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Homing–the incredible ability of animals to navigate back to their homes from unfamiliar places is surprisingly
widespread and crucial for their survival. However, the physical understanding of this phenomenon is not
yet developed. Here we use a light-controlled robot mimicking foraging and homing behavior to investigate
this phenomenon. The robot as a forager is a self-propelled active particle programed to undergo an in-plane
active Brownian (AB) motion whose velocity vector v undergoes rotational diffusion of magnitude Dr . During
the homing phase, the robot undergoes guided motion toward a positive light gradient aided by repeated
reorientations, directing it back to its home. Our key finding is an interesting optimal behavior where the mean
homing time becomes independent of Dr beyond a critical value posited as a signature of enhanced efficiency.
We develop a first-passage-based theoretical model of homing motion, which elucidates this finding as well
as accurately captures quantitative features of the homing trajectories in the form of temporal autocorrelation
function of the robot’s orientation. Inspired by the paradigm of stochastic resetting processes, we also perform
an alternative homing motion in a computer, which integrates an AB motion with course correction resets,
corroborating our experimental findings. Finally, we test our model on the publicly available data on homing
pigeons and capture similar key characteristics of the homing trajectories. Together, these results offer valuable
insights into the physics of homing dynamics, providing a statistical basis for its robustness across the animal
kingdom.
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I. INTRODUCTION

A fundamental aspect crucial for the survival of vari-
ous animal species is their ability to successfully return
home, whether it involves migration, foraging for food, or
locating a breeding site. This innate behavior, known as Hom-
ing, is surprisingly ubiquitous, allowing animals to navigate
back from seemingly unfamiliar locations over considerable
distances, and has puzzled scientists over several decades
[1,2]. The mechanisms facilitating homing can vary signifi-
cantly among species which includes path integration (dead
reckoning) [3–5], reliance on olfaction [6,7], topographical
memory [8–10], and orientation using magnetic or celestial
cues [11,12]. Despite this diversity, homing has proven to be
an exceptionally successful and efficient process employed by
animals. Past research has primarily focused on determining
cues that organisms rely on to get the directional information
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and how they utilize this information for successful naviga-
tion [13–22]. Nonetheless, it remains unclear whether there
are universal features in homing dynamics, given its preva-
lence in nature, and if so, how simple theoretical models can
be designed for navigational homing agents to unfold those
characteristics. Surprisingly, many of these questions remain
unexplored.

Previous studies have shown that organisms’ homing times
vary widely with factors like age [23,24], climatic conditions
[25,26], and even whether the animal is alone or in a group
[27–29]. Together, these factors act as sources of stochas-
tic noise in their motion. Moreover, while the physiological
mechanisms that underpin homing can vary among organisms,
successful homing events require frequent course corrections
or directional reorientations during navigation. Thus, the final
homing trajectory and time must depend on the interplay
between the stochasticity strength and the frequency of reori-
entations. Elucidating this requires a comprehensive statistical
analysis of trajectories traversed by animals undergoing hom-
ing with varying strengths of stochasticity in their dynamics.
Given the challenges associated with experimenting on living
organisms, the use of programmable lifelike robotic particles
has emerged as a practical choice for exploring and unraveling
the complexities of living organisms [30–34].

In this study, we design programmable robots equipped
with the ability to detect physical objects and light gradients.
Employing these capabilities, they undergo a search process
to locate targets or payloads, followed by homing, where they
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return to their home or base. To imitate living dynamics in our
robot, we use an active Brownian (AB) model characterized
by directed motion of constant speed with superimposed rota-
tional diffusion Dr [35,36]. We use Dr as the parameter that
directly measures the stochastic noise in its dynamics along
the motion. The robot commences its journey from a desig-
nated origin point, which coincides with its home–the region
of peak intensity within a radially decreasing light field. Dur-
ing the foraging phase, the robot autonomously searches for a
randomly placed object and captures it. The homing phase is
where it embarks on the homeward motion. Guided by its light
intensity (LI) sensors, the robot performs tropotaxis, ensuring
it consistently moves towards higher light intensity, aided by
repeated stochastic reorientations. This essentially prevents
the robot from deviating significantly from the intended di-
rection without making large directional errors.

The central results emanating from our analysis are sum-
marized as follows. We observe the existence of an optimal
D∗

r , such that for Dr < D∗
r , the homing time monotonically

increases with Dr , but for Dr > D∗
r , it saturates. The resulting

insensitivity to noise beyond D∗
r indicates an enhanced hom-

ing efficiency. We also find that D∗
r corresponds to a certain

critical reorientation frequency (ν∗), which marks the onset
of the observed optimality. Drawing insights from the exper-
iments, we develop a first-passage-based theoretical model
that explains the existence of D∗

r and also accurately pre-
dicts the nature of the orientation autocorrelation functions
of the homing trajectories below and above D∗

r . To explore
further, we simulate, in computer, a homing scenario where
the orientation of the robot, manifested as an AB particle, is
stochastically reset directly pointing towards home. The criti-
cal resetting frequency obtained from the simulations matches
closely with ν∗, thus providing an alternate scheme for hom-
ing dynamics integrated with error corrections. Finally, we
analyze the homing trajectories of flocking pigeons from
Ref. [28], unveiling striking similarities with our experiments
and theory. Together, these experiments reveal new insights
into all-prevalent animal homing behavior.

II. ROBOT MODEL

Our robot is a circularly shaped electronic gadget with a
diameter of 7.5 cm as described in Ref. [37] [see Fig. 1(a)]. It
relies on a differential-drive mechanism where the velocities
of two wheels [vl (t ) and vr (t ) in Fig. 1(b)] are controlled
independently. It also carries eight infrared (IR) sensors sym-
metrically placed along the circumference to detect physical
objects. It performs tropotaxis using two LI sensors, each
placed at the front and back, enabling it to detect intensity
gradients along the polarity axis parallel to its wheels.

