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Mesoscale molecular assembly is favored by the active, crowded cytoplasm

Tong Shu ,1 Gaurav Mitra ,2 Jonathan Alberts, Matheus P. Viana,3 Emmanuel D. Levy,4

Glen M. Hocky ,2,5,* and Liam J. Holt 1,†

1Institute for Systems Genetics, New York University Langone Medical Center, New York, New York 10016, USA
2Department of Chemistry, New York University, New York, New York 10003, USA

3Allen Institute for Cell Science, Seattle, Washington 98109, USA
4Department of Molecular and Cellular Biology, University of Geneva, 1211 Geneva 4, Switzerland

5Simons Center for Computational Physical Chemistry, New York University, New York, New York 10003, USA

(Received 8 January 2024; accepted 5 June 2024; published 10 July 2024)

The mesoscale organization of molecules into membraneless biomolecular condensates is emerging as a key
mechanism of rapid spatiotemporal control in cells. Principles of biomolecular condensation have been revealed
through in vitro reconstitution. However, intracellular environments are much more complex than test-tube
environments: they are viscoelastic, highly crowded at the mesoscale, and are far from thermodynamic equi-
librium due to the constant action of energy-consuming processes. We developed synDrops, a synthetic phase
separation system, to study how the cellular environment affects condensate formation. Three key features enable
physical analysis: synDrops are inducible, bioorthogonal, and have well-defined geometry. This design allows
kinetic analysis of synDrop assembly and facilitates computational simulation of the process. We compared
experiments and simulations to determine that macromolecular crowding promotes condensate nucleation but
inhibits droplet growth through coalescence. ATP-dependent cellular activities help overcome the frustration
of growth. In particular, stirring of the cytoplasm by actomyosin dynamics is the dominant mechanism that
potentiates droplet growth in the mammalian cytoplasm by reducing confinement and elasticity. Our results
demonstrate that mesoscale molecular assembly is favored by the combined effects of crowding and active
matter in the cytoplasm. These results move toward a better predictive understanding of condensate formation
in vivo.

DOI: 10.1103/PRXLife.2.033001

I. INTRODUCTION

Cells are highly crowded, with macromolecules excluding
20–30% of cellular volume in eukaryotic cells and 30–40% in
prokaryotic cells [1,2]. This high excluded volume can inhibit
molecular motion, but on the other hand can entropically favor
assembly through depletion attraction forces [3,4]. The ma-
jority of cytoplasmic volume is taken up by mesoscale (10 to
1000 nm diameter) particles [2]. This means that the effects of
crowding strongly affect the behavior of mesoscale particles
and assemblies, while having less impact on nanoscale pro-
cesses because nanoscale particles can move relatively freely
between mesoscale crowders, but mesoscale particles can-
not. Studies have shown that macromolecular crowding can
change biochemical reaction kinetics, protein conformations,
and motor functions [4–6].

The cell also contains elastic networks that constrain
and organize the cell interior. These include the actomyosin
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cytoskeleton in the cytoplasm [7] and chromatin in the nucleus
[8]. The presence of these networks and the high concentra-
tion of particles together make the intracellular environment
viscoelastic. This contrasts with simple buffer solutions,
which are only viscous.

Finally, cells are nonequilibrium open systems, and use
adenosine triphosphate (ATP)-dependent cellular activities to
maintain a nonequilibrium steady state by exchanging energy,
information, and material with the extracellular environment,
thereby locally reducing entropy [9]. Overall, the intracel-
lular environment is highly complex, and its impact on the
assembly of membraneless biomolecular condensates remains
largely unexplored.

The assembly of membraneless biomolecular condensates
bridges length scales between the nanoscale and mesoscale,
where nanometer-sized molecules come together to form
higher-order structures of tens to thousands of nanometers in
diameter [10]. This wide range of length scales and timescales
makes it difficult to predict how the crowded, active cellular
environment will affect biomolecular condensate formation.
Several studies have focused on the impact of elastic mechan-
ical properties on condensate growth [11–14]. For example,
elastic chromatin mechanics has been shown to frustrate the
growth of nuclear condensates [13,14]. However, the com-
bined impacts of macromolecular crowding, elastic networks,
and nonequilibrium cellular activities on condensate forma-
tion are less well understood.
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It is difficult to derive general physical principles from the
study of endogenous condensates because these systems are
formed through complex coacervation of many molecules.
Furthermore, these components are often dynamically al-
tered by post-translational regulation, the details of which
are typically unknown. Thus, when perturbing intracellular
environments, it is difficult to fully attribute structural changes
in endogenous condensates to only biophysical cues, since bi-
ological functional changes associated with perturbations can
also lead to structural changes in endogenous condensates. To
overcome these issues, we developed an orthogonal synthetic
intracellular condensate system, called synDrops. synDrops
are adapted from a previous approach to create a molecular
condensate of well-defined geometry [15], but with the added
ability to chemically induce the interaction of components,
thereby enabling kinetic analysis of condensate formation.

We successfully induced synDrop formation in both bud-
ding yeast Saccharomyces cerevisiae cells and mammalian
cervical cancer HeLa cells. Complementary to the experimen-
tal system, we also developed two independent agent-based
molecular dynamics models to simulate synDrops within
cellular environments from first principles. Combining ex-
periments and simulations, we show that macromolecular
crowding facilitates the nucleation process while inhibiting
the growth phase of condensate dynamics. However, ATP-
dependent cellular activity promotes growth by assisting
long-range structural rearrangements. In conclusion, we found
that the assembly of mesoscale biomolecular condensates is
favored by the crowded and active cellular environment.

II. RESULTS

A. Droplet dynamics can be captured using inducible
synDrops in cells and in simulations

SynDrops are composed of two protein components, each
of which has three modular domains. We based our design
on the Flory-Stockmeyer theory [16], which governs polymer
network growth. Multivalency is essential for the formation of
mesoscale condensates through phase separation [17–21]. We
used homomultimerizing domains to create multivalency in
our system [Fig. 1(a)]. One component uses a homohexamer
multimerization domain (PDB: 3BEY), and the other uses a
homodimer domain (PDB: 4LTB). The two components inter-
act in trans through two halves of an inducible heterodimeric
binding interaction, enabling kinetic analysis. Importantly, the
dimerization domain is a 19-nm-long, stiff, antiparallel coiled
coil. Since the distance between interaction surfaces on the
hexamer is approximately 6 nm, the dimer is sterically pre-
vented from interacting with the same hexamer component
more than once. Thus, geometric constraints strongly favor
the expansion of synDrop molecular networks, which greatly
simplifies simulation and physical analysis compared to other
synthetic systems [19–21] [Fig. 1(a)].

Inducible binding is achieved using the plant GAI (Gib-
berellin insensitive DELLA proteins) and GID (Gibberellin
Insensitive Dwarf 1) domains. These domains undergo a het-
erotypic interaction that is potentiated in the presence of the
plant hormone Gibberellin (GA) [22] [Fig. 1(a)]. GAI was
truncated to a minimum dimerization domain [23] and fused

to the hexamer component; the GID domain was fused to the
dimer component. Adding GA increases the affinity between
the two synDrop components and triggers synDrop formation.

We co-expressed these two proteins by integrating two
plasmids into the genome in yeast cells, and through tran-
sient transfection in mammalian HeLa cells. Since the ratio
between these two proteins is essential for condensate forma-
tion [15], we adapted our plasmid design for expression in
mammalian cells by combining the two genes onto the same
plasmid and separating them by a P2A ribosomal-skipping
sequence [Fig. 1(b)]. The P2A sequence triggers ribosomal
skipping, resulting in two independent proteins at equal ex-
pression levels [24]. After the proteins were expressed within
cells, we added GA into the cell media and observed syn-
Drop dynamics at different time points after GA addition
[Fig. 1(d)]. Similar to previous reports [15], synDrops were
spherical and were observed to fuse, suggesting they had
liquidlike material properties [Fig. 1(c)].

Our in vivo system enables detailed analysis of mesoscale
assembly, but cannot easily report on the microscopic pro-
tein interactions that underpin this process. Therefore, we
developed two independent agent-based molecular dynam-
ics (MD) platforms to provide complementary information
in silico. The first simulation setup used a HOOMD-blue
engine [25,26] combined with a dynamic bonding plugin
that we previously developed [27] [Figs. 1(e) and 1(f); full
parameters supplied in Table I], and the second used a custom-
developed JAVA program (see Fig. 8 in Appendix A; full
parameters supplied in Table II). The HOOMD-blue model
uses GPU acceleration to increase simulation speeds, en-
abling us to investigate cluster formation dynamics over much
longer timescales (>10×), especially at high molecular den-
sity. However, we included results from both MD simulation
models to ensure our simulation results were robust to vari-
ations in implementation details. In MD simulations with
HOOMD-blue, we modeled the hexamer as a single sphere
with six uniformly distributed binding sites, and the dimer as a
rodlike structure formed from three spheres with two binding
sites positioned on opposing sites of the two outer spheres
[Fig. 1(e)]. In the JAVA MD simulations, we modeled the
hexamer and dimer as spheres with six or two binding sites,
respectively [Fig. 8(a) in Appendix A]. The sizes of these
simulated structures were chosen based on crystal structure
data from the Protein Data Bank (PDB) for the individual
protein components within each protein complex. In addition,
we included a third agent to mimic ribosomes, which are the
dominant macromolecular crowders in the cytoplasm. This
agent was a 30-nm-diameter sphere with no binding inter-
actions. The formation of synDrops was simulated with or
without crowders under equilibrium conditions [Figs. 1(f) and
8(b) in Appendix A]. There is a discrepancy in the timescales
of synDrops formation between simulations and experiments.
This could be due to various factors, such as the signifi-
cantly smaller droplet sizes in simulations—approximately
one-tenth the radius of those in the experimental system—and
the simplified assumptions inherent in coarse-grained models
representing cellular systems. In summary, we developed the
synDrop system both in cells and in silico, allowing us to ad-
dress how the intracellular environment affects the assembly
of mesoscale condensates.
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FIG. 1. synDrops enable the analysis of condensate formation kinetics in S. cerevisiae and mammalian cells, and are amenable to simu-
lation. (a) synDrops are inducible synthetic condensates composed of two proteins. Top: Gene and crystal structures of the two components.
Each protein has three domains: an oligomerization domain (hexamer [PDB: 3BEY] or dimer [PDB: 4LTB]), an inducible interaction domain
(GAI or GID [PDB: 2ZSH]), and a fluorescent protein (BFP [PDB: 3M24] or GFP [PDB: 2B3P]). Bottom: Gibberellin (GA) induces binding
between GAI and GID favoring the formation of a mesoscale molecular network (middle cartoon), as shown in representative images of both S.
cerevisiae yeast cells and mammalian HeLa cells. (b) To efficiently express the two protein components of the synDrop system at similar levels
in mammalian cells, the two open reading frames (ORFs) were connected by a P2A sequence. The two ORFs are translated one after the other
from a single transcript due to ribosome skipping. (c) synDrops fuse within minutes, suggesting liquidlike properties. (d) GA addition leads
to synDrop formation. Time course of synDrop formation in hog1� S. cerevisiae yeast cells, and mammalian HeLa cells. Scale bar, 10 µm.
(e) Schematic of molecular dynamics model for synDrop assembly. The hexamer component is represented by a sphere with six uniformly
distributed binding sites; the dimer component is represented as a rodlike structure formed from three overlapping spheres with two binding
sites positioned on opposite ends. A third component with no binding sites mimics ribosomes as macromolecular crowders. (f) Representative
images from HOOMD-blue MD simulations of synDrops system over time without crowders (top) and with 30% volume fraction of crowders
(bottom). The zoomed image under 30% volume fraction condition shows the formation of a large cluster.
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TABLE I. Table of parameters for the MD simulations using
HOOMD-blue.

