated by a
linear time-variant dynamics around the trajectories of the
autonomous dynamics (i.e., for a = 0 and η = 0). To proceed,
we now introduce the following notation. We define x̄s as the
sth step of the trajectory in the discretized approximation of
the dynamics (1), with f̄ (x̄) := x̄ + f (x̄)�t , ḡ(x̄) := g(x̄)�t ,
and h̄(x̄) := �t [40]:

x̄s = f̄ (x̄s−1) + ḡ(x̄s−1)as−1 + h̄(x̄s−1)ηs−1, (5)

where x̄0 = x0 ≡ x(t ). For example, x̄3 = f̄ ( f̄ ( f̄ (x̄0) +
ḡ(x̄0)a0+ h̄(x̄0)η0) + ḡ(x̄1)a1+h̄(x̄1)η1) + ḡ(x̄2)a2+h̄(x̄2)η2.
We denote this recursive mapping from x̄0 to x̄s by F ,
x̄s = F (x̄0; as−1

0 , ηs−1
0 ). Then the sensitivity of the state at the

time step s to the action at the time step r can be calculated
via the iterated differentiation chain rule applied to the state
derivative of the dynamics F at a = 0 and η = 0:

∂ x̄s

∂ar
=

s∏
τ=r+2

∇x̄ f̄ (x̄τ−1) ḡ(x̄r ), (6)
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FIG. 1. Unified view on information theoretical intrinsic motivation, for discretized process sequences XT (states) and AT (actions). Starting
at time x0 [i.e., x(t )], potential actions AT are applied for Ta times. Following that, after waiting for �T time steps, the future system trajectory
is considered until Te. A controlled Lyapunov exponent is a Lyapunov exponent, but only in directions controlled by the agent; cf. (11). “Kicked
CEF” refers to a variant of Causal Entropic Forcing [20], with the addition that an action kicks the system at the beginning of a trajectory. The
dashed-line blocks illustrate the correspondence in time between state and action sequences. For more details, see the section on Generalized
Empowerment.

where ∇x̄ f̄ (x̄τ ) is the dx × dx Jacobian matrix of f̄ . Specifi-
cally, the (i, j)th entry of ∇x̄ f̄ (x̄τ ) is ∂ f̄i (x̄τ )

∂ x̄τ, j
, where indices i, j

stand for components of the vectors x and f . For s = r + 1,
the expression in (6) evaluates to ∂ x̄r+1

∂ar
= ḡ(xr ). Analogously,

the sensitivity of x̄s to the perturbation, ηr , is given by ∂ x̄s
∂ηr

=∏s
τ=r+2∇x̄ f̄ (x̄τ−1) h̄(x̄r ).
Now we finally define the linear response of the sequence

of the system’s states xs2
s1

to a sequence of small actions δar2
r1

by the agent

(7)
where s = s2 − s1 + 1, r = r2 − r1 + 1, s + �T + r − 1 =
Te, and the entries are computed via (6). Usually we consider
situations in which the agent applies its controls for r time
steps, and then after a gap observes the state for s steps.
That is, s1 = r2 + 1 + �T , where �T � 0 is the gap between
the end of the control sequence and the start of the observa-
tions, as defined in Fig. 1. Analogously to Eq. (7), we define
Hs1,s2

r1,r2
(x0) with the corresponding entries, ∂ x̄s

∂ηr
.

Notice that traditional definitions of sensitivity of a dy-
namical system to its controls are blocks F s′

1,s
′
2

r′
1,r

′
2

in this overall

sensitivity matrix, F s1,s2
r1,r2

. For example, if r′
1 = r′

2 = 0, �T ′ =
Te − 1, and s′

1 = Te, then s′
2 = Te, and the sensitivity matrix

collapses to just the entries that measure the sensitivity of the
current state to the controls during the immediately preceding
time step, FTe,Te

0,0 (x0) = ∂ x̄Te
∂a0

. This is also the blue block of the
overall sensitivity matrix, (7). Other colored boxes in (7) will
be explained later.

With the definitions above, in the linear-response regime,
the effect of a sequence of (small) actions and perturbations

on a sequence of states becomes

δxs2
s1

= F s1,s2
r1,r2

(x0) δar2
r1

+ η̃, (8)

where δa and δx are the reverse-time-ordered vectors of small
actions and the induced deviations of states (which themselves
can be vectors).