In this study, we model our robot to perform an AB mo-
tion. Here, the magnitude of the robot’s in-plane velocity
(|v|) remains constant, whereas its orientation θ (t ) undergoes
rotational diffusion of magnitude Dr , which can be controlled
with great accuracy [37] (see Appendix A). As a result, the
robot performs a random motion in the plane with typical
trajectories shown in Fig. 1(c) and SM movie S1. Figure S1
in Supplemental Material (SM) [54] explains the procedure
of calculating Dr from trajectories. We characterize the mo-
tion using spatial velocity autocorrelation function, Cv (l ) =

FIG. 1. Robot modeled as an AB particle: (a) Left: Side view of
the robot with its important components highlighted. Right: The top
view has a paper cover and two fangs that help it grab the payload.
We change the printed black pattern on the paper cover depending
on the particle tracking requirements. (b) The robot’s left and right
wheel velocities (vl (t ) and vr (t ), respectively) are modeled such that
it moves as an AB particle with constant speed |v| and rotational
diffusion constant Dr . n̂(t ) represents its instantaneous in-plane ori-
entation. (c) Typical trajectories of the robot following in-plane AB
dynamics with a constant velocity of 4 cm/s and with Dr of (1) 0.17,
(2) 0.67, and (3) 1.50 rad2/s. (d) Spatial velocity autocorrelation
function, Cv (l ) shows exponential decay (∼e−l/Ls ) for in-plane AB
dynamics. Inset: Persistence length, Ls decreases with Dr .

〈v(r).v(r + l )〉r/v2, where r is the distance traveled, with
respect to l for different values of Dr [see Fig. 1(d)]. We find
that Cv (l ) ∝ e−l/Ls , where Ls is the persistence length, which
is a systematic function of Dr [Fig. 1(d) inset]. In conclusion,
by manipulating Dr , we can precisely control the level of
randomness in the robot’s movements.

III. RESULTS

A. Robot executing active foraging and homing

The experimental scheme is as follows: Our objective is
for the robot to independently locate and capture a payload
and return it to its initial point or home. Throughout the
return (or homing) phase, we seek the robot to make regular
course corrections to enhance its navigation towards home.
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FIG. 2. Robot executing active foraging and homing: (a) At t = 0 s, The robot is placed at the center region H , which is the brightest region
of the radially symmetric light-intensity gradient field of magnitude ∇I (inset). The red dashed line at the circumference defines the boundary,
characterized by a sudden fall in intensity. (b) The robot performs an AB motion (yellow trajectory, v = 10 cm/s and Dr = 0.15 rad2/s) and
searches for the payload randomly. Kinks in the trajectory indicate reflections from the boundary. The return trajectory (blue line) is the same
as the search AB motion, except that every time the robot points in the direction of decreasing intensity, it undergoes reorientation until it again
points toward increasing intensity. Magenta arrowheads represent such events. Inset: Fangs stay latched to cogs during the robot’s return. (c) A
schematic of a typical reorientation event. f and b indicate the front and the back LI sensors with intensity readings of If and Ib, respectively.
If during the journey If < Ib, the robot undergoes a reorientation represented with a red arrow until If > Ib again. Its dynamics between the
two such events remain AB. (d) The mean search time of the foraging AB robot calculated over 100 trajectories increases with Dr . Error bars
represent standard deviation.

We will examine whether the number of course corrections
made during homing impacts the total homing time.

We begin by confining the robot inside a region illumi-
nated by an overhead projector, which is a circle of diameter
1 m [Fig. 2(a), SM movie S2 [54]]. The intensity of light,
I , measured in lux, decreases radially at a rate ∇I [inset of
Fig. 2(a)]. The region H , which we call home, lies at the
center of the circle, which also corresponds to the brightest
region in the plane. During the foraging phase, the robot
starts from H and performs an AB motion with v = 10 cm/s
and Dr = 0.02–1.24 rad2/s. To avoid its escape, we program
it to reflect from the boundary wall, indicated with a red
dashed line in Fig. 2(a), beyond which there is a sharp fall
in the light intensity. Such reflection events can be seen in the
yellow trajectory in Fig. 2(b). During the search phase, the
robot’s IR sensors continuously emit IR radiation. The pay-
load (cut out from a piece of styrofoam) is deemed searched
when the robot is close enough to detect the reflected IR
signal from the payload, with the robot now pushing onto
the payload due to its persistent AB motion. Additionally,
the concavity of the payload’s surface makes sure that the
robot remains locked to it, a phenomenon equivalent to
the funnel trapping of active particles reported in the past
[38–40]. Simultaneously, the robot activates its front and back
LI sensors, indicated by orange dots [see Fig. 2(b) inset].
The average search time 〈Tsearch〉, defined as the time taken
by the robot to detect the payload using its IR sensors during
the foraging phase [yellow trajectory in Fig. 2(b)] increases
with Dr along expected lines [Fig. 2(d)].

The robot is now set to perform the homing motion. During
homing, it uses LI sensors to detect the local light intensity
at its front and back, I f and Ib, respectively [Fig. 2(c)], to
undergo tropotaxis motion. While I f > Ib, the robot continues
to perform the AB motion. However, when I f < Ib, it reorients
itself [red arrow in Fig. 2(c)] until I f > Ib again and resumes
its AB motion (see SM movies S2 and S3 [54]). This is
reminiscent of the wide range of taxis mechanisms employed
by organisms for directed movement [1,2]. We perform all

experiments at |∇I| = 1.54 lux/cm where the sensors are
most accurate such that they never make errors in I f and
Ib measurement. Note that the exact functional form of the
gradient is unimportant for experiments as long as it exhibits
a monotonic dependence on the radial distance. Also, the
nudge provided by the reorientation is incremental, offering
a slight tweak in the robot’s direction rather than a sharp turn,
as one would expect in real organisms. Each reorientation
event takes a finite time of tr in experiments, a variable in the
robot’s program. When reorienting, the two fangs attached to
the robot get interlocked to the cogs on the payload surface
and ensure that they never detach [inset of Fig. 2(b)]. The
process continues until the robot reaches H , with a blue curve
indicating the complete homing trajectory [Fig. 2(b)]. The
magenta arrowheads indicate reorientation events.