Parameter (with description) Value used in simulations

Simulation timestep (dt) 0.002
Crowder temperature Tc relative
to Troom = 298.15 K

0.5–2.0

Simulation box length (nm) 860 (for the actual system)
400 (for the monomeric
system to obtain Kd)

Number of rod proteins 1170 (for the actual system)
200 (for the monomeric
system)

Number of hexamers 390 (for the actual system)
200 (for the monomeric
system)

Number of GEMs 20
Number of binders on each
hexamer

6

Number of binders on each rod 2
Volume fraction of ribosomes
(crowders)

0.0–0.5

Diameter of inner rod particle
(nm)

11.7

Diameter of the two outer rod
particle(s) (nm)

13.45

Diameter of hexamer (nm) 12.6
Diameter of ribosome (nm) 30.0
Diameter of GEM (nm) 40.0
Diameter of binders on rods and
hexamers (nm)

2.0

Maximum binding distance dbind

(nm)
1.0

Repulsion for soft quartic
potential (kBT )

500

ε for Lennard-Jones potential
(kBT )

0

Rate constant for dynamic
binding kon (units of 1/τ )

50.0

Rate constants for dynamic
unbinding koff (units of 1/τ )

0.001 (also 0.015, 0.006,
0.0003, 0.0001, 0.000015,
0.000002, 0.0000001,
0.0000000007)

Binding affinity ε (kBT ) 10.8 (also 8.1, 9.0, 12.0, 13.1,
15.0, 17.0, 20.0, 25.0)

B. Macromolecular crowding promotes nucleation
but inhibits droplet growth

We examined synDrop kinetics within cells under various
conditions using fluorescence microscopy. We first char-
acterized GA-induced droplet dynamics in yeast cells by
quantifying the average number of droplets per cell, as well
as total intensity per droplet (see Sec. IV G). Changes in
total intensity per droplet are indicative of changes in cluster
size and/or its molecular density. Droplet growth occurred
in two phases. First, there was a nucleation phase, during
which the average droplet number per cell increased. Sub-
sequently, droplets grew by fusion and coarsening, leading
to a decrease in droplet number and an increase in droplet
intensity.

TABLE II. Table of parameters for the MD simulations using
custom-developed JAVA program.

Parameter (with description) Value used in simulations

Simulation timestep (dt) (s) 10−7

Crowder temperature Tc

relative to Troom = 298.15 K
1.0

Viscosity (Pa s) 0.03
Simulation box length (nm) 860 (for the actual system)

400 (for the monomeric
system to obtain Kd)

Number of rod proteins 1170 (for the actual system)
200 (for the monomeric
system)

Number of hexamers 390 (for the actual system)
200 (for the monomeric
system)

Number of binders on each
hexamer

6

Number of binders on each
rod

2

Volume fraction of ribosomes
(crowders)

0.0–0.5

Diameter of rod (nm) 23.4
Diameter of hexamer (nm) 12.6
Diameter of ribosome (nm) 30.0
Maximum binding distance
dbind (nm)

2.3

Rate constants for dynamic
unbinding (koff ) (s−1)

26

Under control conditions with only yeast growth media of
synthetic complete dextrose (SCD), we observed an increase
in droplet number within the first 10 min after inducing bind-
ing interactions by the addition of GA [gray curve, Fig. 2(a)].
However, the total intensities of these newly formed indi-
vidual droplets did not grow during this period [Fig. 2(b)].
This suggests that droplets initially nucleate locally but do not
grow substantially. After 10 min, the droplet number started
to decrease and the intensity started to increase. However,
the normalized total intensities of all droplets per cell (see
Fig. 10 in Appendix B) fluctuated around a stable value. This
corresponds to a growth phase where droplet sizes become
larger, mainly through droplet coalescence. Thus, the syn-
Drops system forms droplets by nucleation and growth, which
has been suggested to be the most common mechanism of
endogenous condensate formation [28,29].

We next explored the effects of macromolecular crowding
on synDrop formation. Osmotic compression of cells can in-
crease macromolecular crowding. However, wild-type (WT)
yeast can rapidly balance external osmotic pressure by pro-
ducing glycerol [30]. To circumvent osmo-adaptation in yeast
cells, we used hog1� yeast cells [Fig. 1(d)]. Hog1p is a key
regulator kinase, required for rapid accumulation of the os-
molyte glycerol in yeast cells [30]. Deletion of the HOG1 gene
prevents rapid osmo-adaptation, allowing us to more precisely
tune molecular crowding; we used hog1� S. cerevisiae strains
in this study unless otherwise stated.

After osmotic compression, the initial number of droplets
nucleated was increased compared to control [yellow and
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FIG. 2. Increasing molecular crowding promotes synDrop nucleation but inhibits growth. (a) Average number of droplets per cell (hog1�

S. cerevisiae) for 1 hour after synDrop induction with GA for control (SCD, synthetic complete dextrose media, which is the yeast growth
media) and two osmotic compression conditions (adding sorbitol). Error bars are standard error of the mean (SEM). (b) Total intensities per
droplet normalized to the mean value of droplets in control cells at 0 min. Data are mean ± SEM. (c) Average number of droplets per cell
and (d) normalized total intensity per droplet over 1 hour comparing control (DMSO) and decreased molecular crowding (rapamycin, RAPA)
conditions, as well as RAPA treatment with recovered molecular crowding (RAPA + 700 mM sorbitol). Data are mean ± SEM. (e) Median
diffusivity of droplets at different time points postinduction in the same conditions as (a) and (b). Error bars are SEM. (f) Density plot of
droplet diffusivity versus total intensity per droplet at all time points postinduction. [(g)–(i)] synDrops formed in mammalian HeLa cells after
1–2 hours of induction comparing control to osmotic compression conditions (100 or 150 mM sorbitol). (g) Representative images, scale bar
10 µm. (h) Phase diagram of synDrop formation as a function of total BFP and GFP intensities per droplet, normalized to the median value of
droplets in the buffer control condition. (i) Histogram of normalized total GFP intensities per droplet (logarithmic scale).

red curve, Fig. 2(a)]. However, the subsequent increase in
droplet intensities was suppressed [yellow and red curve,
Fig. 2(b)]. Similar results were also obtained in WT yeast
cells before osmo-adaptation started to have an effect (see
Fig. 11 in Appendix C). This suggests that macromolec-
ular crowding promotes synDrop nucleation but inhibits
growth.

Besides increasing macromolecular crowding, osmotic
compression also increases the concentrations of the protein
components [Fig. 12(a) in Appendix C]. We took advan-
tage of the noise in protein expression levels in single
cells to evaluate the relative importance of increased protein

concentration versus increased molecular crowding in chang-
ing synDrop dynamics. We first grouped cells in each
condition (control and osmotic compression conditions) into
four quantiles based on their cellular mean pixel intensities
before GA induction, indicating protein expression levels. By
quantifying the average number of droplets per cell within
different cell quantiles for each condition, we observed that
in all conditions, the number of droplets per cell was higher
in cell groups with higher intensities (fourth quartile) and
lower in cell groups with lower intensities (first quartile) when
compared to the overall average for all cells [Fig. 12(b) in
Appendix C]. This confirms that protein concentrations affect
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synDrop formation. However, if we compared control cells to
compressed cells within the same range of protein concentra-
tions, we obtained qualitatively similar results to Figs. 2(a)
and 2(b) [Fig. 12(c) in Appendix C]. These results indicate
that the effects of osmotic compression on synDrop assembly
kinetics is mainly due to increased macromolecular crowding.

We sought orthogonal means to change macromolecular
crowding. Ribosomes are the dominant mesoscale crow-
ders in the cytoplasm, where they take up around 20%
of the volume (about half of the total volume excluded
by macromolecules) [2]. It has been shown that ribosome
concentrations are tuned through the TORC1 (target of ra-
pamycin complex 1) pathway [2]. Inhibition of TORC1 using
rapamycin reduces ribosome biogenesis and increases ribo-
some degradation, leading to lower ribosome concentration
and therefore reduced macromolecular crowding. We treated
yeast cells with either rapamycin or DMSO (solvent control)
for 2 hours. We found rapamycin-treated cells did not form
droplets after GA induction [Figs. 2(c), 2(d), and 13(a) in Ap-
pendix D]. However, GFP signal was reduced after rapamycin
treatment [Fig. 13(c) in Appendix D]. Thus, rapamycin treat-
ment reduced the concentration of the dimer component,
likely due to increased cell size and decreased protein trans-
lation upon TORC1 inhibition [31]. We again wished to
determine how changes in macromolecular crowding and in
protein concentration each impacted synDrop assembly. To
achieve this, we sought to restore normal macromolecular
crowding in rapamycin-treated cells. We leveraged a mi-
crorheology approach with genetically encoded multimeric
nanoparticles (GEMs) to quantify crowding [2]. We found
that macromolecular crowding was decreased in rapamycin-
treated cells, consistent with previous reports [2] [Fig. 13(b)
in Appendix D]. We then osmotically compressed [Fig. 13(b)
in Appendix D], and found that 0.7 M sorbitol restored macro-
molecular crowding of rapamycin-treated cells to the level of
control cells [Fig. 13(b) in Appendix D]. However, this level
of osmotic compression barely altered protein concentrations
[Fig. 13(c) in Appendix D]. In these conditions, we found
that synDrop formation was recovered [Figs. 2(c), 2(d), and
13(a) in Appendix D], but resulted in the formation of fewer
and smaller droplets over the same time course. These results
further indicate that macromolecular crowding is crucial for
synDrop assembly and protein concentrations are also impor-
tant.

