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Dynamic Cost Allocation Allows Network-Forming Forager to Switch Between Search Strategies
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Network-forming organisms, like fungi and slime molds, dynamically reorganize their networks during
foraging. The resulting rerouting of resource flows within the organism’s network can significantly impact local
ecosystems. In current analysis limitations stem from a focus on single-time-point morphology, hindering un-
derstanding of continuous dynamics and underlying constraints. Here we study ongoing network reorganization
in the foraging slime mold Physarum polycephalum, identifying three distinct states with varying morphology
and migration velocity. We estimate the energetic cost of each state and find a trade-off between building and
transport costs within the morphological variability, facilitating different search strategies. Adaptation of state
population to the environment suggests that diverse network morphologies support varied foraging strategies,
though constrained by associated costs. Our findings provide insights for evaluating the impact of resource flow
rerouting in changing ecosystems.
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I. INTRODUCTION

Network-forming foragers, such as fungi and plasmodial
slime molds, impress by sheer network size and continuous
network reorganization [1–5]. As foragers transport resources
throughout their network, reorganization of their network af-
fects ecosystems [6–10]. Both plasmodial slime molds and
foraging fungi are strikingly similar in their network reorga-
nization dynamics [2,11,12] despite their different biological
makeup: When foraging, body mass is recycled [13–15] as
newly formed network fronts enter new territory [1,16–19],
thereby changing network morphology [1,17,20,21]. How-
ever, how networks reorganize and what costs and functional
requirements constrain their reorganization are still being de-
termined.

The central functional role of a foragers network is to
transport resources over long distances governed by network
morphology [22,23]. Evolutionary pressures are expected to
constrain network morphology by minimizing transport costs
at fixed network building cost [24]. Depending on network
building cost versus transport cost, the optimal network mor-
phology is predicted to be either treelike (low building cost,
but high transport cost) or finely reticulated (high building
cost, but low transport cost) [25–28], even under nonequilib-
rium conditions [29]. Within this framework, fungal networks
have high building costs, while animal microvasculature has
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low building costs [30], suggesting species-specific evolu-
tionary constraints resulting in either reticulated or treelike
transport networks. To date, physiological network analysis
has focused on network morphology at single points in time,
neglecting the impact of continuous network reorganization
on network morphology [17,20].

The plasmodial slime mold Physarum polycephalum [31]
stands out as a network-forming forager amenable to quantita-
tive network extraction [21,32–36] despite its highly dynamic
foraging behavior in different environments [37–41]. P. poly-
cephalum spreads in two-dimensional space [Movies S1 and
S2 [42], Fig. 1(a)] at a migration velocity of approximately
0.05 mm/min [16,19,38], and its network reorganizes within
hours [43]. Rhythmic contractions of the tube walls generate
peristaltic fluid flow with a period of 120 s [44], transporting
nutrients, chemical signals, and body mass through the net-
work and into the migration fronts [45–49]. However, how
body mass reallocation changes the functionality associated
with network morphology is unknown.

In this study, we investigate how continuous network re-
organization of P. polycephalum evolves both over time and
as function of nutritious or plain environments. We observe
P. polycephalum transitioning continuously between three dif-
ferent network states, regardless of the environment. All states
are repeatedly populated over time and differ in network
morphology and migration velocity. We calculate the energy
costs associated with each network morphology, revealing that
energy allocation is a trade-off between transport and building
costs among the three states. Upon investigating the function
of the different network states, we find that they differ in
their search strategies, particularly in how broadly the envi-
ronment is scanned. Finally, we conclude that the trade-off
in energetic costs drives variability in network states and as-
sociated search strategies as the population of network states
changes in response to the environment. Our observations in
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FIG. 1. The continuous network reorganization of P. polycephalum is captured by three distinct network states. (a) Network morphology
continuously reorganizes during the migration of P. polycephalum networks over several hours (brown arrows indicating migration direction),
presented for the low-time resolution data. Gray spots are heat-killed E. coli food sources. Network morphology varies among three states:
stationary (b), crescent (c), and lightning (d). (e) Time series of the scaled radius of gyration Rgr/

√
A throughout the experiment for the

plasmodium presented in (a) with the states highlighted by the color change in the background. (f), (g) Quantification of migration front
velocity vfront , scaled radius of gyration Rgr/

√
A, and solidity A/Ac show the classification of network states by network dynamics and network

morphology. A trained neural network automatically detects network states. Error bars indicate the standard deviation of the distribution of
data sets in each state.