Quite remarkably, with an initial condition of the payload
always kept at the boundary and the robot pointing directly
toward H , we find that mean homing time 〈T 〉, averaged over
100 experiments, increases linearly with Dr initially but satu-
rates to a fixed value of ≈ 8.2 s for tr = 0.3 s and ≈ 15 s for
tr = 1 s, respectively, beyond critical D∗

r ≈ 0.46 rad2/s [see
Fig. 3(a)]. The error bars measure the standard deviation of
the T distribution (see SM Fig. S2 [54] for the detailed data).
In other words, the homing time remains optimal irrespective
of the value of stochastic noise, underscoring the efficiency
of the process. We can further define 〈T0〉 ≡ 〈T − ntr〉, where
n represents the number of reorientation events in a single
trajectory. Thus, 〈T0〉 can be regarded as the mean homing
time with instantaneous reorientations, which shows similar
optimality as the finite tr case [see Fig. 3(b)].

To understand the role played by reorientations, we plot
their average number, 〈n〉, during the homing phase for var-
ious Dr values in Fig. 3(c). We find that 〈n〉 monotonically
increases with Dr , well beyond D∗

r . Using this, we define an
average reorientation rate ν ≡ 〈n〉/〈T0〉. Note that there is a
ν corresponding to every Dr as shown in Fig. 3(d). Also,
the time interval between consecutive reorientations is shown
to follow an exponential distribution [Fig. 3(e)], and the
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FIG. 3. Experimental observation of optimal homing time: (a) The mean homing time, 〈T 〉, for two values of reorientation times, tr ,
increases linearly with Dr up to D∗

r = 0.46 rad2/s, beyond which it becomes almost constant. The averaging is performed over 100 experiments
with dashed lines representing a guide to the eye. (b) Average homing time 〈T0〉 with instantaneous reorientations (tr = 0) shows a linear
increase for low Dr and becomes constant at higher Dr as predicted by the theoretical model [Eqs. (3) and (4)]. (c) and (d) The average
number of reorientation events, 〈n〉, and the corresponding reorientation rate ν ≡ 〈n〉/〈T0〉 increasing linearly with Dr , respectively. (e) The
distribution of time between two consecutive reorientations (τ ) shows an exponential decay. (f) 〈T0〉 shows a maximum at ν∗ = 0.73 s−1, which
corresponding to D∗

r = 0.46 rad2/s mentioned in (a) and (b). Error bars equal the standard deviation (SD) in all plots.

empirical rate has an inherent distance dependence albeit
weak (see SM Fig. S3 [54]). Using this information, we plot
〈T0〉 as a function of ν [Fig. 3(f)]. Interestingly, its maximum
lies at ν∗ = 0.73 s−1, which corresponds to the D∗

r beyond
which the homing time showed saturation in Figs. 3(a) and
3(b). Therefore, D∗

r corresponds to the effective reorientation
frequency beyond which the homing time becomes optimum.

To gain further insights, we compare typical homing tra-
jectories for Dr below and above D∗

r , as shown in Figs. 4(a)
and 4(b), respectively (also SM movie S4 [54]). For con-
venience, we conduct these experiments without having the
robot carry the payload. For Dr < D∗

r (Dr = 0.02 rad2/s), the
trajectories exhibit strong persistence with few reorientations
represented by magenta arrowheads for one typical trajectory,
gradually spiraling towards H [Fig. 4(a)]. In contrast, for
Dr > D∗

r (Dr = 0.83 rad2/s), the trajectories maintain overall
persistence towards H due to frequent reorientation events
with stochastic noise limited to short timescales [Fig. 4(b)].
We quantify the tortuosity of trajectories by calculating the
temporal autocorrelation function of the robot’s orientation,
Cθ (t ) = 〈n̂(0).n̂(t )〉. Here, n̂(t ) represents the unit vector
along the robot’s orientation at time t and angular brackets
denote averaging over 350 trajectories. For Dr = 0.02 rad2/s,
Cθ (t ) shows a linear decay as a function of time [Fig. 4(c),
solid line]. On the contrary, for Dr = 0.83 rad2/s, it decays
initially before saturating to a significant nonzero value. Thus,
the characteristics of homing trajectories can be quantified
using the functional form of Cθ (t ), which exhibits distinct
behavior below and above the critical diffusivity D∗

r .

B. Theoretical analysis

We now present a simple theoretical model to explain cer-
tain key features emerging from our experiments. For the sake
of continuity, we only present the most relevant results here,
skipping the details to Appendix D. Since we are interested
in the homing phase, let us denote the fluctuating homing
time as T0 (ignoring the time taken by the reorientation events,
i.e., tr = 0) for a single trajectory. For each homing event, the
distance R covered by the robot from the starting point to the
home can be written as

R =
∫ T0

0
v cos φ(t ) dt, (1)

where φ(t ) is the angle between the particle’s orientation
vector n̂(t ) and its instantaneous radial distance r(t ) from
the home at a time t (see Fig. 5 inset). Averaging the above
equation over the stochastic dynamics for a fixed R, we can
approximately write the following equation

R 	
∫ 〈T0〉

0
v〈cos φ(t )〉 dt . (2)

In our experiments, the choice of the initial condition for
the robot’s orientation implies φ = 0 at t = 0. In the small
Dr limit, i.e. when the persistence time is much larger than
the homing time D−1

r 
 〈T0〉, the mean-square deviation of
φ(t ) is approximately 2Drt , so φ(t ) typically remains within
a narrow range of size �φ 	 2