We next examined the mechanisms underlying the inhibi-
tion of droplet growth by macromolecular crowding. Droplets
can grow in two ways: through droplet coalescence [32]
and/or through Ostwald ripening [33]. However, droplet co-
alescence has been suggested to be the dominant mechanism
for droplet growth in biological systems [13]. In this mecha-
nism, the rate of droplet growth depends on the collision rate
between two smaller droplets, which in turn depends on the
diffusivities of these droplets [13,32]. The kinetics of synDrop
formation were also consistent with a mechanism dominated
by coalescence (Fig. 10 in Appendix B). We therefore hypoth-
esized that macromolecular crowding could inhibit droplet
growth by reducing droplet diffusivities. To test this hy-
pothesis, we quantified synDrop diffusivities through particle
tracking in both control conditions and after increasing macro-
molecular crowding. Since droplet size increases with time,

we analyzed droplet diffusivities at different time points after
induction. We found that droplets diffused more slowly after
osmotic compression compared to control [Fig. 2(e)]. Droplet
diffusivity depends upon the environment and droplet size.
However, average total intensities per droplet were lower in
osmotic compression conditions, indicating that the reduc-
tion in droplet diffusivities was not due to increased droplet
size [Fig. 2(f)]. These results support our hypothesis that
macromolecular crowding reduces droplet diffusivities and
thus inhibits droplet growth.

To investigate if the effects of the cellular environment
were conserved in human cells, we transfected plasmids en-
coding the two synDrop components into HeLa cells. We
observed the formation of droplets [Fig. 2(g)]. The amount
of DNA delivered to cells is highly variable in transient trans-
fection and, as a result, protein expression levels were highly
variable in these experiments. Since protein concentration
affects the kinetics of droplet formation, this heterogeneity
in protein expression levels across the population made it
challenging to study averaged droplet kinetics effectively. In-
stead, we took advantage of this heterogeneity to define a
phase diagram based on the total intensities of two protein
components for each droplet at a fixed time point [Fig. 2(h)].

First, we tested the effects of increasing molecular crowd-
ing through osmotic compression. Similar to yeast, we
observed a decrease in droplet size and an increase in droplet
number per cell after osmotic compression [Figs. 2(g) and
2(h)]. We found the synDrops formed in the same region of
the phase diagram regardless of the experimental condition,
suggesting that a specific amount and ratio of protein com-
ponents is required for synDrop formation, as predicted for
a process driven by phase separation [Fig. 2(h)]. However,
droplet intensities were lower after osmotic compression com-
pared to control [Figs. 2(h) and 2(i)]. Therefore, we conclude
that macromolecular crowding inhibits droplet growth in both
human and yeast cells.

Next, we employed our agent-based (MD) models to
simulate synDrops. These models allowed us to investi-
gate molecular details that are not easily accessible from
experimental data. The well-defined structures and binding
interactions between the two synDrop components allowed
us to quantify droplet network structures with graph-theory-
based analyses [Fig. 3(a)]. Unless otherwise specified, the
concentrations of dimer and hexamer synDrop components
remain at 3 and 1 µM, respectively, in the following simu-
lations. Here, we defined each synDrop component as a node
and the bond between two components as an edge. We cal-
culated the topological shortest distances between each pair
of components and mapped out bond connectivity to define
each molecular cluster. The distance matrix from this anal-
ysis was then used for hierarchical clustering [34]. Within
the resulting clustergram, squares along the diagonal corre-
spond to clusters of interacting molecules. Each pixel on the
x and y axes represents an interaction between two individual
molecules in the simulation system and is colored according
to the topological distance between them (e.g., molecules that
are directly connected are dark blue, while molecules that
are indirectly connected through a chain of interactions are
a lighter hue). Blank pixels indicate that there is no path
connecting the two corresponding molecules [Figs. 3(a), 3(c),
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FIG. 3. Increasing molecular crowding promotes synDrop nucleation but inhibits growth. (a) Illustration of graph-theory-based analyses
on cluster formations, showing the cluster fusion process as an example. Extracted from MD simulation data (left), the positions and
binding information of synDrop components are utilized to generate a distance matrix reflecting the topological shortest distances between
each component pair. Through hierarchical clustering of this distance matrix, the clusters are both identified in a clustergram (middle) and
represented spatially (right). (b) Median largest cluster sizes among five repeats plotted as a function of the binding affinity ε between two
synDrop components at 0% volume fraction of crowders. Representative snapshots are shown for binding affinities 10.8kBT, 13.1kBT, and
25.0kBT, indicative of an abrupt increase in cluster formation observed between binding affinities 11kBT and 12kBT. The binding affinity ε was
varied by changing the unbinding rate constant koff , keeping the binding rate constant kon fixed. The binding affinity of 10.8kBT was used for
all subsequent analyses. [(c)–(g)] Analyses of MD simulations using HOOMD-blue comparing conditions with 0%, 30%, and 50% volume
fractions of crowder: (c) Graph theory analyses (left) of cluster formation at early and later times with corresponding simulation renderings
(right) under three crowder volume fractions: 0% (top), 30% (middle), and 50% (bottom). (d) Number of molecules within the largest cluster
over time from five replicate simulations. Each replicate is denoted by “seed.” (e) Average cluster size (number of molecules) over time from
five replicate simulations. The dashed line represents the power-law fit for the initial 0.5 s, exponent denoted as α. Error bars are standard
deviation (SD) of the average values of five repeats. (f) Cluster diffusivity versus cluster size (number of molecules) on the log-log scale from
five replicate simulations, denoted as “seed.” The black data points represent the mean of averaged values from five repeats with a bin size of
10, and the error bars correspond to the SD among these averaged values. The dashed black line represents the linear fit on the log-log scale
and the fitted slope is labeled as the exponent. (g) Effective dissociation constants (Kd) of a simplified monovalent system as a function of
crowder volume fraction. Error bars are SD from five repeats for a given crowder volume fraction.

and 9(a) in Appendix A]. Squares on the diagonal corre-
spond to condensates: The red and orange clusters circled
in the simulation snapshot [Fig. 3(a), left] and in the three-
dimensional (3D) graph [Fig. 3(a), right] were identified from
the blocks of interactions highlighted by red and orange in the

clustergram [Fig. 3(a), middle]. Next, we determined how the
largest cluster size changed as a function of binding affinity
(see Fig. 14 in Appendix E). All simulations were run to
the same time point, where the largest cluster sizes mostly
converged. We then extracted the median values of five repeats
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at the final time point to plot Fig. 3(b), and observed an
abrupt increase in cluster formation at a binding affinity of
around 11kBT − 12kBT [Fig. 3(b)]. To capture the full dy-
namic range of the system, we chose a binding affinity near the
transition range, specifically 10.8kBT, for all subsequent MD
simulation analyses.

When there were no crowders in the system, there was
very limited cluster formation (Fig. 3(c), top; Fig. 9(a) in
Appendix A, top; see Supplemental Material [35]). In con-
trast, large clusters formed when a 30% volume fraction of
crowder was added to mimic the excluded volume typically
present in the cytoplasm, suggesting that macromolecular
crowding can be crucial to nucleate and stabilize synDrop
mesoscale networks (Fig. 3(c), middle; Fig. 9(a) in Ap-
pendix A, middle; see Supplemental Material [35]). However,
when we further increased the crowder volume fraction
to 50% (mimicking crowder concentrations in osmotically
compressed cells), we observed a larger number of smaller
droplets (Fig. 3(c), bottom; Fig. 9(a) in Appendix A, bottom;
see Supplemental Material [35]). Similar results were also ob-
tained by tracking the number of molecules within the largest
cluster [Figs. 3(d) and 9(b) in Appendix A) and by plotting
the cluster size distribution at the end time point [Fig. 9(d)
in Appendix A]. The initial growth rate of average cluster
size increased with crowder volume fraction [Figs. 3(e) and
9(c) in Appendix A], suggesting that nucleation was promoted
by macromolecular crowding. However, under high crowding
conditions (e.g., 50% volume fraction) cluster size was limited
at late time points. These results are consistent with our exper-
imental data that physiological crowding (∼30–35%) appears
to be optimal for the formation of large synDrops. Molecular
crowding plays contrasting roles in droplet nucleation and
growth. While it is crucial for droplet nucleation, it also in-
hibits droplet growth.

To further investigate the molecular basis of frustrated
synDrop growth in the presence of excessive macromolec-
ular crowding, we plotted the average diffusivity for each
cluster as a function of the cluster size. We found that dif-
fusivities decreased as a function of cluster size as expected,
and were reduced overall when crowder volume fractions
were increased [Figs. 3(f) and 9(e) in Appendix A], consis-
tent with our hypothesis that crowding frustrates coalescence
by reducing cluster diffusivities. This effect is particu-
larly pronounced under conditions of excess macromolecular
crowding.

Finally, we investigated the molecular basis of the promo-
tion of droplet nucleation by macromolecular crowding. We
hypothesized that increased macromolecular crowding could
favor binding interactions, as previously reported [5,36]. To
assess this idea, we performed MD simulations on a simplified
system where two protein components each had only a single
available binding site (1,1) [Fig. 9(f) in Appendix A]. The
rationale of using a monovalent system here rather than the
full synDrop system was to exclude other factors that affect
calculations of chemical bond properties, such as changes
in coordination numbers for hexamers and dimers, which
increase with crowding (see Fig. 15 in Appendix E). We
then extracted the effective dissociation constant (Kd) under
different volume fractions of crowders by quantifying the
number of bonds formed at equilibrium. The effective Kd was

indeed reduced (affinity was increased) in simulations with
increased crowder volume fractions [Figs. 3(g) and 9(g) in
Appendix A]. Furthermore, we determined the unbinding rate
(koff ) by allowing the system to reach equilibrium, switching
the binding rate to zero, and then measuring the rate at which
bonds dissociate [Fig. 9(f) in Appendix A]. Calculation of
effective Kd and koff allowed us to infer the effective binding
rate (kon), which is koff divided by Kd. Interestingly, when
comparing conditions with 30% volume fraction crowder to
those with no crowders, we found that koff did not change
[Fig. 9(f) in Appendix A]. This indicates that the decrease
in effective Kd is mainly attributed to an increase in effec-
tive kon, potentially facilitated by the increase in effective
concentration.