Here η̃ = Hs1,s2
r1,r2

(x0) δηr2
r1

+ ηo models the effect of per-
turbation noise, δη, and the noise, ηo, of the subsequent
observation of the state perturbation δxs2

s1
, which we assume is

Gaussian. The choice of observation noise takes into account
the imperfect observation of the outcome states by the agent.
This observation noise effectively determines the resolution at
which the end state is considered.

We note that the approximation is linear with respect to
variations in the trajectory only; the calculation remains non-
linear with respect to state.

2. Generalized empowerment

Since the entire dynamics is now linear, cf. Eq. (8), we can
consider formally the effects of arbitrary length sequences of
actions on arbitrary length sequences of future states. In other
words, we can define the generalized empowerment,

CTe,Ta,�T (x0) := max
p(�a|x0 )

I
(
X Te

Ta+�T ; ATa−1
0

∣∣x0
)
. (9)

Here, Ta denotes the number of time steps at which ac-
tions are performed, �T is the time gap between the action
sequence and the beginning of the observation of the result-
ing states, and Te is the last step in that observed sequence.
That is, CTe,Ta,�T measures the maximum mutual information
contained in the state sequence, X Te

Ta+�T , about the preceding

action sequence, ATa−1
0 , rather than in the final state only, XTe ,

like empowerment does; cf. Eq. (2).
We observe that computing the generalized empowerment

in discretized time with an arbitrary discretization step and an
arbitrary time horizon Te reduces to a traditional calculation of
the channel capacity of a linear Gaussian channel [21], though
with a large number of dimensions reflecting both the duration
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of the signal and the duration of the response. Specifically,

CTe,Ta,�T (x0) = max
σi�0∑

iσi=P

1

2

dx∑
i=1

ln (1 + ρi(x0)σi ). (10)

Here ρi(x0) are the singular values of the appropriate sub-
matrix F s′

1,s
′
2

r′
1,r

′
2
(x0); for example, the traditional empowerment

corresponds to the red-dashed submatrix in (7). Further, P is
the power of the control signal �a over the whole control
period, and σi � 0 is that part of the overall power of the
control signal that is associated with the ith singular value
(called channel power). The channel power can be computed
by the usual water-filling procedure [21]. Note that here we
denote P as power, as per control-theoretic convention, but
since we fix the time interval over which it is applied, the units
of P are those of energy. As per our weak control assumption,
we assume P to be suitably small.

With (10), calculation of any generalized empowerment
becomes tractable, at least in principle. This also shows ex-
plicitly that the (generalized) empowerment is a function of
the sensitivity matrix F , and with it of quantities used to
characterize dynamics, such as the Lyapunov exponents.

To compute CTe,Ta,�T (x0) efficiently for an arbitrary dy-
namical system (1) and arbitrary long time horizons and
arbitrary small discretization steps, we start by discretizing
the time and calculating the linear-response matrix F . While
in this paper we do this by analytical differentiation, numerical
differentiation can be used whenever f is unknown. We then
calculate the singular values of F ; this is straightforward
on modern computers for dimensionalities of up to a few
hundred. Finally, we apply the “water filling” procedure to
find the set of channel powers σi to match the available total
power P in (10), and from there we calculate the (generalized)
empowerment value.

To determine the action of the agent, we finally use (8) to
compute (10) and plug this into (4) to select the actual action
of the agent. Because of the linear approximation assumption,
the effect of the noise averages out through the expectation in
(4). We can therefore just drop the expectation and the noise
term in the algorithm below. In all our examples below, the
agent will employ this approach.

ALGORITHM 1. In the numerical experiments, we use the
simplest possible control law, greedy control, for maximizing the
empowerment, which is summarized by the pseudocode below and
implemented in [41].