√
2Drt around φ = 0, leading

to 〈cos φ(t )〉 	 1 − Drt (see Appendix D). In this case, the
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FIG. 4. Insights into the homing trajectories using temporal ori-
entation autocorrelation function: (a) Typical homing trajectories of
the robot with Dr = 0.02 rad2/s starting from the boundary with an
initial orientation toward home (H ) showing more persistence over
short timescales and spiraling toward home. (b) Conversely, trajecto-
ries with Dr = 0.83 rad2/s are noisier at short timescales yet maintain
an overall propensity to move towards H . Magenta arrowheads on
the bolder trajectories denote the locations of reorientation events.
(c) Temporal orientation autocorrelation function, Cθ (t ) averaged
over 350 homing trajectories for different Dr values plotted as a
function of time. For trajectories shown in (a), it decays linearly with
a slope of −Dr (solid line). For trajectories shown in (b), Cθ (t ) decays
rapidly initially but saturates to a smaller yet finite value.

average number of reorientation events is small for small Dr

[see Fig. 3(c)] and mostly occurs towards the end of the hom-
ing phase [Fig. 4(a)]. Substituting the expectation in Eq. (2)
and by readjusting, we obtain the following expression for the
mean homing time

〈T0〉 	 R

v

(
1 + R

2v
Dr

)
, (3)

which exhibits a linear relation with Dr , as observed in our
experiments [see Fig. 3(b) for Dr < D∗

r ].
For large values of Dr , one should have D−1

r � 〈T0〉 such
that φ often reaches the maximum allowed range between
[−π/2, π/2]. This is easy to see as in experiments I f = Ib

corresponds to the scenario φ = ±π/2. Note, however, that
I f < Ib is forbidden in experiments, thus restricting |φ(t )| �
π/2. It is thus reasonable to consider that φ always remains
confined to the range [−π/2, π/2]. Starting from an initial
condition at t = 0, the angle φ diffuses and spreads out rapidly
within the range [−π/2, π/2]. Assuming φ to remain approx-
imately uniform across this range, we get 〈cos φ(t )〉 	 2/π .

FIG. 5. Theoretical model: Cθ (t ) vs t , obtained from the first-
passage theory for Dr = 0.02 and 0.83 rad2/s [Eqs. (8) and (7),
respectively] indicated with blue and yellow lines, respectively. The
curves show a qualitative match with experimental results [Fig. 4(c)].
The inset shows a schematic representation of variables and parame-
ters used in theory.

Substituting this into Eq. (2) yields a Dr-independent average
homing time given by

〈T0〉 	 πR

2v
, (4)

explaining the saturation of 〈T0〉 for Dr > D∗
r observed in

experiments [see Fig. 3(b)].
We now investigate the impact of reorientation events

on the temporal orientation autocorrelation function Cθ (t ) =
〈cos[θ (t ) − θ (0)]〉. Skipping details from Appendix D, it is
possible to show that φ(t ) follows the stochastic dynamical
equation

dφ

dt
= v

r
sin φ + ζ (t ), (5)

where ζ (t ) is the rotational noise with the following statistical
properties:

〈ζ (t )〉 = 0,

〈ζ (t )ζ (t )〉 = 2Drδ(t − t ′). (6)

In the large Dr limit, the noise (second) term dominates
over the first term and we simply have dφ/dt 	 ζ (t ). Thus,
φ and θ follow the same equation (A1c) and therefore,
cos[θ (t ) − θ (0)] 	 cos φ(t ). Again, using the fact that φ re-
mains uniformly distributed in the range [−π/2, π/2], we
find (Appendix D)

Cθ (t ) 	 〈cos φ(t )〉

	 2

π

[
1 + 2

∞∑
n=1

(−1)n−1

4n2 − 1
exp(−4n2Drt )

]
, (7)

which saturates to 2/π as t increases.
This explains the saturation of Cθ (t ) observed in our exper-

iments for large Dr [see Figs. 4(c) and 5]. On the other hand,
in the small Dr limit, φ(t ) remains in the narrow range around
φ = 0 as mentioned before, resulting in 〈cos φ(t )〉 = 1 − Drt .
As a result, we find

Cθ (t ) 	 1 − Drt, (8)
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FIG. 6. Stochastic resetting simulation: (a) The position and the orientation of the AB particle with certain Dr at time t is denoted by
(x, y) and θ , respectively. Its orientation is stochastically reset to θ0 with a reset rate of ν. Both Dr and ν are taken from the experimental
data presented in Fig. 3(d). The reset continues until the particle reaches home (circle of radius a centered at H ). (b) A typical fluctuating
trajectory of the particle’s instantaneous orientation φ(t ), measured with respect to the radial axis connected H , with intermittent resets to
zero. [(c) and (d)] The mean homing time 〈T0〉 as a function of ν and Dr , respectively. The behavior of the homing time and the optimal rate
are commensurate with the experimental result in Fig. 3(f) and 3(b), respectively. (e) On addition of time tr per reset, the homing time shows
qualitatively similar behavior as observed in experiments in Fig. 3(a) with the transition D∗

r = 0.67 rad2/s remaining independent of tr . (e)
Temporal orientation autocorrelation function Cθ (t ) matches well with our theoretical model for low and high Dr values [Eqs. (8) and (7),
respectively].

which implies it decays linearly in time with slope −Dr con-
curring with our experimental observations [see Fig. 4(c) and
Fig. 5].

Concluding this part, our theoretical analysis accurately
reproduces the observed homing time optimality as well as
captures the key features of Cθ (t ) of the homing trajectories.
Note that for large Dr , the exact saturation values of both 〈T0〉
and Cθ (t ) observed in experiments will depend on the details
of the φ distribution [see Appendix E, Eqs. (E1) and (E2)].