In conclusion, our combination of in vivo experiments
and simulations supports the model that macromolecular
crowding promotes droplet nucleation by reducing the effec-
tive Kd for chemical bond formation, but also inhibits droplet
growth by reducing droplet diffusivity, therefore kinetically
frustrating coalescence of small droplets into larger structures.

C. ATP-dependent cellular activities promote droplet growth

We wondered if features of the cytoplasmic environment
other than macromolecular crowding could impact synDrop
assembly. In addition to being crowded, the cytoplasm is also
far from equilibrium due to ATP-dependent activities. Cellu-
lar metabolism was previously shown to strongly affect the
motion of mesoscale particles [37]. We therefore hypoth-
esized that ATP-dependent cellular activities might affect
synDrop formation by promoting their motion and therefore
driving coalescence of small droplets into larger structures.

We used metabolic inhibitors: 2-deoxyglucose (2-DG) and
antimycin were used to deplete intracellular ATP in yeast
cells, taking care to maintain neutral pH within cells and
isotonic conditions to avoid osmotic perturbations to cell vol-
ume [38]. We depleted ATP at different time points to assess
the importance of ATP during different phases of synDrop
assembly. We observed that synDrop growth was inhibited
within 10 min of ATP depletion [Fig. 4(a), top), and synDrop
diffusivity was also reduced immediately after ATP depletion
[Fig. 4(a), bottom]. These effects were most apparent when
ATP was depleted early during synDrop assembly [Fig. 4(b)].
Therefore, cellular active matter is crucial for both synDrop
diffusivity and growth in yeast cells.

We repeated this experiment in HeLa cells, and found that
droplet diffusivity was greatly reduced after we removed all
metabolic activity by ATP depletion [Fig. 4(c)]. The dynamics
of the actomyosin cytoskeleton are an important source of
cellular motion [39]. We therefore hypothesized that acto-
myosin contractility might agitate the cytoplasm and increase
synDrop motion. To test this idea, we inhibited actomyosin
dynamics using the JLY drug cocktail, which simultaneously
prevents actin depolymerization, polymerization, and myosin
II–based restructuring [40]. This treatment reduced diffusiv-
ity almost as much as total ATP depletion, suggesting that
actomyosin dynamics is the dominant mechanism that in-
creases mesoscale diffusivity in the cytoplasm of mammalian
cells [Fig. 4(c)]. Depletion of ATP or freezing of actomyosin
dynamics using JLY decreased both droplet diffusivity and
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FIG. 4. ATP depletion inhibits synDrop growth. (a) Droplet formation in hog1� S. cerevisiae yeast cells in control conditions and after
ATP depletion with an isotonic buffer using 80 mM sorbitol. ATP was depleted from two time points (indicated by arrows), 20 and 40 min
after synDrop induction with GA: (top) total intensity per droplet, mean ± SD; (bottom) median droplet diffusivity ± SEM. (b) Density plot
of individual droplet diffusivity versus its total intensity 50–60 min after induction. (c) Properties of droplets that were preformed by 1 hour
of GA induction with DMSO (solvent control) in mammalian HeLa cells and subsequently treated with the following conditions for 1 hour:
ATP depletion, or the JLY cocktail (which freezes actomyosin dynamics). (top) Median droplet diffusivity ± SEM; (bottom) density plot of
diffusivity versus total intensity for individual droplets. (d) Droplet formation in hog1� S. cerevisiae yeast cells comparing control conditions to
ATP depletion with a hypo-osmotic buffer using 10 mM sorbitol: (top) median droplet diffusivity. Error bars are SEM; (bottom) total intensity
per droplet: averaged values ± SD. (e) Density plot of diffusivity versus total intensity for individual droplets at all time points postinduction.

droplet intensity [Fig. 4(c), bottom]; however, it remains un-
clear whether droplet size was only determined by droplet
diffusivity in these cases. In conclusion, actomyosin activity is
the dominant ATP-dependent activity that increases synDrop
motion in mammalian cells and is required for the formation
of large synDrops.

We next tested whether reduced diffusivity of synDrops
is the main cause of growth inhibition upon ATP depletion.
To do so, we used hypo-osmotic shock to drive water in-
flux and reduce crowding until the diffusivity of synDrops
in ATP-depleted cells was the same as that of untreated cells
[Fig. 4(d), top, and Fig. 4(e)]. However, droplet growth was

still inhibited in ATP-depleted cells, even when diffusivity
was restored [Fig. 4(d), bottom, and Fig. 4(e)]. This result
suggested that increasing droplet diffusivity at short
timescales and length scales was insufficient to rescue
synDrop growth. Therefore, we conclude that additional
ATP-dependent cellular activities are necessary to promote
synDrop growth.

Next, we attempted to model the role of cellular active
matter using our MD simulations. To achieve this, we used
a simple approximation of altered environmental motion by
adding frequency-independent isotropic noise to vary the ef-
fective temperature of crowders [41,42] while keeping the
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FIG. 5. Increasing the effective temperature of crowders promotes cluster growth in MD simulations. [(a)–(c)] MD simulations using
HOOMD-blue with a constant 30% crowder volume fraction but varying crowder effective temperatures Tc. Values are shown relative to
room temperature (298 K): 0.5, 1, 1.1, 1.2, 2. (a) Left: Number of molecules within the largest synDrop cluster over time from five replicate
simulations, denoted by “seed.” Right: Distribution of probability density illustrating changes in the sizes of the largest clusters over a short
time interval of 3.75 ms. (b) Left: Cluster diffusivity versus cluster size (number of molecules) from five replicate simulations, denoted by
“seed.” The black data points are the mean of five replicate simulations with a bin size of 10, error bars are SD, dashed black line is the linear fit
in logarithmic space with exponent (slope) labeled. Right: Overlay of linear fitted lines in logarithmic space for four Tc conditions, excluding
the lowest Tc condition (Tc = 0.5). (c) Left: Average cluster size (number of molecules) over time from five replicate simulations. The dashed
line represents the power-law fit for the initial 0.5 s, with the value of the exponent α indicated. Error bars are SD of the averaged values from
the five repeats. Right: Overlay of power-law fitted lines for all five Tc conditions.

temperature of the synDrop components constant. We ob-
served a positive correlation between the largest cluster size
and the effective temperature of the crowders [Fig. 5(a), left].
We also quantified the frequency of synDrop cluster size
change within a short time interval. At higher effective tem-
perature, we observed a greater incidence of positive changes
in cluster size and a reduced frequency of negative changes
[Fig. 5(a), right]. When we plotted cluster diffusivity versus
cluster size on a log-log scale, we observed individual cluster
diffusivities were slightly higher with higher effective crowder
temperatures [Fig. 5(b)]. However, this increase in cluster
diffusivity was relatively modest, implying that other factors
may contribute more significantly to the increased mesoscale
assembly at higher crowder effective temperature. In par-
ticular, we found the initial growth rate of average cluster
size was more rapid at higher crowder effective temperatures
[Fig. 5(c)]. Since this initial growth rate is minimally impacted
by cluster diffusivity, we think this increase in initial growth
rate is the main factor driving the increase in cluster sizes
with respect to crowder effective temperature. It is important
to note that while the results may appear similar between
simulations and experiments, the underlying contributing fac-
tors differ. This is because the simplified assumptions in MD
simulations cannot fully replicate the complex dynamics of
the cytoplasm, such as changes in cytoplasmic elasticity and
active rearrangements of cytoskeletal networks.

D. ATP-dependent cellular activities facilitate droplet growth by
promoting long-range cellular structural reorganization

Given that coalescence dominates synDrop growth, the
growth process is intrinsically linked to droplet motion, at
both short and long timescales and length scales. Multiple
intracellular factors can influence droplet motion, including
macromolecular crowding, viscoelasticity, and poroelasticity
[43]. Nonequilibrium ATP-dependent cellular activities can
modify all of these factors. At small length scales (<100 nm),
ATP-dependent cellular activities may change the spatial
distribution and dynamics of macromolecular crowders. At
larger length scales (>100 nm), cellular structures including
membranes and the actomyosin cytoskeleton, both of which
undergo dynamic ATP-dependent fluctuations, have strong
impacts on mesoscale confinement and elasticity [39,44]. We
therefore examined droplet trajectories more closely to gain
insight into how long-range confinement and elasticity relate
to synDrop growth.

The average distributions of angles between two vectors
that connect subsequent steps in particle tracks can indicate
whether particles are driven by active motion, or confined. The
angle correlation function is calculated from the ensemble-
and time-averaged cosine values of droplet trajectory angles
at various time lags [45]. In the ideal case of pure Brown-
ian motion, angles are randomly distributed and the angular
correlation function is zero. However, if the average angle
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FIG. 6. ATP-dependent cellular activity facilitates droplet growth by promoting long-range cellular structural reorganization. (a) Angle
correlation analyses on droplet trajectories at 50–60 min after synDrop induction with GA in hog1� S. cerevisiae yeast cells comparing
control conditions to ATP depletion with an isotonic buffer from 20 and 40 min. Lower angle correlation values indicate greater confinement.
(b) Normalized velocity autocorrelation for droplet trajectories in hog1� S. cerevisiae yeast cells. Droplets were analyzed 50–60 min after
synDrop induction. (c) Histogram of total intensity per droplet at 50–60 min after synDrop induction with GA in hog1� S. cerevisiae yeast
cells in control conditions or after ATP depletion with isotonic buffer from 20 and 40 min after synDrop induction. Droplets with a total intensity
� 10 (blue dashed line) were analyzed in (d). (d) Angle correlation analyses of droplets with total intensity � 10. (e) Angle correlation analyses
of droplet trajectories at 52–60 min after synDrop induction in hog1� S. cerevisiae yeast cells comparing controls to ATP depletion with a
hypo-osmotic buffer (simultaneous with synDrop induction). (f) Normalized velocity autocorrelation for droplet trajectories at 52–60 min after
synDrop induction in hog1� S. cerevisiae yeast cells using the same conditions as (e).

between steps is in the range of π/2 to π , the angular
correlation function will be less than zero (−1 to 0). This
indicates antipersistent motion in particle trajectories, sug-
gesting confined or caged particle movement. Conversely, if
the averaged angle between steps falls in the range of 0 to
π/2, the angular correlation function will be larger than zero
(0 to 1). This implies persistent motion in particle trajectories,
suggesting motion driven by active processes. We analyzed
trajectories of synDrops formed 50–60 min after induction
in control conditions or after ATP depletion in an isotonic
buffer in yeast cells [Fig. 6(a)]. We observed negative angle
correlations at all timescales, indicating confined motion. This
confinement was most apparent at short timescales. Angle cor-
relation values were further reduced when ATP was depleted
for a longer time, suggesting that particles experienced higher
confinement. We conclude that ATP-dependent activities re-
duce confinement in the cytoplasm.