Intrinsically-motivated control
Require: x, f , P, Te, Ta, �T
1: Repeat
2: Calculate sensitivity gain, F (x) Eq. (7)
3: Calculate channel capacity, C(x) Eq. (10)

// Derive an optimal action, random process
averages out in linear approximation:

4: a∗(x) = argmax
a∈A

C(x + f (x)�t ′ + g(x)a�t ′) Eq. (4)

5: x ← f (x, a∗(x)) // Ascend empowerment
6: until ‘convergence to a locally

maximally-empowered state’

3. Connecting generalized empowerment to related quantities

Generalized empowerment with different durations of ac-
tion and observation sequences is related to various quantities
describing dynamical systems, including those defining in-
trinsic motivation [8,20,23,42]. For example, Causal Entropic
Forcing (CEF) [20] is defined as actions that maximize the
entropy of future trajectories of a system. With Ta = 1 and
�T = 0, CTe,Ta,�T in (9) measures the immediate conse-
quences of a single action on a trajectory with a fixed time
horizon Te. Maximizing CTe,Ta,�T is then equivalent to choos-
ing actions that maximize susceptibility, and not the entropy
of trajectories with a given time horizon. In other words,
one can interpret CTe,1,0 as a “kicked,” or agent-controllable,
version of CEF, where just the first action can be selected by
the agent at any time, and uncontrolled future variability is
discarded in action planning (see Fig. 1 for an illustration).
Such a kicked CEF corresponds to the green submatrix in (7).

Now consider the top right corner (blue) of (7) with Te =
Ta = 1, or, equivalently, s′

2 = s2 and s′
1 = s′

2 − 1. In the limit
of a very long horizon, s2 → ∞, the appropriate submatrix of
F becomes

	 ≡ lim
s2→∞

((
∂ x̄s2

∂ar1

)(
∂ x̄s2

∂ar1

)†) 1
s2

, (11)

where † is the transpose, and
∂ x̄s2
∂ar1

is given by (6). In the

special case that the control gain is the identity, g(x) = x,
the logarithm of the eigenvalues of 	 reduces to the usual
characteristic Lyapunov exponents of the dynamical system
[43]. However, once a more general control gain is applied,
the action-controlled perturbation, ar1 may be able to affect
only a part of the state space. This means that 	 not only is a
generalized empowerment with specific indices, but it is also
a specialization of the concept of Lyapunov exponents to the
controllable subspace. Thus we refer to the log-spectrum of 	

as the control Lyapunov exponents; cf. Fig. 1.
In summary, (9) and the linearization, (7), provide a unified

view of various sensitivities of the dynamics to the controls,
and hence on various versions of intrinsic motivation.

C. Intrinsic motivation in power-constrained agents

An agent controlling a system with unconstrained actions
can trivially reach any state in a controllable dynamical sys-
tem [44] by simply forcing their desired outcome without
sophisticated control. Thus to render the setup interesting,
we consider only power-constrained or weak agents. To show
that empowerment maximization, in the linearized regime, is
an efficient control principle, we use it to stabilize a family
of inverted pendula (single pole, double pole, and cart-pole),
which are simple, paradigmatic models of important phenom-
ena, such as human walking [45].

Solutions for the stabilization problem are known. They
require the accumulation of energy by swinging the pendulum
back and forth into resonance without overshooting and then
to keep the pendulum upright. When details of the system are
not specified a priori, this solution needs to be learned by the
agent. Finding such an indirect control policy by traditional
reinforcement learning is nontrivial [3], since the increasing
oscillations require a long time for the balancing to take

033009-5



TIOMKIN, NEMENMAN, POLANI, AND TISHBY PRX LIFE 2, 033009 (2024)

FIG. 2. Intrinsic motivation based control in the power-constrained regime. Top row: generalized empowerment landscapes in the linear
approximation for empowerment (left), controlled Lyapunov exponent (middle), and kicked CEF (right) versions of the problem, plotted
against θ (horizontal axis) and θ̇ (vertical axis), measured in rad and rad/s, respectively. The color bars indicate the empowerment values in
bits. Black dots in each panel are the final state, and white lines are the trajectories of the pendulum, starting at the bottom denoted by the red
dots. Bottom row: the control signals chosen from the generalized empowerment maximization as a function of time. Here the time horizon is
te = 0.5 s.

place, and the acquisition of informative rewards indicating
success is significantly delayed. As we will show, it is pre-
cisely in such situations that intrinsic motivation based on
empowerment is especially useful, since it is determined from
only comparatively local properties of the dynamics along the
present trajectory and its potential future variations.

Here x, f , P, Te, Ta,�T are the initial state, the system
dynamics, the power of the control signal, and the time win-
dow parameters for state and action sequences, as explained
in the paragraph after Eq. (9). The actions used to calculate
empowerment (hypothetical futures) are stochastic. However,
when actually taking the action (line 4 in the pseudocode), the
specific deterministic action derived in Eq. (4) is chosen in a
greedy fashion. The dynamics, f , is used as a forward model
for the projected actions to calculate empowerment of the
successor states; only after choosing the action that maximizes
the empowerment of the successor state is it used, in line 4, to
actually carry out the step.