C. Homing through stochastic resetting

Notably, the homing process bears a close resemblance
to the stochastic resetting-induced first passage time opti-
mization problems [41–47]. As such, by repeatedly resetting
a state (could be a spatial coordinate, momentum, external
perturbation or phase) to a known or random configura-
tion, one can unveil new pathways, avoid potential obstacles.
This has been shown to be a very effective mechanism for
maximizing search efficiency in various physical, chemical,
and biological systems (see Refs. [44,45] for a review on
the topic). In our experiments, resetting originates from the
self-reorientation events in the robot’s trajectory through the
intensity difference and not through an external clock, as
traditionally done in these existing studies. To understand this
better, we propose a theoretical toy model consisting of an AB

particle (with rotational diffusion constant Dr) that mimics
the robot under resetting dynamics. The particle starts its
motion from the boundary of a circle of radius R and points
towards the target which is a circular region of radius a as
shown in Fig. 6(a). The parameter a is inspired by the fact
that point H , referred to as the home in experiments, has a
finite width (see Appendix C). Here we use R = 46.25 cm
and a = 2.5 cm. Integrated into the AB motion, the particle
undergoes orientational resetting with a reset rate ν, i.e., the
instantaneous orientation θ (t ) is reset to a certain direction θ0,
which orients the angle of movement radially inward, pointing
towards the center [see Fig. 6(a) and Appendix F for details]
[48,49]. Depending on the particle’s exact location in phase
space, the resetting angle θ0 is computed, and the particle is
reoriented, following which the underlying active dynamics
continues. Consequently, the instantaneous angle φ(t ) of the
particle, measured with respect to the radial axis connected
to home H , fluctuates and resets to zero [see Fig. 6(b)]. Thus,
the phase space coordinates (x, y) do not reset directly in time;
rather they are only implicitly affected through the orientation.

The rotational diffusion constant Dr of the simulation par-
ticle and the corresponding orientational resetting rate ν are
taken from the parameter set presented in Fig. 3(d), which
are extracted from the experiments. Thus, the intensity-driven
reorientation events in the experiments are interpreted as ex-
ternally modulated resetting events in simulations, where the
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FIG. 7. Applying the homing model on flight trajectories of flocking pigeons: (a) Homing trajectories of solo and flocking pigeons of
different sizes between the home and release site; figure adapted from Ref. [28]. (b) Cθ (t ), averaged over multiple trajectories, showing linear
decay for flocking birds’ trajectories and saturation for solo trajectories at large times, which is in qualitative agreement with experimental and
theoretical results obtained for low and high Dr values, respectively. See Fig. 4(c) and Fig. 5 for comparison.

resetting rates are taken empirically from the experiments.
Note that in experiments, light-gradient-driven reorientations
guarantee that the robot never points away from home. How-
ever, in simulations, the particle is free to orient and move
in any direction due to its AB motion in the plane. Thus, it
is only natural to reset the particle pointing directly towards
home. For the same reason, we also ignore the fact that in
experiments, ν depends on the distance from home (SM Fig.
S3 [54]) as discussed before. The homing process continues
until the particle reaches within a radius a around the origin.
The mean return time to home, 〈T0〉, from this modeling is
shown in Fig. 6(c), clearly reproducing the existence of crit-
ical reset rate ν∗ = 0.78 s−1. This also implies the existence
of a unique D∗

r = 0.67 rad2/s [Fig. 6(d)], as also seen in our
experiments and predicted from the theoretical analysis. Note
that the decreasing trend in 〈T0〉 beyond ν∗ and D∗

r is not in
contradiction of experiments [Fig. 3(b)] and theory [Eq. (4)]
but a direct consequence of the width of the φ distribution
in simulation, which becomes progressively narrow as Dr

increases beyond D∗
r (see SM Fig. S4 [54] and Appendix E).

To incorporate the finite reorientation time which is intrin-
sic to the robots in simulations, we introduce an overhead
time tr per reset. We vary tr between 0.1 and 0.9 s and plot
the mean homing time 〈T 〉 as a function of Dr in Fig. 6(e).
Interestingly, we find D∗

r = 0.67 rad2/s remains independent
of tr , similar to experimental observation [Fig. 3(a)]. Also,
Cθ (t ) in Fig. 6(f) also shows qualitatively similar dependence
on Dr , linear decay for Dr � D∗

r and saturation at Dr 
 D∗
r ,

as observed in experiments and predicted by our theoretical
model [Eqs. (7) and (8), Fig. 4(c), and Fig. 5]. Moreover, the
saturation value of Cθ (t ) for high Dr increases with increas-
ing Dr which is consistent with theoretical prediction (see
Appendix E). Thus, inspired by the active dynamics models
under resetting, we can capture a similar first passage time
optimization phenomenon as demonstrated by the foraging
and homing active robots.

D. Application of the robot-homing model
on a real living system

Finally, we test our predictions on a living system. Our
findings indicate that beyond a certain critical value of Dr ,
the homing time becomes constant and the process remains

equally efficient, irrespective of the increasing strength of the
noise. Clearly, measuring Dr directly in a natural living system
is difficult, making direct verification of this result unreal-
istic. However, our model provides an important prediction
regarding the functional form of Cθ (t ) for different Dr values.
Therefore, analyzing real trajectories of homing organisms
offers a practical method to test our model.

To this end, we use a controlled experiment performed by
Takao Sasaki et al. [28] on homing pigeons Columba livia
flying in flock sizes of variable numbers as a model system.
Their results, using global positioning system (GPS) tracking
of the flight tracks, demonstrated that the pigeons flying in
larger flocks follow much straighter and more direct flight
paths toward home as compared to the birds flying solo (see
Fig. 7(a), adapted from the original paper [28]). Since pigeons
fly over distances of close to 8 km, they can be assumed to ex-
ecute AB motion in two dimensions with constant speed [28].
Moreover, it is reasonable to assume that pigeons adjust their
rotational diffusion coefficient (Dr) based on flock size, with
the highest Dr when flying solo and the lowest Dr in larger
flocks. Using trajectory data obtained from the original paper,
we compute Cθ (t ) (see Appendix G for details), and find
that the behavior closely matches our theoretical predictions
[see Fig. 7(b)]. Specifically, pigeons flying in flocks exhibit
a linear decay in Cθ (t ), while for solo pigeons, it saturates to
a finite value. This provides strong pragmatic evidence that
our system of foraging & homing robots can well explain key
homing features observed in real-world living systems.