We further investigated the origin of this confinement
by quantifying the cytoplasmic elasticity using the veloc-
ity autocorrelation function [46] of the droplet trajectories.

In the ideal case of pure Brownian motion, the velocity
autocorrelation function is zero. We focused on the same set
of droplets as in Fig. 6(a) in both control conditions and ATP
depletion in an isotonic buffer [Fig. 6(b)]. We observed a
negative peak, corresponding to antipersistent particle motion,
which is a signature of elastic materials. The magnitude of
this negative peak increased after ATP depletion, and this
elasticity further increased after longer periods of ATP de-
pletion [Fig. 6(b), inset]. This suggests that ATP depletion
increases the elasticity of the cytosol. This elasticity may
impede mesoscale droplet motion and thus impose a long-
range confinement. We conclude that ATP-dependent cellular
activities help reduce cellular elasticity, fluidize the cytosol,
and constantly remodel the cytosol to reduce confinement,
leading to increased mesoscale droplet motion, which pro-
motes droplet growth.

To enable more precise comparison between conditions,
and avoid the concern that the distribution of synDrop sizes
changes in different conditions, we selected droplets present at
50–60 min after synDrop induction that had similar intensities
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FIG. 7. ATP-dependent cellular activity facilitates droplet growth by promoting long-range cellular structural reorganization. (a) Angle
correlation analyses of droplets in mammalian HeLa cells that had preformed after 1 hour of GA induction with DMSO (solvent control)
and subsequently treated with 1-hour ATP depletion or 1-hour JLY treatment (to freeze actin dynamics) conditions. (b) Normalized velocity
autocorrelation for droplet trajectories in the same conditions as (a). (c) Ensemble-time-averaged MSD analyses of droplet trajectories in the
same conditions as (a). (d) Phase diagram of synDrop using total BFP and GFP intensities per droplet, normalized to the median value of
droplets in the DMSO control condition. Droplets were induced for 1–2 hours in the presence of solvent control (DMSO) or JLY treatment. (e)
Histogram of normalized total GFP intensities per droplet (logarithmic scale) in the same conditions as (d). (f) Model for how ATP-dependent
cellular activities may influence droplet growth.

[Fig. 6(c)]. This approach gave similar results in our angular
correlation analyses: ATP depletion led to a reduction in the
values of the angular correlation function at all timescales,
with more prolonged ATP depletion leading to larger re-
ductions [Fig. 6(d)]. Therefore, increased confinement after
ATP depletion is not a consequence of differences in
synDrop size.

Finally, we used hypo-osmotic shock to investigate
whether equalizing droplet diffusivity at short timescales and

length scales between control and ATP-depleted conditions
would also equalize confinement. We found similar patterns
of confinement after hypo-osmotic shock: Although local dif-
fusivity was equalized [Fig. 4(d)], ATP depletion still led to
increased synDrop confinement [Fig. 6(e)] and cytoplasmic
elasticity [Fig. 6(f)]. Together, these results are consistent
with a model where the rate of droplet growth through coa-
lescence depends on droplet diffusivities over both short and
long timescales and length scales. While hypo-osmotic shock
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increases droplet local diffusivity at short timescales and
length scales, it is ineffective in reversing the increased con-
finement and elasticity at long timescales and length scales
that result from ATP depletion.

We observed similar results in mammalian HeLa cells.
Angular correlation values were reduced compared to control
after ATP depletion [Fig. 7(a), red line]. Therefore, ATP-
dependent activities are required to reduce confinement in
mammalian cells. We next inhibited actomyosin dynamics
using the inhibitor JLY cocktail. The treatment led to de-
creased angular correlation values at time lags of less than 1 s,
indicating that actomyosin dynamics are required to decrease
confinement. However, at time lags of larger than 1.5 s, JLY
treatment slightly increased angular correlation values. We
hypothesize that this might be due to an imperfect balance in
the effects of the three drugs in the JLY cocktail, resulting in
a failure to fully arrest actomyosin dynamics at the molecular
level. This effect may be minimal at short timescales but can
become more significant over longer timescales.

In addition to driving ATP-dependent motion, the cy-
toskeleton also plays a critical role in determining cellular
elasticity [7]. Therefore, we also analyzed velocity autocor-
relation before and after ATP depletion or JLY treatment. We
found that both treatments led to an increase in the magnitude
of the negative peak corresponding to antipersistent particle
motion. Thus, either loss of ATP or inhibition of actomyosin
dynamics increases the elasticity of the mammalian cytoplasm
[Fig. 7(b)], supporting our hypothesis that ATP-dependent
cellular activities can modulate long-range rearrangement of
cellular structures, leading to less elastic confinement of the
intracellular environment.

Confinement within a fixed volume can also result in
negative velocity autocorrelation. However, the ensemble-
time-averaged mean square displacements (MSDs) did not
reach a plateau at longer time lags [Fig. 7(c)], suggesting
that the data are not well explained by a fixed boundary con-
finement. Rather, we observed that data points at longer time
lags were fit with a higher exponent α than shorter time lags
[Fig. 7(c)]. Control cells had an exponent close to 1, suggest-
ing combined effects of ATP-dependent cellular activities and
cytoplasmic elasticity [47], while ATP depletion or freezing
actomyosin dynamics with JLY led to a smaller exponent.
These results further indicate that ATP-dependent long-range
cellular structural rearrangement promotes condensate move-
ment at longer time lags.

Finally, we examined the effect of JLY treatment on droplet
formation in HeLa cells. We compared the droplet phase di-
agram of control cells to that of cells treated with the JLY
cocktail at the same time as synDrop induction. We found
that droplet intensities were smaller in JLY-treated cells com-
pared to the DMSO control [Figs. 7(d) and 7(e)]. Overall,
these results support a model in which the actin cytoskeleton
promotes long-range structural rearrangements and thereby
reduces elastic confinement in the cytoplasm, enabling droplet
growth through coalescence [Fig. 7(f)].

III. DISCUSSION

Membraneless organelles carry out many essential cel-
lular functions within cells [48]. Therefore, it is important

to understand the spatial and temporal information associ-
ated with membraneless organelle formation and dissolution.
Many studies have focused on specific chemical signals
[49], but few studies have looked at physical cues. Here,
we demonstrated that intracellular macromolecular crowd-
ing and ATP-dependent cellular activity can have dramatic
effects on condensate formation. Macromolecular crowding
promotes droplet nucleation by reducing effective dissoci-
ation constants of binding reactions, but inhibits droplet
growth by reducing droplet diffusivities. ATP-dependent cel-
lular activity promotes droplet growth by fluidizing cellular
environment through promoting long-range structural rear-
rangements. Therefore, two of the most unusual properties
of the intracellular environment seem to work together to
optimize mesoscale assembly.

Macromolecular crowding has several effects on molec-
ular assembly. First, it increases the local concentra-
tions of molecules due to the excluded volume occu-
pied by macromolecular crowders [4]. Second, it imposes
depletion-attraction forces that increase the propensity of
molecular assembly [3]. The cytoplasmic excluded volume
is dominated by mesoscale particles, in particular ribo-
somes; therefore, this entropic effect is most prominent at the
mesoscale. Both effects can affect binding interactions, lead-
ing to reduced effective dissociation constants [5]. Crowding
agents have been shown to lower the critical concentrations
for several in vitro reconstituted phase-separation systems
[50,51]. However, the inhibition of the kinetics of droplet
growth by excess macromolecular crowding is less studied
due to the limited availability of controlled in vivo phase
separation systems.

ATP-dependent cellular activities impart a dynamic and
nonequilibrium nature to the intracellular environment, in-
troducing nonthermal forces that amplify random fluctuating
motion beyond thermal effects [47]. The cytoskeleton, a
key contributor to ATP-dependent activities, exhibits time-
dependent material properties [39,52]. On shorter timescales,
it behaves as a network of semiflexible polymers primarily
influenced by thermal fluctuations, resulting in subdiffu-
sive motion of mesoscale particles. However, on longer
timescales, superdiffusive motion is driven by ATP-dependent
structural rearrangements [39]. Similar time-dependent mate-
rial properties have also been observed beyond the context
of the cytoskeleton in the mammalian cytoplasm [53] and
the membranes of red blood cells [44]. While existing
studies on condensates have focused on biochemical as-
pects of ATP molecules [54] or ATP-consuming processes
within condensates [55–57], limited research has investigated
the impact of physical properties emerging from envi-
ronmental ATP-dependent cellular activities on condensate
formation.

synDrops have a unique combination of features that make
them an ideal platform to investigate how intracellular bio-
physical environments affect condensates assembly. Their
nucleation and growth dynamics can be studied on a reason-
able timescale (minutes to 1 hour). In contrast to endogenous
condensates, the synDrops components were designed to min-
imize the probability of specific interactions with endogenous
molecules within cells, including ATP-consuming enzymes.
Moreover, the well-defined protein structures and network
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geometry make synDrops highly amenable to simulation and
analysis with graph-theoretical approaches.

Our study highlights how the intracellular environment
modulates mesoscale molecular assembly through a com-
bination of macromolecular crowding and cellular active
matter. Notably, the intracellular environment is highly het-
erogeneous in mesoscale diffusivity [58], reflecting local
heterogeneity in macromolecular crowding and cellular ac-
tivity. These physical variations may underlie the distinct
behavior of droplet formation within cells compared to the
theoretical prediction that droplets should thermodynamically
fuse into a single entity. By actively modulating local macro-
molecular crowding and cellular activity levels, cells could
potentially control the formation of endogenous condensates
at different locations via biophysical signals. For example,
increased cellular activity, such as actin dynamics near the
cell cortex, could facilitate endogenous condensate formation,
which might in turn contribute to the nucleation and growth of
the cytoskeleton network.

We speculate that changes in the biophysical properties
of cells could be sensed by their impacts on condensate as-
sembly. Indeed, a synthetic droplet can modulate the rates
of kinase reaction in response to changes in macromolecular
crowding, demonstrating the feasibility of this idea in cells
[59]. On the other hand, the biophysical properties of the cell
interior may also change during disease progression, leading
to aberrant phase separation of endogenous condensates. Our
study provides a framework to guide future investigations into
the effects of intracellular biophysical properties on endoge-
nous condensate formation and dissolution and their relevance
to normal biology and disease pathology.