Note that empowerment maximization provides the ef-
fective utility function, which is computed for the given
dynamics of the system. No hand-crafted reward is required
to generate the behavior. Instead empowerment defines the
utility structure without knowing the dynamics as an input.

In the following, we demonstrate the proposed general
formalism in dynamical control systems, where control, a,
and perturbation, η, represent controllable and uncontrollable
forces, affecting the state through the control gain g(x).

1. Inverted pendulum

We start with a relatively simple task of swinging up and
stabilizing an inverted pendulum without an external reward.
With an angle of θ (in radians) from the upright vertical, the
equations of motion of the pendulum are

(
dθ (t )
d θ̇ (t )

)
=

(
θ̇ (t )dt

g
l sin (θ (t )) dt + da(t )

ml2 + dW (t )
ml2

)
, (12)

where θ̇ is the angular velocity of the pendulum, m= 1 kg is
its mass, l= 1 m is the length, a(t ) is the torque applied by the
agent, g = 9.8 m/s2 is the free fall acceleration, and dW (t ) is
a Wiener process.

We apply a (stochastically chosen) control signal a(t ) for
the duration Te and observe the final state θ̃ = θ + η̃obs, where
η̃obs is the standard Gaussian observation noise at the final
state. Empowerment is then given by the maximally achiev-
able mutual information between a(t ) and θ̃ at a given power
level for a(t ), i.e., the channel capacity between the two.

We now apply our empowerment-based control protocol,
(4), to the inverted pendulum. We calculate the empowerment
landscape by using the time-discretized version of Eqs. (1)
and (12). For this, we map the deterministic part of the dy-
namics [ f , g in (1)] onto discrete time as per (5). We then
compute the channel capacity by applying (10) using the sin-
gular values from (8), where states are given by (θ, θ̇ ) ∈ Rdx ,
and actions consist of applying a torque a. The landscapes for
the original empowerment, the controlled Lyapunov exponent,
and the kicked CEF versions of the problem, all with the time
horizons of te = 0.5 s and the discretization �t = 10−3, are
shown in Fig. 2. Then, from each state, we choose the control
action to greedily optimize the generalized empowerment.
The panels in the upper row in this figure also show trajec-
tories obtained this way. The lower row shows time traces
of the control signal derived from the generalized empow-
erment maximization. In all cases, initially, the agent drives
the pendulum at the maximum allowable torque, which we
set to be power-constrained to ±1 Nm. Around 13, 10, and
10 s after the start (for the three versions of the empowerment,
respectively), the pendulum accumulates enough energy to
reach the vertical, and the agents reduce the torques to very
small values, a � 1 Nm, which are now sufficient to keep the
pendulum in the upright position and prevent it from falling. It
is striking that the generalized empowerment landscapes and
their induced trajectories are qualitatively similar to those that
would be generated by an optimal value function for the stabi-
lization task, derived by standard optimal control techniques
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FIG. 3. Convergence of the method for �t → 0 and te = 0.5 s
at three different states “top with zero velocity,” “bottom with ve-
locity equal to 5 rad/s,” and “bottom with zero velocity” in blue,
red, and green, respectively. As time resolution is refined twofold
at every stage, one arrives at a well-defined value for the empow-
erment estimation as �t → 0. The numerical stability of this limit
approximation is consistent throughout the landscape.

based on a reward specifically designed to achieve the top
position [3].

In our analysis, we chose a particular discretization
�t = 10−3 s, and we need to show that our results depend
only weakly on this choice. For this, we repeat our analysis at
different �t . Figure 3 shows the dependence of the maximum
value of the original empowerment (black dot in the left panel
of Fig. 2) on �t . To the extent that the estimate converges
to a well-defined number linearly as �t → 0, the discrete
time dynamics provides a consistent approximation to the
continuous time dynamics.