P. polycephalum establish the diversity and functionality of
the network morphology in network-forming foragers likely
impacting resource transport within inaccessible underground
foraging fungi.

II. RESULTS

A. Network morphology is dynamic during migration

To study the dynamics of network reorganization of P.
polycephalum during foraging, we collect time series of
bright-field images of 16 individual plasmodial networks at
5–10 min intervals over 46–60 h [Fig. 1(a), Movie S1 and S2
[42]]. The experiments start with well-fed plasmodia, which
initially grow without migration. Eventually, after 1–5 h, the
plasmodia start migrating on plain 1.5% agar to search for

new food sources. We present half of the plasmodia with
patchy localized food sources of heat-killed E. coli in varying
patterns, enabling two or three food encounters for successful
foragers. In contrast, the other half migrates on plain agar to
evaluate how the environment changes network reorganiza-
tion. We prepare networks ranging in size from 2.5–90 mm2

[Fig. S1 [42]] as the dimensions of our microscope setup
limit the observation of more extensive networks, and smaller
plasmodia do not form a hierarchical network structure. In all
experiments, P. polycephalum undergoes continuous network
reorganization on the timescale of minutes to hours [Fig. 1(a)]
varying between static and migratory networks. In addition
to these low-time resolution data sets, we trim a plasmodial
network to prevent it from migrating within a 3-h time frame
of imaging [Movie S3 [42]]. We image the continuous net-
work reorganization with 6-s intervals such that we can follow
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the tube dynamics during the transition between network mor-
phologies with a high-time resolution.

The observed variability in network morphology is in
stark contrast to theoretical work on optimal flow networks
[24–26,28,50] suggesting a single optimal network state. To
capture discovered differences in network shape and migra-
tion velocity, we first focus on the low-time resolution data
and visually separate experimentally recorded networks into
three distinct morphological states [Figs. 1(b)–1(d)]: a sta-
tionary state [Fig. 1(b)], a crescent state [Fig. 1(c)], and a
lightning state [Fig. 1(d)]. In the stationary state, the plasmod-
ium grows isotropically in size without displacement, while
the organism is migratory in both the crescent and lightning
states. Crescent and lightning states exhibit different migra-
tion speeds, with crescent being slow and lightning being
fast. Regarding network shape, stationary and crescent states
form a reticulated network, developing an extended migration
front in the crescent state. In the lightning state, however, the
network consists of a few thick tubes arranged in a treelike
morphology. To comprehend the benefits of transitioning be-
tween network states, we must first answer the question: What
is the connection between network morphology and migration
dynamics?

In order to obtain statistics about the morphodynamic be-
havior, we search for morphometric measures that allow an
automatized distinction of the different states directly from the
time series of the bright-field images. We discard measures
such as area and perimeter because they are size-dependent.
A suitable parameter to describe the mass distribution within
a shape is the radius of gyration Rgr. To compare networks
of different sizes, Rgr is scaled by the square root of the area
of the organism,

√
A [Fig. S1 [42]]. The time series of the

Rgr/
√

A first indicates the variability of the morphological
states [Fig. 1(e) and Figs. S2 and S3 [42]] with higher values
in the lighting state (blue background). In comparison, smaller
values coincide with the stationary state (yellow background).
While the scaled radius of gyration measures the biomass
distribution within the plasmodium, the shape of the network
is evaluated by the solidity, given as A/Ac, where Ac is the area
inside the convex hull, the smallest convex perimeter outlining
the network [Fig. S2 and S3 [42]]. To assess variations in
migration dynamics, we compute the mean migration front
velocity vfront for each time point for each plasmodial network.
The first obvious choice for velocity, the velocity of the center
of mass of the network, fails here because it is susceptible to
network reorganization without displacement, such as pruning
of individual network tubes [Fig. S2 and S3 [42]].