IV. MATERIALS AND METHODS

A. Plasmid construction

For yeast plasmids, open reading frames (ORFs) encod-
ing full length Gid and Gai 1–92 [23], dimer (PDB: 4LTB)
and hexamer (PDB: 3BEY) [15], green fluorescent protein
(Superfolder GFP, PDB: 2B3P), and blue fluorescent protein
(mTagBFP, PDB: 3M24) were first amplified using PCR.
Using Gibson assembly, we then fused each ORF: Gai-BFP-
3BEY and Gid-4LTB-GFP with a strong yeast promoter
from TDH3, an N-terminal nuclear export signaling sequence,
and a yeast terminator from CYC1, and subsequently as-
sembled into yeast backbone vectors pRS304 and pRS306,
respectively. For mammalian plasmids, we codon optimized
synDrop ORFs based on codon usage of Homo sapiens (Twist
bioscience, CA). We then used oligo overhangs to introduce
a P2A ribosome-skipping sequence between Gai-BEY-3BEY
and Gid-4LTB-GFP, and combined them into a single plas-
mid driven by the CMV promoter using Gibson assembly.
The final plasmid was designed for lentiviral transduction of
mammalian cells (based on pLVX backbone, Takara Catalog
No. 632159).

B. Yeast transformation

Two plasmids encoding the two components of the yeast
synDrop system were first linearized by restriction en-
zyme digestion within the auxotrophic marker region. The

linearized plasmids were then transformed into W303 yeast
strains (MATa leu2-3, 112 trip1-1 can1-100 ura3-1 ade2-1
his3-11-,15) sequentially using a LiAc-based protocol [60].
A single yeast cell colony was then selected based on whether
condensates were able to form after 1 hour of 300 µM GA
induction.

C. Mammalian cell transient transfection

Mammalian HeLa cells were plated on a six-well plate in
high-glucose Dulbecco’s Modified Eagle Medium (DMEM)
with L-glutamine (Gibco) supplemented with 10% fetal
bovine serum (FBS; Gemini Bio), penicillin (100 U/ml), and
streptomycin (100 µg/ml) (Gibco). Cells were incubated at
37 °C with 5% CO2 in a humidified incubator and grown to
approximately 60–80% confluency after one day of plating.
On the next day, cells were transiently transfected using 1 µg
of plasmid and 3 µl of FuGENE HD transfection reagent
(Promega) based on manufacturer’s protocol. After 24 hours,
cells were ready for imaging by replacing with fresh supple-
mented DMEM. Induction of synDrops in HeLa cells was
performed by adding GA till 100 µM final concentration.

D. Drug treatment

To deplete ATP, S. cerevisiae cells were treated with 20 mM
2-deoxyglucose (2-DG) and 10 µM antimycin A in synthetic
complete (SC) media without glucose [61]. The media was
further supplemented with either 80 mM sorbitol for isotonic
buffer condition or 10 mM sorbitol for hypo-osmotic buffer
condition. Additionally, the pH was balanced to 7.5 using a
50 mM Tris-HCl buffer. For ATP depletion in mammalian
HeLa cells, a mixture of 6 mM 2-DG and 1 µM carbonyl
cyanide-trifluoromethoxy phenylhydrazone (FCCP) in CO2-
independent medium supplemented with L-glutamine was
added to cells for 1 hour [62].

To inhibit TOC1 signaling, S. cerevisiae cells were treated
with 1 µM rapamycin for 2 hours in SCD media [2]. For
JLY treatment, mammalian HeLa cells were first treated with
10 µM y27632 for 10 min, followed by the addition of jas-
plakinolide and latrunculin B to final concentrations of 10 µM
y27532, 8 µM jasplakinolide, and 5 µM latrunculin B [40]
for 1 hour in CO2-independent medium supplemented with
L-glutamine.

E. Microscope imaging of yeast cells

Yeast cells were imaged using a Nikon TI Eclipse micro-
scope with a 100× oil objective (100× phase, NA = 1.4,
part no. MRD31901) and a sCMOS camera (Zyla, Andor,
part no. ZYLA-4.2p-CL10). An epifluorescence LED light
source (Spectra X, part no. 77074160) was used for imaging
yeast cells with synDrops. The GFP channel was imaged
through a GFP filter set (EF-EGFP (FITC/Cy2), Chroma, part
no. 49002), while the BFP channel was imaged through a
quad-band filter set (ET – 405/488/561/640 nm, Chroma, part
no. TRF89901). Z stacks were taken every minute for the
first 10 min and every 5 min thereafter following synDrop
induction, for each channel, with an interval of 0.5 µm and
total distance of 3 µm (seven slices). Average projections of Z
stacks were used for subsequent imaging analyses. Movies for
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tracking synDrop motion were also recorded using the GFP
channel, but with a 50-ms frame rate without delay (20 Hz)
for a total of 20 s (total 400 frames).

For microrheology, we used 40-nm-diameter genetically
encoded multimeric nanoparticles (GEMs). To record GEM
movement, we used highly inclined thin illumination (HILO)
microscopy. Each GEM movie was imaged on a single focal
plane at 10-ms frame rate with no delay (100 Hz) for a total
of 4 s (total 400 frames) using a 488-nm laser light source at
100% power (OBIS 100 mW LX 488 nm, Coherent, part no.
1236444) and with a GFP filter set (EF-EGFP (FITC/Cy2),
Chroma, part no. 49002).

F. Microscope imaging of mammalian cells

Mammalian cells with synDrops were imaged using a con-
focal Nikon TI Eclipse microscope with a spinning disk unit
(CSU-X1 spinning disk, Yokogawa, part no. 99459), with a
60× oil objective (60×, NA = 1.49, part no. MRD01691) and
a sCMOS camera (Prime 95B, Teledyne Photometrics). The
GFP channel was excited using a laser light source (OBIS
100 mW LX 488 nm, Coherent, part no. 1236444) and imaged
through a GFP emission filter (EF525/36m, Chroma, part no.
77014803). The BFP channel was excited using an LED light
source (X-Cite 120LED, Excelitas, part no. 010–00326R) and
imaged through a DAPI filter set (ET-DAPI, Chroma, part no.
49028). Z stacks were taken after 1 hour of GA induction
for each channel with an interval of 0.5 µm and total dis-
tance of 6 µm (13 slices). Average projections of Z stacks
were used for subsequent imaging analyses. Droplet movies
were also recorded using the GFP channel with 50-ms frame
rate without delay (20 Hz) for a total of 20 s (total 400 frames).

G. Image analyses

To characterize the properties of synDrops within cells, Z
projections were analyzed using the Trackmate plugin [63] on
ImageJ [64,65]. Due to higher signal-to-noise ratio in the GFP
channel, droplets were detected using the GFP channel unless
otherwise stated. We applied a LoG (Laplacian of Gaussian
filter) detector on Trackmate to identify the droplets, with
1 µm “estimated object diameter” and a fixed “quality thresh-
old” across all different conditions in each experiment. To
determine the total intensity per droplet, we defined a circle
that was larger than the droplet, computed the mean pixel
intensity within this identified region, and then subtracted
the background mean pixel intensity. This measurement is
proportional to the total number of fluorescent molecules
within a droplet. Results of particle detection from Trackmate
included all time points and were then saved as xlm files.
Using home-written MATLAB (2019a) code, we subsequently
extracted and compiled properties of the droplets, including
raw mean pixel intensities and their locations in the images.
We also determined the background mean pixel intensity by
randomly selecting 20 circles with the same 1-µm diameter
in each image from areas away from droplets. YeastSpotter
[66] was used to identify single yeast cells, which generated
ImageJ mask files indicating locations of each individual yeast
cell. By combining with position information of droplets, we

computed the number of droplets per cell using home-written
MATLAB code.

To obtain droplet diffusivities, we used simple linear
assignment problem (LAP) particle tracking function on
Trackmate in addition to particle detection, with maximal
linking and gap-closing distance of 390 nm and maximal gap-
closing frame interval of 1. Only trajectories with more than
10 time points were included for subsequent mean squared
displacement analyses using home-written MATLAB code.

To determine GEM diffusivities, GEM trajectories were
detected using the Mosaic plugin [67] on ImageJ [64,65] with
particle detection parameters of radius 3, cutoff 0, per/Abs
(percentile) 0.1, and particle linking parameters of link range
1, displacement 5 with Brownian dynamics. We only selected
trajectories with more than 10 time points for subsequent
mean squared displacement analyses using home-written MAT-
LAB code.

To generate density plots based on the scattered data points,
the data space was separated into 25 × 25 different regions
based on the minimum and maximum values on both x and
y axes. By counting the number of data points within each
region, two-dimensional (2D) density matrices were gener-
ated and smoothed using the MATLAB function scattercloud
[68]. The contour lines were further obtained using MATLAB

function contour.

H. MD simulation analyses

We used graph-theory-based methods for analyzing MD
simulations. Each molecule in our MD simulations had a
unique number identifier and was treated as the node for the
graph. Bonds formed at each time point were recorded based
on molecule pairs that formed each bond, and were treated
as the edges for the graph. The graph at each time point was
then constructed by providing both node and edge information
inputs using the igraph [69] package in PYTHON. To identify
clusters, a distance matrix was first calculated based on the
topological shortest path that links each pair of molecules.
Subsequently, a hierarchical clustering algorithm was em-
ployed on the distance matrix. This led to the reordering of
molecule sequences, with molecules within each cluster being
grouped together. Cluster size was then determined based on
the number of molecules that were within each cluster. Loca-
tions of each molecule were also recorded at each time point.

To calculate cluster diffusivity, clusters with size larger
than 10 molecules were first identified at each time point. Pair-
wise clusters from consecutive time points were connected
from the last time point by determining the largest number
of same nodes, thus forming trajectories. If a cluster’s size
changed by 20 within a time interval, it was considered as
a new cluster and tracked as a distinct trajectory. Only tra-
jectories with more than 10 time points were selected for
calculating cluster diffusivities, where mean squared displace-
ment of the cluster’s center of mass for each trajectory was
fitted over the first 10 time intervals. All analyses were per-
formed using home-written PYTHON3 code.