2. Double pendulum

Now we show that the empowerment maximization for-
malism is capable of dealing with more challenging problems,
such as a power-constrained control of a (potentially chaotic)
double pendulum [16], Fig. 4, with equations of motion:

d θ̈1(t ) = − 1

d1(t )
(d2(t )θ̈2(t ) + φ1(t )),

d θ̈2(t ) = 1

m2�2
c2

+ I2 − d2
2 (t )

d1(t )

(
da(t ) + dW (t ) + d2

2 (t )

d1(t )
φ1(t )

− m2�1�c2 θ̇1(t )2 sin θ2(t ) − φ2(t )

)
, (13)

with

d1(t ) = m1�
2
c1

+ m2
[
�2

1 + �2
c2

+ 2�1�c2 cos θ2(t )
] + I1 + I2,

d2(t ) = m2
[
�2

c2
+ �1�c2 cos θ2(t )

] + I2,

φ1(t ) = − m2�1�c2 θ̇ (t )2 sin θ2(t ) − 2m2�1�c2 θ̇2(t )θ̇1(t )

× sin θ2(t ) + (m1�c1 + m2�1)gcos θ1(t ) + φ2(t ),

φ2(t ) = m2�c2 gcos[θ1(t ) + θ2(t )].

We add Wiener noise, dW (t ), and permit the controller to
apply a scalar control signal |a(t )| � 1, at the joint between
the two links. In the equations of motion, mi= 1 kg, �i= 1 m,
�ci= 0.5�i, and Ii stand for the mass, the length, the length
to center of mass, and the moment of inertia of the ith link,
i ∈ [1, 2], respectively. Figure 4 shows the landscape for the
original empowerment for selected slices of the phase space.
This landscape is more complex than for the single-pendulum.
Nonetheless it retains the property that, following the local
gradient in the state space directly, one ultimately reaches the
state of the maximum empowerment, which is precisely where
both links of the pendulum are balanced upright. The vertical
position, however, is a priori not sufficient to guarantee the
balancing since the control only applies torque at the joint
linking the pendulum halves. That is, the controller cannot
move the pendulum in arbitrary directions through the state
space. Surprisingly, this concern notwithstanding, the algo-
rithm still balances the pendulum; cf. Fig. 4.

3. Cart-pole

We have additionally verified that the empowerment max-
imization also balances an inverted pendulum on a moving
cart; cf. Fig. 5. Here the control signal (force) is applied to the
cart. Thus the pendulum is now affected only indirectly. The
dynamics of this system is

dẍ(t ) = m sin θ (t )[�θ̇2(t ) + gcos θ (t )] + da(t ) + dW (t )

M + m sin2 θ (t )
,

d θ̈ (t ) = − da(t ) cos θ (t ) − m�θ̇2(t ) cos θ (t ) sin θ (t )

− (M + m)g sin θ (t ), (14)

where x(t ), θ (t ), m = 1 kg, M = 10 kg, � = 1 m, g, |a(t )| � 1
are the x coordinate of the center of mass of the cart, the angle
of the pole, the pole mass, the cart mass, the pole length, the
free fall acceleration, and the force applied to the cart.

III. DISCUSSION

In this study, we focused on a class of intrinsic motivation
models that mimic decision-making abilities of biological
organisms in various situations without explicit reward sig-
nals. We used an information-theoretic formulation in which
the controller starts with knowledge of the (stochastic) dy-
namical equations describing the agent and the environment,
and then selects actions that “empower” the agent. That
is, the controller improves its ability to affect the system
in the future, as measured by the mutual information be-
tween the action sequence and the subsequent responses. This
leads the system to the most sensitive points in the state
space—quite generally, and without relying on the details
of the dynamics being controlled—which we showed solves
a problem known to be difficult for simple reinforcement
learning algorithms: balancing inverted pendula. Depending
on which subsets of the past actions and future responses
are used to drive the intrinsic motivation, our approach in-
terpolates between the original formulation of empowerment
maximization, maximization of the “kicked” version of causal
entropic forcing, and maximization of the “controlled” subset
of the Lyapunov exponents of the agent-environment pair.
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FIG. 4. Top left: Double pendulum with control torque on the joint between the links with dynamics given by (13). Top right: Slices through
the empowerment landscape of a double pendulum. Each subplot shows a particular slice in the 4D landscape, when two other coordinates are
zero. For example, the plot with axes θ̇2, θ̇1 is shown for θ2 = 0 rad and θ1 = 0 rad. Bottom: Traversing the state space of the double pendulum
according to (4). The first and the second 15 s are shown with different scale for the instantaneous empowerment. The initial and the final
positions are both links down and both links up, respectively. Torque is applied to the middle joint only. When the pendulum is depicted in
green (red), it is absorbing (releasing) the energy from (against) the driving force.