IV. CONCLUSION AND PROSPECT

Drawing inspiration from the homing observed in animals,
we employed a programmable self-propelled robot to execute
the task resembling foraging and homing. Our objective was
to explore the interplay between the inherent randomness in
their dynamics and the frequent course corrections observed
in homing trajectories. We modeled the homing robot as an
active Brownian particle with a rotational diffusion constant
(Dr), programed to navigate towards a predefined location
guided by light-gradient-driven reorientations. Our observa-
tions revealed the presence of an optimal reorientation rate ν∗
determined by the inherent noise, D∗

r . Beyond this threshold,
the average homing time became largely independent of Dr ,
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indicating that animals may have a finite upper limit on return
times. Motivated by experimental findings, we developed a
theoretical model describing the stochastic evolution of the
robot’s orientation vector with respect to its radial direction
with the home as the center. Our calculations provide an
explanation of the presence of D∗

r , and also uncover key differ-
ences in the shape of homing trajectories quantified through
temporal orientation autocorrelation functions. We further
present our results through the lens of the theoretical frame-
work based on the optimization of the first-passage time under
stochastic resetting. Specifically, we used the experimentally
determined reorientation rate for each Dr as the input reset
rate of particle orientation toward the home. Interestingly, our
simulations reproduced the experimental findings, indicating
that the observed optimality originated due to the stochastic
reorientation of the robot as a mode of course correction.
Finally, we successfully validate our findings in a system of
a homing flock of pigeons with temporal orientation auto-
correlation functions extracted from trajectories, showing an
excellent qualitative match with our theoretical predictions.

Overall, the results obtained here provide a statistical basis
for the remarkable success of homing as a ubiquitous naviga-
tional technique adopted by living organisms. Future research
will determine how these proposed locomotive homing dy-
namics can be generalized as a tool to further elucidate the
fascinating phenomenon of homing in the fields of biology
and ecology [50]. Another important direction for the future is
altering our experimental setup to investigate generic homing
behaviours where the homing cue is not as simple as a gradient
pointing toward home. Our robots have the ability to perform
various stochastic dynamical paths featuring correlated dif-
fusion processes on short timescales and diffusion on large
timescales [37]. Also, while homing, using their on-board
sensors, the robots can adapt different navigational strategies
based on environmental cues or other social agent-agent inter-
actions. Given such versatility in the navigational dynamics,
we can address several homing time optimization problems
with regard to designing an efficient switching strategy and
characterizing the robustness in noisy optimal homing paths.
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APPENDIX A: MODELING THE ROBOT
TO FOLLOW AB MOTION

In general, the equations of motion for the robot are
given by

ẋ(t ) = v(t ) cos θ (t ), (A1a)

ẏ(t ) = v(t ) sin θ (t ), (A1b)

θ̇ (t ) = ζ (t ), (A1c)

where v(t ) is the robot’s speed along its instantaneous orienta-
tion n̂(t) = ( cos θ (t ), sin θ (t )). Here v(t ) = (vl (t ) + vr (t ))/2
and ζ (t ) = (vr (t ) − vl (t ))/d in terms of the robot’s instanta-
neous left and right wheels’ velocities vl and vr , respectively,
with d the diameter of the robot. For mimicking the AB
motion, vl (t ) and vr (t ) are varied such that v(t ) remains con-
stant and the value of ζ is updated discretely from a uniform
distribution between [−η, η] after every ε seconds. For the
timescales much larger than ε,

〈ζ (t )ζ (t ′)〉 = 2Drδ(t − t ′), (A2)

where Dr is the rotational diffusion constant. It is straightfor-
ward to show that [51]

〈[θ (τ ) − θ (0)]2〉 = 2Drτ. (A3)

Here the angular bracket represents the ensemble average.
Whereas, from the discrete form of (A1c),

θ (τ ) = θ (0) + ε

Nτ∑
i=1

ζi, (A4)

where ζi ≡ ζ (iε) and Nτ = τ/ε. As the random number ζi has
the uniform probability distribution between [−η, η],

〈ζiζ j〉 = δi j
η2

3
. (A5)

Then, from (A4),

〈[θ (τ ) − θ (0)]2〉 = ε2
Nτ∑
i=1

Nτ∑
j=1

〈ζiζ j〉

= ετ
η2

3
. (A6)

Comparing the above equation with (A3), we obtain

Dr = ε
η2

6
. (A7)

Using the above relation, we can control the value of Dr by
varying ε or η.

APPENDIX B: IMAGE ACQUISITION
AND ANALYSIS TECHNIQUE

While capturing video of the robot’s movement, we cover
its components (except the light intensity sensors) with a
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FIG. 8. A schematic that demonstrates the relation between θ and
φ pertaining to the origin of Eq. (D1b).

white paper cap with a black circle drawn on top of it at the
center. We then use the in-house MATLAB code to extract the
in-plane instantaneous position coordinates of the robot. The
experimental movies were captured at a rate of 10 frames per
second.

APPENDIX C: EXPERIMENTAL VALUES OF R AND a

In this study, the robot operates within a circular arena
with a diameter of 1 m, with the home position, H , located
at the center. The robot begins its homing motion from the
circumference. However, to ensure that both its front and
back LI sensors remain inside the circle, the effective homing
distance, R, is reduced by the robot’s radius (= 3.75 cm).
Thus, R = 46.25 cm instead of 50 cm in the experiments.
Additionally, since the robot detects the home position as the
area of highest intensity through its LI sensors, it is not a
single point but a region with a finite width, a. Experimental
findings indicate that a ≈ 2.5 cm.

APPENDIX D: DETAILED ANALYSIS OF THE
THEORETICAL MODEL: MEAN HOMING TIME

AND TEMPORAL ORIENTATION
AUTOCORRELATION FUNCTION

The equations of motion of the robot during the homing
phase in terms of its distance r(t ) from home and the angle
φ(t ) with respect to the axis joining its instantaneous location
to its home read

dr

dt
= −v cos φ(t ), (D1a)

dφ

dt
= v

r
sin φ + dθ

dt
, (D1b)

where v denotes the speed of the robot, and θ represents the
orientation angle of the robot relative to the x axis of the
laboratory frame. As shown in Fig. 8, the change in angle φ

due to the translational motion of the robot in time dt , in the

dt → 0 limit, is given by

OB

OH
= AB sin φ

AH − AB cos φ
= v sin φ dt

r − v cos φ dt
	 v sin φ dt

r
.