After quantifying the scaled radius of gyration Rgr/
√

A as
a biomass distribution parameter, the solidity A/Ac as a shape
measure, and the mean migration front velocity vfront for all
plasmodia, we train a neural network by providing a set of
training data that has been visually classified by a human to
distinguish between the different states. Note that instead of
training the AI to evaluate gray-scale image features directly,
we provide the three parameters as training data, resulting
in a more accurate phase space that covers the wide range
of transitions during network reorganization. We find that in
the stationary state, vfront and Rgr/

√
A are consistently small,

while A/Ac is close to one [Figs. 1(f) and 1(g)]. The values
of vfront and Rgr/

√
A increase for both migratory states and

are largest for lightning. A/Ac decreases and drops to 0.2
for the lightning state. The standard deviations of the means
overlap due to the sheer range of morphological transitions
captured in the data points. Note that the organism’s size only
marginally affects the measures, which are also independent
of the environment [Fig. S4 [42]], making them robust criteria
for identifying the three morphological network states.

Individual network states, such as lightning with its tree-
like morphology, are reminiscent of theoretically predicted
optimal morphologies that minimize transport costs due to
viscous energy dissipation of the fluid flow at a fixed building
cost [25,26]. However, in this context, a reticulated network
morphology, as observed in the stationary state, would be
formed if the building cost is lower than for a time point with
the lightning state. To solve the puzzle of how network states
that are theoretically optimal under different cost constraints
can be interchangeably swapped within a single organism, we
next turn to quantify the associated costs of network states.

B. Network morphology states show trade-off between
transport and building costs

To quantify the energetic cost associated with the three net-
work states, we follow the large body of theoretical work on
optimal flow networks [24–26,28,50], known to also capture
out-of-equilibrium states [29]. The total power of operating a
tube segment in flow networks results in a sum of transport
costs, Ctrans, measured by the viscous energy dissipation of the
fluid flow, and the building cost Cbuild [24], the metabolic cost
of the tube segment related to the tube volume. To account
for flow velocity scaling with overall network size in P. poly-
cephalum [38], we normalize the overall energy dissipation
of an organism by the organism volume, defining transport
cost as

Ctrans = ∂Ev

∂t

1

V
=

〈
N∑

k=1

Qk (t )2

Ck

/ N∑
k=1

Vk

〉
t

,

where we sum over a network consisting of k ∈ N cylindrical
tubes with tube volume Vk = πa2

0,klk for tubes of individual
length lk and base radius a0,k . Energy dissipation in tube k
is determined by the volumetric flux Qk (t ) = πa2

0,kūk (t ) and
hydraulic conductance Ck = πa4

0,k/8μlk , where ūk (t ) denotes
the cross-sectionally averaged flow velocity. Thus, viscous
energy dissipation is directly accessible from measurements
of the network architecture, {a0,k, lk}, cytoplasm viscosity
μ = 0.275 Pa s [49,51], and calculations of flows ūk (t ) driven
by tubular contractions from the base radius, ak (t ) − a0,k

[43,52] which we average over two contraction periods. Con-
sidering the rhythmic tubular contractions as key metabolic
costs, we quantify the building costs of P. polycephalum by
the network’s time-averaged elastic energy [53],

Cbuild = Eel =
〈

N∑
k=1

Y hkπa0,k

(1 − ν2)
lk

(ak (t ) − a0,k )2

a2
0,k

〉
t

,

with ν = 1/2 Poisson’s ratio, hk = 0.1a0,k tube wall thick-
ness, and Y = 10 kPa Young’s modulus [54–56] also time-
averaged over two contraction cycles. Note that, in this
case, the elastic energy as the specific choice of building
cost allows a direct quantification while maintaining the
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(a)

(b)

FIG. 2. Change in network morphology associated with trade-off
between transport cost Ctrans = ∂t Ev/V and building cost Cbuild = Eel.
(a) The high-time resolution data set is a spatially stable individual,
allowing for time-resolved extraction of costs. The plasmodium re-
duces building cost by increasing transport cost when transitioning
from crescent (t1, t2) to lightning state (t3, t4). (b) Trade-off between
building and transport cost recaptured in large statistics of low-time
resolution network morphologies of migrating P. polycephalum. Er-
ror bars indicate the standard deviation of the distribution of data sets
in each state.

original geometric scaling of building costs [24]. As we focus
on network cost associated with the different network states
emerging on the scale of hours, we average both transport
and building costs over P. polycephalum’s intrinsic timescales
[57].