This provides insight into which properties of the dynamical
system are responsible for the behaviors produced by these
different motivation functions.

Notably, there is an essential difference between empow-
erment maximization and optimal control approaches for the
derivation of the optimal action policy. Empowerment-based

FIG. 5. Left: Cart-Pole system with control force, �a(t ), applied to the cart only, which moves on the rail (or on the edge of a table),
allowing the pole to rotate in the x-y plane. Its dynamics is given by (14). Right: Traversing the state space of the pendulum on a cart according
to empowerment maximization. The initial and the final state of the pole are down and up, respectively. The horizontal axis is time in seconds,
t ∈ [0, 20] s.
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policy is derived from local properties of the dynamics, while
optimal control policy is globally derived from an external
reward by solving the Hamiltonian-Jacobi-Bellman equa-
tion [44]. Understanding a direct connection between these
two alternatives requires further investigation.

One big challenge in using information-theoretic quantities
is computing them, which can be difficult to do either analyti-
cally or from data. Our paper makes a significant contribution
to solving this problem in the context of empowerment by pro-
viding an explicit algorithm for computing various versions of
empowerment, for arbitrary lengths of pasts and futures, using
the small noise/small control approximation to the dynamics,
while still treating the dynamics as nonlinear. This is often the
most interesting regime, modeling weak, power-constrained
controllers. We point out that our small perturbation analysis
does not assume the dynamics to be linear, and a priori it
is not clear whether assuming small perturbations around a
generic nonlinear solution would render the system tractable,
which our algorithm achieves. To establish the robustness of
our results, we studied the dependence of the empowerment
estimate on the discretization step size, as the latter converges
to zero. The estimate converges trivially, Fig. 3, and only
depends minimally on the discretization step, including at the
critical points of the dynamics.

Crucially, our algorithm is local, so that climbing up the
empowerment gradient only requires estimation of the dy-
namics in the vicinity of the current state of the system. This
should be possible in real control applications by using the
data directly, possibly with the help of deep neural networks
to approximate the relevant dynamical landscapes [46–48].
Therefore, knowing the exact form of the dynamical system,
which could be a potential limitation of our approach, is not
strictly required. This opens up opportunities for scaling our
method to more complex scenarios.

Our work suggests that, in addition to the Lyapunov spec-
trum, defined via the trajectory divergence in time due to a
small arbitrary perturbation, one may want to consider the
optimal Lyapunov spectrum, where the initial perturbation
is optimally aligned with the controllable directions in the
dynamics. We defer a systematic study of optimal Lyapunov
spectra to future work. In this context, one could also ask
if maximization of empowerment and application of con-
trol in optimal directions might result in instabilities in the

system’s dynamics. Since empowerment optimization is usu-
ally applied in the case of limited resources, such as power,
we do not expect such runaway solutions. However, formal
analysis of this is left for the future.

While stabilization of pendula, including the double pen-
dulum, are classic test cases for control-theoretic algorithms,
our empowerment based approach needs substantial addi-
tional developments to become a general control strategy.
First, it leads an agent only to very specific points in the state
space, which optimize the sensitivity to control, and hence
potentiate future actions. Second, the specific algorithm we
used, greedy empowerment, is unlikely to result in an ability
to control systems as complex as humanoid robots. Solution
to both problems lies in combining empowerment optimiza-
tion with problem-specific goals and with explicitly learning
the underlying dynamical system in an RL-style model. We
anticipate that empowerment maximization will be faster and
more reliable within the RL paradigm, and it will dominate
early steps of control strategies, effectively endowing RL ap-
proaches with exploratory possibilities not directly related to
the eventual goal. In its turn, achieving specific RL goals will
be easier from such high empowerment regions at later steps
of control.

A potential extension of our analysis relates to social
interactions. Interacting agents have their own intrinsic moti-
vations and affect each other’s ability to achieve their goals.
Understanding how multiple agents interact, each trying to
empower itself in the presence of others, and whether and
when this leads to cooperation or conflict is a promising area
for future research. Crucially, the ability to affect someone
else’s empowerment may provide insight into what distin-
guishes social interactions from purely physical interactions
among nearby individuals.
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