To determine the effective dissociation constants (Kd) of
the chemical bonds, we analyzed the kinetics of bond for-
mation in monovalent MD simulations until equilibrium was
achieved. In this monovalent system (where the dimers and
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hexamers are in a 1:1 stoichiometric ratio), we reduced the
available binding sites of two components from six and two to
one and one each. By fitting the data to an inverse exponential
decay function, we extracted the number of bonds formed at
equilibrium. Subsequently, Kd was calculated based on the
concentration of all species at equilibrium, using the formula
for a dimerization reaction A + B ↔ AB,

Kd = [A] [B]

[AB]
= NANB

NABV
,

where V is the volume of the simulation box.
To roughly match simulation timescales to experimental

ones, the mean squared displacement of 40-nm GEM par-
ticles in simulations using our HOOMD-blue model were
fit to the Einstein diffusion relation in 3D: MSD(t ) =
6Dt for long times, and D was obtained in units of
µm2/τ . The unit of time τ = 7.5 × 10−8 s was then ob-
tained by matching this D to an approximate cellular value
of 0.3 µm2/s [2].

I. Simulations set up using HOOMD-blue

An agent-based MD simulation approach has been devel-
oped to study the synDrops system. MD simulations were
performed using HOOMD-blue v2.9.6 [25,26], making use of
a single graphics processing unit (GPU) to achieve consider-
able acceleration in simulation speeds. We use coarse-grained
(CG) representations of each synDrops component: (i) a
sphere with six rigid evenly distributed binding sites to
represent the hexamer and (ii) three spheres in a rodlike
arrangement with two complementary binding sites at two
ends to represent the rigid coiled-coil dimer. We have 1170
dimers and 390 hexamers within a cubic box with 860-nm
sides (maintaining a 3:1 stoichiometric ratio of dimers and
hexamers to have a 1:1 ratio of complementary binding sites).
This results in concentrations of 3 µM for dimers and 1 µM
for hexamers, similar to our estimated values in experiment.
Finally, 20 spheres of diameter 40 nm are added to mimic the
trace particles: GEMs in the experiment.

In addition, spherical components of various sizes without
any binding site are added in the system to mimic the crowded
cellular environment. For the initial configuration, the CG
components are arranged in a lattice whose positions are gen-
erated from a CsCl-type lattice generator using the “lattice”
module from the ASE (Atomic Simulation Environment) [70]
package. We ran MD simulations with varying volume frac-
tions of ribosomes to study the effect of crowding in synDrops
assembly. We also varied the effective temperatures that only
govern the ribosome movements to study how cellular activi-
ties affect synDrops assembly.

Binding occurs through complementary interaction sites
between dimers and hexamers. We modeled such covalent
interactions by developing an open-source C++ plugin, called
the Dynamic Bond Updater [27], in HOOMD-blue that builds
upon a model for epoxy binding developed in Ref. [71].
The Bond Updater, for every n steps during the MD simula-
tion, stochastically adds or removes dynamic bonds. Binding
events occur with a fixed probability Pon at a critical distance
dbind between interaction sites, while unbinding events occur
with a probability Poff . Using our dynamic bonding frame-

work, we thus have controls over our binding and unbinding
rate constants kon and koff , respectively; the bond affinity ε is
defined by

�G = kBT ln(kon/koff ) ≡ ε

and can be increased by lowering the unbinding rate constant
koff . We ensure that the dynamic bonding model satisfies
detailed balance using a particular Metropolis-like criterion
[72–74], so that the system moves towards an equilibrium
ensemble as bonds form and dissolve dynamically. We use
the cell neighbor list [75] to accelerate nonbonded agents’
calculations and possible bonding pairs’ constructions.

Interactions between crowders and synDrops proteins oc-
cur via a soft repulsion potential [27] defined by

Usoft (r) = εsoft (1 − (r/rcut )
4) if r < rcut and

Usoft (r) = 0 if r � rcut,

where smoothing was applied using HOOMD-blue’s XPLOR
[26] smoothing function. The soft potential was implemented
by using HOOMD-blue’s tabulated potential option (with
1000 interpolation points between rmin = 0 and rmax = 1.5σ ,
where σ is the sum of the radii of the particles). Here, ron is
chosen as the point at which the smoothing starts. We set ron =
0.95rcut for our simulations, and rcut = σ . There is no soft
repulsion between complementary binding interaction sites
on hexamers and dimers, where we implemented a Lennard-
Jones (LJ) [76–79] attraction between the hexamer and dimer
rigid bodies, with a cutoff distance equal to 2.5σ . All objects
in the system undergo thermal fluctuations using Langevin
[80] dynamics, with drag forces proportional to the diameter.
The dimensions of every CG component approximate their
respective crystal structures. Within our MD simulations, we
typically use periodic boundary conditions (PBCs). However,
we also have the option of adding “walls” to confine our sys-
tem in a “closed box.” For volume fractions up to 35%, we are
able to place ribosomes in the box without overlaps through
random sequential insertion. For higher concentrations, we
first set up an initial simulation box size using lengths of 1400
nm on a side (4.3 times the target volume) and the appropri-
ate number of ribosomes, and then compress the system to
the target size of 860 nm linearly over 5 × 105 simulation
steps (using the “hoomd.variant” module of HOOMD-blue),
and finally turn on dynamic bonding in the system to record
synDrops dynamics.

To study how nonthermal cellular activity [41,42] impacts
formation of synDrops via MD simulations, we assign the
crowders a different effective temperature Tc from the rest of
the system, which can be achieved through separate Langevin
“thermostats” in HOOMD-blue. We ran a different set of MD
simulations at a fixed volume fraction of ribosomes (= 30%)
but varying the crowder effective temperatures Tc.

J. Simulations set up using custom-developed JAVA program

A custom three-dimensional agent-based JAVA program
was developed to simulate aggregation and cluster formations
of proteins in a cellular environment. All objects in these
simulations are spheres, or spherical aggregates, that move
in space as a result of applied forces. These forces arise in
three distinct ways: through collisions with other spheres and
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with the boundaries of the simulation, through bonds to other
spheres, and through a random force and torque applied to
approximate the Brownian motion of each object. The move-
ments of all molecules then follow Langevin dynamics with a
defined effective temperature.

Collisions are resolved with a simple rule: at a low
Reynolds number we can calculate the exact force to resolve
any pairwise collision. This method is described in detail in
Ref. [81]. All the pairwise forces are summed and then atten-
uated for numerical stability such that collisions resolve over
several time steps (not instantaneously). Translational bond
forces are resolved in the same way: by calculating the force
required to bring a stretched bond back to its relaxed position.
By contrast, torques are calculated with a linear torsional
spring. Brownian forces and torques are randomly taken from
a Gaussian distribution with a mean of zero and variance
of 2D�t , where D is the diffusivity of the object (which
can differ in all three translational and rotational degrees of
freedom) and �t the time step.

The two protein components of the synDrops system
were modeled as spheres having six or two uniformly
distributed binding sites on their surface [extended data,
Fig. 1(c)]. The size of each sphere was determined based on
its experimental correspondence with known protein crystal
structures. Bond kinetics in the model arise by prescribing
binding and unbinding rates, with binding occurring be-
tween available sites only when they are within a minimum
distance of each other. The unbinding rate is assumed to
be independent of any strain in the bond. After selecting
appropriate values for minimum binding distance and un-
binding rate, we ensured that the dissociation constant for
the chemical bond ranged between 1 and 10 µM. As in the
HOOMD-blue system, we use 1170 dimers, 390 hexamers,
and varying numbers of ribosomes in a box with side length
860 nm.
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APPENDIX A: RESULTS OBTAINED FROM MODELING
SYNDROPS USING AN ALTERNATIVE AGENT-BASED MD

SIMULATION PLATFORM

To ensure the generality of conclusions drawn from
MD simulations, we developed an alternative agent-based
simulation platform using a separate JAVA program. In
this simulation, the two protein components of synDrops,
hexamer and dimer, are represented as spheres, with six
and two binding sites, respectively, with dimensions cor-
responding to their crystal structures [Fig. 8(a)]. Dynamic
interaction occurs between the binding sites on the hexamer
and dimer, and is defined by an unbinding probability and a
minimum binding distance to initiate binding. Additionally, a
third sphere without any binding site was included mimick-
ing ribosomes as macromolecular crowders [Fig. 8(a)]. This

FIG. 8. synDrops modeled in alternative agent-based MD simulation platform. (a) A second MD simulation platform was developed based
on a custom JAVA program. The two protein components of the synDrops system were modeled as spheres with either six or two binding
sites. The simulation system also includes a third molecular component, without binding sites, that mimics ribosomes as macromolecular
crowders. (b) MD simulations of synDrop assembly over time without crowders (top) and with 30% volume fraction of crowders (bottom).
The zoomed-in image under 30% volume fraction condition shows the formation of a large cluster.
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FIG. 9. Simulation results from JAVA-based MD simulations: Increasing molecular crowding promotes synDrop nucleation but inhibits
mesoscale growth. [(a)–(e)] Analyses of MD simulations with 0%, 30%, and 50% volume fraction of crowder: (a) Left: Clustergrams
representing molecular connectivity, determined by graph theory. Squares on the diagonal are indicative of clusters of molecules. Analyses
are shown after 0.01 and 0.77 s simulation time. Right: images of the simulation renderings after 0.77 s. (b) Number of molecules within the
largest cluster as a function of time. (c) Average cluster size (number of molecules) as a function of time. Dashed line is the power-law fit for
the initial 0.2 s with fitted exponent labeled as α. Error bars are standard deviation (SD). (d) Distribution of cluster sizes (number of molecules)
at t = 0.77 s. (e) Average cluster diffusivity versus cluster size (number of molecules). Error bars are SD. (f) Monomer MD simulations to
determine binding rates. Each protein component was modified to be monovalent and simulations were performed with no crowders (top),
30% volume fraction of crowders (middle), and no crowders but with a 30% reduction in container volume (bottom). After 0.7 s, the binding
probability was set to zero, allowing determination of unbinding rates. Effective binding rates (kon), unbinding rates (koff ), and dissociation
constants (Kd) were inferred from the number of bonds formed over time (table, right). (g) Effective dissociation constants (Kd) as a function
of crowder volume fractions. Error bars are SD from three repeats.
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FIG. 10. Kinetics of droplet intensities after synDrop induction in hog1� S. cerevisiae yeast cells in control conditions. Left: Average
number of droplets per cell and average total intensity per droplet, both normalized to their mean values at 0 min, were quantified for 1 hour
after synDrop induction with GA in hog1� S. cerevisiae cells. Error bars are SEM. Right: Normalized total intensity of all droplets per cell,
calculated by multiplying the two quantities shown on the left. Error bars are propagated SEM.

simulation platform allows the study of synDrop formation
under various conditions [Fig. 8(b)].