The network architecture, {a0,k, lk}, tube dynamics ak (t ),
and resulting flow velocities ūk (t ) are retrieved from data
in two steps. First, we follow contraction dynamics in the
network with high time resolution acquired with a 6-s interval,
transitioning from crescent state [see time points t1 and t2
in Fig. 2(a)] to lightning state [see time points t3 and t4 in
Fig. 2(a) (Movie S3 [42])]. Due to its immobility, the high-
time resolution network allows us to extract tube dynamics
ak (t ) from bright-field images. The cross-sectionally averaged
flow velocity ūk (t ) follows from solving for laminar flow and

conservation of fluid volume at each node in the network
[52,57]. Migration fronts that develop during the transition
only play a passive role in the overall flow and contractility
[4] and are, therefore, not included in the analysis.

The quantification of costs reveals that the crescent state
comes at a high building cost due to its reticulated network
structure; however, the ensuing flows are at low velocities
from the diversion among many competing routes, resulting in
small transport costs. As the network reorganizes into a light-
ning state, mass is relocated into fewer, bigger tubes, reducing
the necessary building costs. Simultaneously, flow velocities
and thus dissipation, also known as transport cost, increase. It
is noteworthy that fluctuations in contractions decrease during
the transition from crescent to lightning [Fig. S8 [42]] in
line with theoretical predictions on the impact of fluctuations
during cost optimization [28].

The high-time resolution data set already suggests that
building and transport cost variations are traded off as net-
works reorganize. We next turn to quantify both costs in the
large statistics of the low-time resolution data sets under-
lying Fig. 1 and employ the high-time resolution network
data to confirm that direct flow calculations from measured
tube dynamics agree with flow predictions based on modeling
contractions as a peristaltic wave of 20% contraction ampli-
tude along the network’s longest axis following Refs. [43,46]
[Fig. S6 [42]], which we use to quantify flow velocities based
on extracted network morphologies in the low-time resolution
data. Pooling networks by size and state reveals that building
cost is largest for stationary states, about double the cost for
crescent states, which is twice the building cost for lightning
states, for each respective plasmodia size; see Fig. 2(b). Trans-
port costs show the opposite behavior: the lightning state is the
most costly, with twice the amount of dissipation than cres-
cent states, itself double the amount of transport cost as the
stationary state. Note that while transport costs appear to drop
towards zero in the stationary case, they are, in fact, merely an
order of magnitude smaller [see log-scale Fig. S7 [42]]. Build-
ing and transport costs appear to be in a trade-off facilitated
by a network morphology change. Note that contrary to the
theoretical hypothesis, dissipation is not always minimized.
Which advantage does P. polycephalum gain from investing
in higher flows by reorganizing network morphology?

C. Search strategies vary with network state

We quantify each state’s search dynamics with three pa-
rameters to investigate the potential diversity in each network
state’s functionality. The migration front behavior governs
search dynamics [Fig. 3(a)]. First, we infer the overall biomass
allocated into migration fronts per minute by quantifying
the intensity of the transmitted light in the migration front
area compared to the total area covered by the organism,
invoking the Beer-Lambert law. Second, we investigate P.
polycephalum’s strategy in scanning its local environment by
calculating the width of the migration front θ . Here we map
the boundary pixels of the migration front onto a unit circle
and sum over the angular width of each individual migration
front segment θs. Third, we introduce the search location rel-
ative to the orientation of the plasmodium, given by the main
axis of the network’s radius of gyration [Fig. 3(a)]. Aligning
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FIG. 3. Different network states in P. polycephalum allow for a
variety of search strategies. (a) Search in P. polycephalum is arising
from migration front dynamics. (b) The rate of invested biomass
separates different network states into static and migratory. Migra-
tory states differ in how much their fronts are fanned out, quantified
by migration front width. (c) P. polycephalum searches along the
network orientation axis for lightning and distributes search more
broadly for crescent and stationary. (d) P. polycephalum adapts the
likelihood to spend time in different morphodynamical states ac-
cording to its environment. P values are gained by standard null
hypothesis significance testing: * p � 0.05 and ** p � 0.01.

each network’s intrinsic orientation axis to 0◦, we determine
the relative angular position of the migration front boundary
pixels and combine all data sets statewise into the separate
histograms in Fig. 3(c).