This leads to the first term in the φ equation. The dynamics of
θ is governed by the Eq. (A1c) in a standard way.

In our experiments, the robot reorients itself whenever it
interacts with the light, and it does not move during reori-
entation. In the theoretical analysis, we ignore the overhead
time taken for these reorientation events. Let T0 be the random
homing time for a single trajectory. Integrating Eq. (D1a) over
the homing trajectory, we obtain

R =
∫ T0

0
v cos φ(t )dt, (D2)

where R is the initial distance of the robot from home which is
kept fixed. Taking the ensemble average of the above equation

R =
〈∫ T0

0
v cos φ(t )dt

〉
, (D3)

and further making a mean-level approximation that T0 	
〈T0〉, we can write

R 	
∫ 〈T0〉

0
v〈cos φ(t )〉dt . (D4)

For Dr � 1/〈T0〉, it is safe to assume that the values of φ(t )
do not deviate much from its initial value φ(0) = 0. Thus, at
time t , the mean-square deviation of φ would be roughly 2Drt .
Then, the ensemble average 〈cos φ(t )〉 can be calculated as
follows:

〈cos φ(t )〉 	
〈[

1 − φ(t )2

2

]〉

	
[

1 − 1

2
〈φ(t )2〉

]
	 [1 − Drt]. (D5)

Equation (D4) then becomes

R 	
∫ 〈T0〉

0
v[1 − Drt]dt

	 v

[
〈T0〉 − 1

2
Dr〈T0〉2

]
. (D6)

Solving the above equation, we find

〈T0〉 	 R

v

[
1 + R

2v
Dr

]
. (D7)

The above expression suggests that, at small Dr , 〈T0〉 increases
linearly, starting from a nonzero value at Dr = 0, which is in
agreement with our experimental results.

Next, we consider the large-Dr limit. Due to the interaction
of the robot with light, the robot tends to maintain the value
of the angle φ within the range [−π/2, π/2], since beyond
this range the light intensity I f at the front of the robot be-
comes smaller than the light intensity Ib at its back. In the
Dr 
 1/〈T0〉 limit, φ spreads out across its accessible range
[−π/2, π/2] long before it reaches home, thus enabling us
to assume that the values of φ(t ) are approximately evenly

033007-9



PARAMANICK, BISWAS, SONI, PAL, AND KUMAR PRX LIFE 2, 033007 (2024)

distributed within this range. Then

〈cos φ(t )〉 	 1

π

∫ π/2

−π/2
cos φ dφ

	 2

π
. (D8)

Equation (D4) then trivially gives

〈T0〉 = Rπ

2v
, (D9)

which is independent of Dr , again in agreement with our
experiments. Moreover, for R/v = 4 s, 〈T0〉 	 6 s, which im-
pressively agrees with the experimental value of 〈T0〉.

We now obtain the expression of the correlation function
Cθ (t ) in the regime of large Dr . The first term in the φ

equation [Eq. (D1b)] becomes less significant in this regime,
allowing us to disregard it. The resulting φ equation becomes

dφ

dt
= ζ (t ). (D10)

We consider that φ = 0 at t = 0 for all our trajectories, as
in experiments. Then the probability distribution of φ at
t = 0 is P(φ, 0) = δ(φ). Given that φ remains within the
range [−π/2, π/2], the probability distribution P(φ, t ) of φ

obeys the reflective boundary conditions ∂φP(±π/2, t ) = 0
conserving the probability. Implementing these boundary con-
ditions, the expression for P(φ, t ) is found to be a series
expansion namely [52,53]

P(φ, t ) = 1

π

[
1 + 2

∞∑
n=1

cos 2nφ exp[−4n2Drt]

]
. (D11)

As we have ignored the first term in Eq. (D1b), one can
approximately write cos[θ (t ) − θ (0)] 	 cos φ(t ). Then the
temporal orientation autocorrelation function calculated using
the above distribution is given by

Cθ (t ) = 〈cos[θ (t ) − θ (0)]〉
	 〈cos φ(t )〉

	
∫ π/2

−π/2
cos φ P(φ, t ) dφ

	 2

π

[
1 + 2

∞∑
n=1

(−1)n−1

4n2 − 1
exp[−4n2Drt]

]
. (D12)

It saturates to 2/π towards large t . As mentioned in the main
text, this observation closely aligns with our experimental
results. The small Dr limit is rather straightforward and has
been illustrated in the main text.

APPENDIX E: COMPARISON BETWEEN
EXPERIMENTS AND SIMULATIONS

The main difference between the experiments and simula-
tions is that in the simulations, the value of φ is stochastically
reset to zero. In contrast, in the experiments, reorientation
occurs only when φ escapes the range [−π/2, π/2], and after
reorientation, φ remains near ±π/2. Therefore, the accessible
range of φ in experiments is nearly [−π/2, π/2]. In simula-
tions, however, φ remains restricted to the range [−�φ,�φ],

where �φ can be approximated as the root-mean-square de-
viation of φ in simulations, which decreases with increasing
Dr . Then, as in Eq. (D8),

〈cos φ(t )〉 	 sin �φ

�φ
, (E1)

and from Eq. (D4), we find

〈T0〉 	 R

v

�φ

sin �φ
. (E2)

Since the reset rate increases almost linearly with Dr [see
Fig. 3(d)], �φ(< π/2), decreases with Dr , as shown in SM
Fig. S4 [54]. Then, the above equation indicates that 〈T0〉 in
simulations is expected to decline with Dr , which is consistent
with our observations in Fig. 6(d). Similarly, following the
derivation of Eq. (D12), we can show that Cθ (t ) saturates
to a value of sin �φ/�φ, which increases with Dr . This is
consistent with the simulation results shown in Fig. 6(f).