To study the impact of macromolecular crowding on
synDrops, we simulated synDrop formation under varying
volume fractions of crowders. Consistent with the results ob-
tained using the HOOMD-blue engine (Fig. 3), we observed
a greater formation of larger clusters under the 30% volume
fraction compared to the no-crowder condition. However, as
the crowder volume fraction increased to 50%, cluster size
became smaller, as revealed by graph-theory-based analy-
ses [Fig. 9(a)], tracking the number of molecules within the
largest cluster [Fig. 9(b)], and assessing the cluster size distri-
bution at the final time point of simulations [Fig. 9(d)]. We
then focused on the nucleation process by quantifying the
initial growth rate of the averaged cluster size. Notably, we
found that increasing crowder volume fraction monotonically
increased the initial growth rate, suggesting that macro-
molecular crowding promotes synDrop nucleation [Fig. 9(c)].

However, cluster diffusivity analyses revealed a monotonic
decrease when increasing macromolecular crowding, consis-
tent with a model where crowding inhibits the growth of
synDrops by coalescence [Fig. 9(e)].

To investigate the molecular mechanisms of how macro-
molecular crowding promotes synDrop nucleation, we sim-
ulated a simplified monomer system, where each protein
component had only one binding site, under different crowder
volume fractions [Fig. 9(f)]. Our findings revealed a consistent
reduction in effective dissociation constants as crowder vol-
ume fractions increased [Fig. 9(g)], indicating that binding is
favored under increased macromolecular crowding conditions
in our MD simulations.

APPENDIX B: SYNDROPS MAINLY GROW THROUGH
DROPLET COALESCENCE

To assess if synDrop growth mainly occurs through droplet
coalescence, we examined the kinetics of droplet intensities

FIG. 11. Kinetics of synDrop formation in WT S. cerevisiae yeast cells. Average number of droplets per cell (left) and normalized total
intensity per droplet (right) during 1 hour of synDrop induction in WT S. cerevisiae yeast cells comparing control conditions to osmotic
compression with 300 or 500 mM sorbitol.
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FIG. 12. Dissecting the effects of protein concentration and macromolecular crowding after osmotic compression. (a) Osmotic compression
increases protein concentrations, but this effect can be accounted for through selection of a subset of cells. Distributions of GFP intensities
(mean pixel fluorescence intensities) of hog1� S. cerevisiae yeast cells, comparing control to osmotic compression conditions. The fourth
quartile of GFP intensities in control conditions is labeled by blue dashed lines. (b) Average number of droplets per hog1� S. cerevisiae cell
after synDrop induction in control (left) and osmotic compression (500 mM sorbitol, right) conditions, comparing all cells, cells with GFP
intensities in the lowest (first) quartile, and cells with GFP intensities in the highest (fourth) quartile. Error bars are SEM. (c) Kinetics of
formation of synDrops in cells with GFP intensities in the fourth quartile of control conditions [blue dashed lines in (a)] comparing control to
osmotic compression (300 or 500 mM sorbitol) conditions. Error bars are SEM.

after synDrop induction in control conditions. We first nor-
malized the average number of droplets per cell and total
intensity per droplet relative to their values at 0 min (Fig. 10,

left). Subsequently, we calculated the normalized total
intensity of all droplets per cell by multiplying the normal-
ized total intensity per droplet by the normalized number of
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FIG. 13. Dissecting the effects of protein concentration and macromolecular crowding after rapamycin treatment. (a) Representative
images of synDrops during 1 hour after synDrop induction with GA comparing hog1� S. cerevisiae yeast cells treated with DMSO (control),
rapamycin pretreatment for 2 hours (RAPA), and rapamycin pretreatment for 2 hours followed by osmotic compression to restore genetically
encoded multimeric (GEM) nanoparticle diffusivity to control values (RAPA + 0.7 M Sorb). (b) GEM nanoparticles were used to determine
the sorbitol concentration that restores mesoscale crowding in cells pretreated with RAPA for 2 hours to a level comparable to DMSO
control cells. (c) Quantifications of cell mean BFP (left) and GFP (middle) pixel intensities, and cell size (right) comparing hog1� S.
cerevisiae yeast cells treated with DMSO control; RAPA; RAPA followed by 0.7 M sorbitol; and RAPA followed by 1 M sorbitol. Error bars
are SD.

droplets per cell (Fig. 10, right). As droplets nucleated and
formed in the first 10 min, we observed an increase in the
normalized total intensities of droplets per cell. However, after
10 min, these values remained relatively constant, fluctuating
around 1.6, thus supporting the notion of droplets mainly
growing through coalescence.

APPENDIX C: DISSECTING THE EFFECTS OF PROTEIN
CONCENTRATION AND MACROMOLECULAR
CROWDING AFTER OSMOTIC COMPRESSION

Wild-type (WT) S. cerevisiae yeast cells can quickly adapt
to osmotic compression by producing glycerol as an os-
molyte to restore their volume [30]. In the mild osmotic
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compression conditions of our experiments, this adaptation
can occur within 15–30 min. When observing synDrop for-
mation kinetics in WT yeast cells, we noted an increase in the
number of droplets per cell in the initial 10 min under osmot-
ically compressed conditions compared to control (Fig. 11,
left), suggesting enhanced nucleation upon increased molecu-
lar crowding. However, the growth curves of total intensity per
droplet were indistinguishable after 20 min (Fig. 11, right), in-
dicating the onset of osmo-adaptation, which restores normal
macromolecular crowding levels.

To circumvent the effect of osmo-adaptation in WT yeast
cells, we used hog1� yeast cells. Hog1p is a key regulatory
kinase, required for rapid glycerol accumulation after osmotic
shock [30]. Deletion of the HOG1 gene greatly diminishes this
osmo-adaptation mechanism.

Osmotically compressing hog1� yeast cells leads to de-
creased cell sizes, which increases both macromolecular
crowding and the concentration of synDrop protein com-
ponents. As condensate formation can be affected by both
molecular crowding and component concentrations, our next
objective was to dissect the relative impact of these two
factors on synDrop formation after osmotic compression.
To achieve this, we first quantified the overall protein con-
centration changes within individual yeast cells under both
control and osmotically compressed conditions [Fig. 12(a)].
Indeed, overall protein concentrations increased under os-
motic compressed conditions. To account for this factor, we
leveraged the intrinsic variations in protein concentrations
within each condition by selectively choosing cells with pro-
tein fluorescence intensities in either the lowest quartile (first)
or highest quartile (fourth). We found that cells with higher
protein concentrations indeed exhibited a higher number of
droplets compared to cells with lower protein concentra-
tions [Fig. 12(b)]. These effects were qualitatively consistent
for both control and osmotic compression conditions. These
results suggest that protein concentrations indeed impact syn-
Drop formation kinetics.

To remove the potential confounding effects of changes
in protein concentration, we next selected the subset of cells
from control and osmotically compressed conditions that were
within a similar intensity range [Fig. 12(a), blue dotted lines].
Analyzing these cells, we found that droplet nucleation was
promoted and growth was inhibited after osmotic compression
[Fig. 12(c)] and these results were quantitatively very similar
to the full data set [Figs. 2(a) and 2(b)]. Together these results
suggest that increased macromolecular crowding is the main
factor impacting synDrop formation kinetics after osmotic
compression.

APPENDIX D: DISSECTING THE EFFECTS OF PROTEIN
CONCENTRATION AND MACROMOLECULAR
CROWDING AFTER RAPAMYCIN TREATMENT

Rapamycin treatment lowers macromolecular crowding
in yeast cells by inhibiting the TORC pathway, leading
to reduced ribosome concentrations [2]. synDrop forma-
tion was significantly diminished after rapamycin treatment
[Fig. 13(a)]. However, rapamycin treatment not only affects
crowding but also inhibits translation and therefore decreases
protein concentrations, as indicated by decreased fluorescence
intensities, especially of the GFP-labeled dimer component
[Fig. 13(c)]. To isolate the effects of macromolecular crowd-
ing from protein concentration changes, we used osmotic
compression to restore crowding in rapamycin-treated yeast
cells. We determined the appropriate sorbitol concentration to
restore normal macromolecular crowding using a microrhe-
ology approach. In brief, macromolecular crowding can be
inferred based on the diffusivity of tracer particles. We used
40-nm-diameter genetically encoded multimeric nanoparti-
cles (40-nm GEMs) as our tracer particles, as they are an
appropriate length scale to report on crowding by ribo-
somes. We titrated sorbitol concentrations in the media until
the diffusivity of 40-nm GEMs in rapamycin-treated cells

FIG. 14. Largest cluster size over time under conditions with different binding affinities ε at 0% crowder and room temperature. Number
of molecules within the largest cluster over time in MD simulations using HOOMD-blue, varying the binding affinities between two synDrop
components. All simulation conditions are identical to those in Fig. 3(b), with 0% crowders and conducted at room temperature. For each
condition, five replicates were simulated, labeled as “seed” from seed 1 to seed 5.
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FIG. 15. Average coordination number of dimer and hexamer components under different crowding conditions in MD simulations. Average
coordination number (number of directly connected neighbors) for all dimers and hexamers over time under conditions of 0%, 30%, and 50%
volume fraction of crowders using the HOOMD-blue simulation model. Gray regions represent standard deviation (SD).

matched that in control (DMSO-treated) cells [Fig. 13(b)].
This approach determined that addition of 0.7 M sorbitol
approximately restored normal crowding to rapamycin-treated
cells. This osmotic compression only led to a small increase
in protein concentration compared to cells treated only with
rapamycin [Fig. 13(c)]. Thus, we could dissect the rela-
tive effects of changes in macromolecular crowding from
the effects of decreased protein concentration. Quantifica-
tion of synDrop formation in cells treated with rapamycin
and 0.7 M sorbitol revealed that synDrop formation was
largely recovered [Fig. 13(a); quantified in Figs. 2(c) and
2(d)], suggesting that decreased macromolecular crowding
is the main reason for decreased synDrop formation after
rapamycin treatment.

APPENDIX E: ADDITIONAL ANALYSES OF MD
SIMULATIONS USING HOOMD-BLUE

We varied binding affinities from 8.1kBT to 25.0kBT
(Fig. 14) to determine thresholds at which cluster formation
would become favorable. Five replicates were included for
each condition. The concentrations of dimers and hexamers
remained at 3 and 1 µM in all conditions. Reactions were at
room temperature, and no crowder was present.

We next examined the changes in averaged coordination
number (or number of directly connected neighbors) of dimers
and hexamers over time under different crowding conditions:
0%, 30%, and 50% volume fractions of crowders (Fig. 15).
We observed that the averaged coordination numbers for both
dimers and hexamers increased with crowding.
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