The rate of invested biomass separates network states into
migratory (crescent and lightning state) versus static (sta-
tionary state) [Fig. 3(b)]. Invested biomass is one magnitude
smaller in the stationary state than in both migratory states.
Although plasmodia in the lightning state are twice as fast as
plasmodia in the crescent state, the rate of invested biomass

is the same. Differences among both migratory states appear
only when quantifying the environmental scanning strategy.
The migration front width is only half as wide in the lightning
state as in the crescent state. The invested biomass is, there-
fore, used to achieve high velocities in the lightning state and
to scan a broad environment in the crescent state. As the rate of
invested biomass is low for stationary networks, the migration
front width is also comparably small. With a low velocity in
the stationary state, P. polycephalum invests all of its biomass
in local environment scanning. Mapping out the search loca-
tion around the orientation axis of the plasmodium further
reveals that both stationary and crescent plasmodia tend to
search everywhere around the organism, which is apparent
through the wide distribution of front locations [Fig. 3(c)].
In the lightning state, however, the search is very focused
in the immediate direction of the plasmodium, visible in the
very narrow front location distribution. From lightning via
crescent to stationary state, the search location distribution
widens. Search dynamics in the different network states vary
from unidirected search in the stationary and crescent states
to directed search in the lightning state. Combining all three
parameters characterizing search dynamics thus reveals that
each network state represents a unique search strategy.

To probe if different search strategies are an inherent
function of the network-forming forager’s environment, we
quantify the likelihood of different states in environments
that are either plain or scattered with patchy food
sources. We find that food-encountering P. polycephalum
is twice as likely to be in the lightning or stationary
state (stationary:crescent:lightning:20%:50%:30%)
compared to nonsuccessful foragers (station-
ary:crescent:lightning:10%:70%:15%); see Fig. 3(d). We
deduce that continuous network reorganization enables
richer search strategies that are impacted by the forager’s
environment and, thus, environmental changes.

III. DISCUSSION

Following network reorganization in P. polycephalum for
days, we identify a transition between three different network
states unique in morphology and migration dynamics. We es-
timate the energetic cost associated with each state and reveal
that morphological variability trades off transport and building
costs. Quantifying each state’s search strategy reveals that
dynamic network reorganization within the trade-off of costs
allows the network-forming forager to continuously switch
between strategies. While different environments do not affect
the morphological variability, they drive a network-forming
forager to change the search dynamics.

Network reorganization is a general optimization process
not solely found in network-forming foragers but also de-
veloping blood vasculature [30,58], bile canalicular networks
[59], and leaf venation [26]. However, those networks evolve
into a single network morphology in line with the minimiza-
tion of energetic costs predicted by theoretical models at a
fixed ratio of transport versus building cost [24–26,28,50,60].
Our estimates of the energetic costs in network states of P.
polycephalum suggest that the allocation of transport versus
building also constrains network morphology. Nevertheless,
instead of optimizing for a single network morphology,
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varying energy allocation over time enables P. polycephalum
a dynamic range of network states and search strategies.

Different network states in P. polycephalum, termed sta-
tionary, crescent, and lightning by us, align with prior
observations of the crescent state in chemotaxis [19] or net-
work coarsening [16]. The transition from stationary, isotropic
networks to migratory, crescent networks has been described
as a change from exploiting a food source (stationary) to ex-
ploring new sources (crescent) [37,40,61]. Our findings here
broaden the diversity of migratory states, now accounting for
lightning in addition to crescent, showing that network reor-
ganization allows for rich search dynamics in network-shaped
foragers compared to other species [39,62,63]. Network adap-
tation from sheetlike (stationary or crescent) to more treelike
(lightning) structures also results from environmental varia-
tions [22,64]. However, while we observe that food encounters
change the likelihood of state transitions, they are not the sole
trigger; transitions occur even without visible environmen-
tal stimulation and happen frequently. This internal trigger
might enhance foraging success, which warrants further
investigation.

Previous studies on the search strategies of P. poly-
cephalum involved inoculating plasmodia directly onto food
sources, demonstrating that plasmodial networks fully ex-
plore their environments before optimizing transport between
large food sources [65–67]. In contrast, our experiments use
plasmodia with limited biomass and small food sources, ne-
cessitating a trade-off between optimizing transport and min-
imizing network-building costs. Note that P. polycephalum
additionally optimizes its foraging strategy by leaving behind
a slime trail as an external memory [68], adjusting its diet
based on food patch composition [69], and modulating its os-
cillation patterns to store environmental information [70,71].
In this context it is noteworthy that we also find transitions
between different morphological states to be linked to changes
in the contraction patterns, suggesting oscillation dynamics to
be linked to the optimization process in P. polycephalum.