APPENDIX F: MODELING AND ALGORITHM
FOR HOMING SIMULATIONS WITH STOCHASTIC

RESETTING SCHEME

In this section, we sketch out the details of the theoretical
modeling and the simulation that was used to obtain the plots
in Figs. 6(c)–6(f). There are two key ingredients to this model-
ing: (i) the underlying dynamics of the robot is an AB motion,
and (ii) the robot experiences reorientations, which reset the
angle of its movement to a particular direction. To mimic the
experimental setup, we set the target to be a circular region of
radius a around the center of the exploration arena with radius
R 
 a. Starting from the circumference of the bigger circle
(R) the motion continues until the simulation particle reaches
the smaller circle (home/target) with radius a; see Fig. 6(a).
In what follows, we elaborate more on the two subprocesses
mentioned above.

1. The underlying dynamics

The dynamic of the simulation particle is modeled as an ac-
tive Brownian motion as described by the following equations

ẋ(t ) = v cos θ (t ),

ẏ(t ) = v sin θ (t ),

θ̇ (t ) = ζ (t ),

(F1)

where ζ (t ) is a Gaussian white noise with the following
correlation:

〈ζ (t )ζ (t ′)〉 = 2Drδ(t − t ′), (F2)

where Dr is the rotational diffusion constant. In simulation,
one evolves the motion in discrete time steps �t . Given the
initial coordinates of the particle at time t as (θ (t ), x(t ), y(t ))
one can find the coordinates at time t + �t as

x(t + �t ) = x(t ) + v cos θ (t )

y(t + �t ) = y(t ) + v sin θ (t )

θ (t + �t ) = θ (t ) +
√

2Dr�tξ (t ),

(F3)

033007-10



UNCOVERING UNIVERSAL CHARACTERISTICS … PRX LIFE 2, 033007 (2024)

where ξ (t ) is a Gaussian noise with zero mean and unit vari-
ance. In the simulation, the initial condition at t = 0 is chosen
to be θ (t = 0) = 0, x(t = 0) = −R, y(t = 0) = 0, where R
is the radius of the circular arena in the experiment. The
homing motion continues until the particle reaches inside a
circle of radius a in the center of the arena. Once the homing
is completed, we note the time that it takes for the active
Brownian particle to reach there and repeat the simulation to
estimate the statistical quantities.

2. The orientational resets

In addition to the underlying dynamics of the particle, the
angle θ (t ) at which it moves is reset to a prefixed direction
θ0 at random times. This random time of reorientation comes
from an exponential distribution with mean 1/ν, i.e., the reori-
entations occur at a rate ν. At each time step �t the particle
reorients to θ0 with probability (w.p.) ν�t or continues to
diffuse with probability 1 − ν�t . Thus, in summary, the dy-
namics of the angle θ is given by

θ (t + �t ) =
{

θ (t ) + √
2Dr�tξ (t ), w.p. 1 − ν�t

θ0, w.p. ν�t
.

(F4)

The angle θ0 is chosen suitably so that it makes the orientation
of the particle radially inward toward the center of the circular
arena.

Depending on the quadrant of the particle at a given time t ,
the resetting angle θ0 can be computed using simple geometry.
Following the analysis, we have

θ0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−π
2 − tan−1(x/y), 1st quadrant

−π
2 + tan−1 |x/y|, 2nd quadrant

tan−1 |y/x|, 3rd quadrant
π
2 + tan−1 |x/y|, 4th quadrant

. (F5)

In the simulation, we have set v = 10 cm/s, a = 2.5 cm,
and R = 46.25 cm. The values of ν and Dr have been found
by fitting the experimental data as shown in Fig. 3(d) to a
polynomial f (x) = ∑

i aixi (truncated to i = 4). The time step
�t was chosen to be 10−5 s, and the results were averaged
over 105 number of homing trajectories. The boundaries do
not play a significant role in this problem since the particle

keeps correcting its direction right away from the beginning,
and as such, the probability of returning toward the boundary
is diminishingly small.

a. Overhead time for reorientation

In the experiment, the robot consumes a finite amount
of time each time it reorients. To implement that in the
simulation, we add an overhead time penalty tr whenever a
resetting/reorientation event takes place. When we neglect the
reorientation times, then tr = 0 and the corresponding mean
homing time is shown in Fig. 6(d). Later we set tr to be
nonzero and vary its value between 0.1 and 0.9 s. The resulting
statistics for the mean homing time as a function of Dr is
depicted in Fig. 6(e).

APPENDIX G: CALCULATION OF Cθ (t ) FROM PIGEON
HOMING TRAJECTORIES

We use a publicly available empirical data repository of
homing pigeons namely Columba livia flying in different
flock sizes from the paper’s Supplemental Material by Takao
Sasali et al. [28] to calculate Cθ (t ). More specifically, we
used “SoloRoutes.mat” and “FlockRoutes.mat” files. The data
repository contains 147 different trajectories for solo-flying
pigeons, 13 trajectories for pigeons flying in flock size 2,
10 trajectories for flock size 4, and 8 trajectories for flock
size 8 between home and the release site. Each trajectory
has a total of three columns, where the first two columns
are bird position data, and the third column is time. The
data were recorded at a 5 Hz frequency with GPS log-
gers attached to each bird. Note the repository does not
have the data for pigeons’ instantaneous orientation, n̂(t ).
Therefore, we assume that this vector coincides with the
instantaneous unit displacement vector defined from the posi-
tion data as m̂(t ) = 1

d (t ) [(x(t + �t ) − x(t ))î + (y(t + �t ) −
y(t ))ĵ], where d (t ) = ([(x(t + �t ) − x(t )]2 + [(y(t + �t ) −
y(t )]2)1/2 is the distance traveled between t and �t . We
use �t = 0.2 s as the data is recorded at 5 Hz. With this
information, we calculate the temporal orientation autocorre-
lation function, averaged over all the available trajectories as:
Cθ (t ) = 〈m̂(t ′ + t ).m̂(t ′)〉t ′ . Subscript t ′ on the angular brack-
ets implies sliding average over time to improve statistics.
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