Not only the network reorganization dynamics of P. poly-
cephalum but also the observed network states resemble
foraging fungi [1,17,18], suggesting that the cost constraints
and search strategy dynamics found here might well be inde-
pendent of the biological make-up. As we find network states
to be tied to biomass reallocation, adapting the network state
population to environmental conditions gives a first insight
into how network-forming foragers might reroute resource
flows in changing environments.

IV. METHODS

A. Culturing and imaging of P. polycephalum

P. polycephalum networks (Carolina Biological Supplies)
were inoculated from microplasmodia grown from liquid cul-
ture [72,73] onto 1.5% (w/v) nutrient-free agar. Half of the
plasmodia are presented with localized patches of heat-killed
E. coli. The food sources are distributed in patterns varying
from randomly distributed to circle- and spiral-like without
guaranteeing a successful foraging of the plasmodia. For the
low-time resolution data sets, experiments were started 1–5 h
after inoculation and carried out for 24–60 h. Images of the

networks were acquired every 5 or 10 min with a Zeiss Axio
Zoom V.16 microscope equipped with a Hamamatsu ORCA-
Flash 4.0 digital camera and a Zeiss PlanNeoFluar 1 × /0.25
objective with a spatial resolution of 80–120 px/mm. A green
filter (550/50 nm) was placed over the transmission light
source of the microscope to diminish P. polycephalum’s re-
sponse to the light. A custom-designed top-stage incubator
from Okolabs or Pecon controlled the temperature and hu-
midity of the experimental environment. For the high-time
resolution data, spatially stable P. polycephalum networks
were trimmed from a well-established network and left to
relax for 30 min before the onset of imaging to recover from
trimming. Using the Zeiss Axio Zoom V.16 setup again here,
an image was taken every 6 s for 3 h.

B. Morphodynamic analysis

One bright-field image frame contains 25 individual im-
age tiles each. All tiles were converted into 8-bit tiff-files
using Zeiss Zen 2. A rolling-ball algorithm removed the back-
ground on each tile. The Microscopy Image Stitching Tool
[74,75] stitched the tiles into one frame. P. polycephalum net-
works were extracted with a custom-written MATLAB (The
MathWorks) code, creating a binary image by intensity thresh-
olding and closing single pixels. Using the MATLAB built-in
functions bwconncomp and regionprops, morphological fea-
tures like network area A, convex area size Ac, bounding box,
centroid, and perimeter, among others were extracted. The
location and intensity of each pixel in the binary image were
stored. Beer-Lambert’s law allowed a linear relation between
the gray-value intensity and the biomass of the translucent
slime mold. For the radius of gyration, hence, all pixels n in
the binary image were weighted by their gray-scale value fn.
The radius of gyration is given by a summation over all pixels
and their squared distances dxn and dyn with respect to the
network’s center of mass, respectively,

Rgr =
√∑

n

(
dx2

n + dy2
n

)
fn

ftot
,

divided by the total plasmodium’s gray-scale intensity ftot

as a measure of relative biomass. The migration velocity of
a growth front was extracted by mapping out the distance
between growth front lines of consecutive frames [19]. Mor-
phology and velocity data enabled a visual distinction of
three different morphological states. A neural network with
MATLAB Deep Learning Toolbox was constructed to classify
the morphodynamic state of the network frame by frame. We
used each frame’s scaled radius of gyration Rgr/

√
A, solidity

A/Ac, and migration front velocity vfront as input data. A single
observer visually inspected and categorized 25% of the frames
of several data sets, resulting in about 1050 human-labeled
frames, to generate the training data. As the available data
were limited, training and validation data were constructed
by splitting the input data into several batches of 32 frames
each, first used to validate previously trained batches and
then included in the training data. The training data passed
through a sequence input layer with three nodes into a series
of fully connected and leaky ReLU (Rectified Linear Unit)
layers with 100 nodes each. ReLU layers perform threshold
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operations on the data [76]. In the fully connected layer, each
neuron connects to each neuron from the previous layer. The
input data are weighted and gets an added bias, preventing
the neural network from down-sampling the data. The last
layer is a softmax layer with three nodes with a normalized
exponential applied to the input. It serves as a variation of the
logistic sigmoid function, enabling the reduction of weights
to a fixed classification [77]. As an output, each frame was
categorized into one of the three visually observed states,
enabling further analysis of the functionality of these states.
A training cycle contains of 300 epochs with 9900 iterations
in total, leading to an accuracy of 95% in the state detection.

C. Flow extraction from spatially stable network data

Flows were extracted from recorded contractions of a high-
time resolved network to quantify the dissipation cost arising
from the cytoplasmic flows. A custom-developed MATLAB
code quantified network morphology and dynamics following
Ref. [32]: single frames were binarized by thresholding to
determine the network’s structure, using pixel intensity as well
as pixel variance information extracted from an interval of
images around the processed image. Binarized images were
skeletonized with the smallest resolved structures of 1.5–3 px
[Fig. S5 [42]]. Tube radius and the corresponding intensity
of transmitted light were measured along the skeleton. The
two quantities are correlated according to Beer-Lambert’s
law. Radius variations within tube segments were smoothed
by surface fitting with the MATLAB function gridfit [78].
A custom-developed MATLAB code calculated flows within
tubes from the extracted network structures based on the con-
servation of mass following Ref. [57]: A discretized dynamic
network structure was generated and mapped onto the first
skeleton. The network was overdiscretized in time by adding
two linearly interpolated values between each frame to guar-
antee a more accurate flow calculation. Based on Ref. [46],
considering Kirchhoff laws and Poiseuille flow for each node
in the network, flow and pressure in each segment were
calculated. As detected from sequential images, the actual
live contractions ak (t ) were used as input here. Compared to
Ref. [57], the data set was split into 100 time step segments
each to account for biomass flowing into migration fronts. For
100 time steps, the cytoplasmic mass is conserved, adjusting
the radius ak (t ) to ensure that Kirchhoff’s laws were solved
with good numerical accuracy. Vanishing tube segments add
an additional inflow considered in the calculation. Extracted
tube diameters and flows can thus be used to calculate trans-
port and building costs during network reorganization.

D. Numerical flow simulations in large statistics data

The low-time resolution data sets presented in Fig. 1 taken
with a 5 or 10 min per frame interval do not allow for di-
rect extraction of the contractions of the tubes. Thus, radius
dynamics were numerically modeled onto each frame to pre-
dict flow and tube dynamics. To incorporate migration fronts,
we expanded on the custom-developed MATLAB code of
Ref. [32] by now reducing the gray-scale image frames to a
skeleton of the network: On the gray-scale image of the region

of interest defined by the binarized image a gray-weighted dis-
tance transform [79] is produced using the built-in MATLAB
function graydist. The gray-distance map was used to enhance
features such as growing tubes in the fronts, which, combined
with a thinning process, led to the inclusion of these features
in the skeleton. From the skeleton, intensities and diameters
were extracted as described previously. Each image frame was
then used as an individual base structure with its base radius
a0,k to map a peristaltic wave onto the extracted network,
predicting contractions and flow patterns for a selected time
over 2000 iterations [43].

E. Search dynamics analysis

The search behavior of P. polycephalum is strongly coupled
to the dynamics of the migration front, which we extracted
when calculating the migration front velocity. A difference
between two different masks gave the searched area. The
different time resolution of the data sets require an adaptation
of the time interval studied for the search, which was set to
10 min intervals (the maximum difference). (x, y)m(t ) coor-
dinates of the pixels of the search area for each time frame t
are centered around the center of mass and then transformed
into polar coordinates (r, φ)m(t ). To remove falsely detected
pixels residing from intensity fluctuations and contractions of
the tubes in the center of the slime mold network, only pixels
with a distance greater than rm(t ) > 0.7〈rs〉 to the center of
mass are considered for the analysis. All remaining pixels are
sorted according to their angular component.

Connected migration front segments s are defined as all
pixels with less than 0.5◦ difference angle between con-
secutive pixels. The migration front width θ = ∑

s θs is
then calculated as the total angular width of each segment
θs = ∑n−1

i=1 (φi+1 − φi ) with {n ε s}. Additionally, we wanted
to calculate the location P. polycephalum searched with regard
to its orientation axis. All search area pixels (r, φ)g(t ) are
rotated around the orientation of the network φo, centering
the orientation at 0 rad. The network’s orientation is defined
via the main axis of the radius of gyration, which can be
obtained from the orientation property in the MATLAB built-
in function regionprops. It is defined as the angle between
the horizontal axis and the major axis of an ellipse with the
same second moment properties as the organisms shape. The
reoriented angular component of the search area pixels then
gives the search location.

The collected experimental data and code for simulation
are available in the mediaTUM repository [80].
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