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Phase-separated biomolecular condensates containing proteins and RNAs can assemble into higher-order
structures by forming thermodynamically stable interfaces between immiscible phases. Using a minimal model
of a protein/RNA interaction network, we demonstrate how a “shared” protein species that partitions into
both phases of a multiphase condensate can function as a tunable surfactant that modulates the interfacial
properties. We use Monte Carlo simulations and free-energy calculations to identify conditions under which a
low concentration of this shared species is sufficient to trigger a wetting transition. We also describe a numerical
approach based on classical density functional theory to predict concentration profiles and surface tensions
directly from the model protein/RNA interaction network. Finally, we show that the wetting phase diagrams
that emerge from our calculations can be understood in terms of a simple model of selective adsorption to a
fluctuating interface. Our work shows how a low-concentration protein species might function as a biological
switch for regulating multiphase condensate morphologies.
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I. INTRODUCTION

Intracellular biomolecular mixtures can spatially organize
into complex, self-assembled compartments via phase sepa-
ration [1–3]. Such structures are referred to as biomolecular
condensates, since they form by spontaneously condensing
biomolecular components, such as proteins and RNAs, into
liquidlike compartments that are not enclosed by a membrane
[4]. In many instances, condensates have been observed to
assemble further into higher-order multiphasic structures, in
which multiple immiscible condensates form stable shared
interfaces [5–7]. Common multiphase morphologies include
“core-shell” architectures, in which one condensate is com-
pletely surrounded by a second condensate, and “docked”
architectures, in which condensed droplets attach to the sur-
face of another condensate [8]. The morphologies of many
multiphase condensates appear to be related to their biolog-
ical functions, such as the sequential processing of rRNA
transcripts during ribogenesis within core-shell nucleoli [9],
and the sharing of various biomolecular components be-
tween docked stress granule and P-body condensates that
are involved in regulating mRNA metabolism and translation
[7,10,11]. It is therefore important to understand how the
morphologies of multiphase condensates are controlled at a
molecular level.

The formation of biomolecular condensates is widely
considered to be a consequence of near-equilibrium, ther-
modynamically driven phase separation [12–14]. Within
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this thermodynamic framework, a multicomponent system
evolves to minimize its overall free energy by phase-
separating and adjusting the contact areas between different
phases. The equilibrium morphology of a multiphase sys-
tem is thus governed by the relationships among surface
tensions between pairs of phases and the volume frac-
tions of the phases [15,16]. Recent theoretical studies have
demonstrated that surface tensions in multicomponent mix-
tures, and consequently multiphase morphologies, can be
controlled by changing either the effective pairwise inter-
actions between the biomolecular components [16] or the
stoichiometry of multicomponent condensates that are sta-
bilized by heterotypic interactions [17]. However, changing
condensate morphologies via these mechanisms entails sub-
stantial changes to the state of the system, since the molecular
properties and/or concentrations of the components that com-
prise the bulk of the phase-separated condensates must be
altered.

By contrast, surface tensions can be tuned by making
comparably small perturbations to molecular components that
adsorb to condensate interfaces [18–20]. In principle, tuning
the concentrations and affinities of surfactantlike components
can control multiphase condensate morphologies with mini-
mal changes to the state of an intracellular mixture, analogous
to methods used to engineer multiphase emulsions [21]. A
key example is provided by a recent study [22] of stress
granules (SGs) and P-bodies (PBs), which assemble into a
docked multiphase architecture under stressed conditions in
human cells [11]. Importantly, this study suggested that small
changes to the concentrations of specific proteins—in partic-
ular, those with affinities for proteins in each of the coexisting
SG and PB phases—can trigger a transition between docked
and dispersed condensates [22]. Although the localization of
these particular proteins to the SG/PB interface has not been
confirmed experimentally, this example suggests that molecu-
lar components with affinities for the constituents of multiple
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FIG. 1. Minimal model of multiphase condensates. (a) Schematic of the protein/RNA interaction network that governs stress granule
(SG)/P-body (PB) multiphase condensates [22]. Top: Nodes indicate protein/RNA species, while edges indicate either homotypic interactions
(i.e., self-associations) or heterotypic interactions (i.e., associations between different species). We coarse-grain the network into N1, B, and
N2 species. The approximate partitioning of various species into the SG/PB condensates is suggested by the color bar below. Bottom: SG/PB
condensates form either docked or dispersed morphologies, depending on the interactions specified by the network and the concentrations
of the protein/RNA species. (b) A typical configuration of the coarse-grained direct-coexistence simulations showing the α and β condensed
phases, composed primarily of the N1 (blue) and N2 (red) species, respectively, and a coexisting dilute phase. The low-concentration B species
(gold) is dispersed throughout the simulation box. The interaction matrix, ε, for the nearest-neighbor intermolecular interactions is shown in
the inset. (c) Heterotypic interactions between B and node species either follow an isotropic model (left), in which all nearest-neighbor contacts
contribute an interaction energy εNB (indicated by arrows), or a bivalent model (right), in which only oppositely positioned patches (spherical
caps) on the B molecule interact with specific node species according to εNB.

distinct condensates can alter the morphologies of multiphase
condensates.

In this article, we investigate this proposed mechanism
for switching between morphologies of multiphase conden-
sates. We focus on the transition between nonwetting and
partial wetting morphologies, which we refer to as the wetting
transition for brevity [23]. Specifically, we use a minimal
model of a multicomponent mixture to derive design rules
for controlling wetting transitions via low-concentration “pro-
grammable surfactant” proteins, which interact selectively
with the constituents of two immiscible condensates. We first
introduce a simulation approach for computing the wetting
transition between docked and dispersed morphologies. We
then develop a complementary theoretical approach based
on classical density functional theory, which reproduces our
simulation results semiquantitatively. Both approaches predict
that relatively low concentrations of surfactantlike proteins
can trigger a wetting transition between docked and dis-
persed morphologies under specific conditions. Finally, we
describe a qualitative theory that predicts the key features of
this wetting transition and establishes rational design rules
for understanding the behavior of programmable surfactants
in multicomponent biomolecular mixtures. Taken together,
our results show how programmable surfactants can act as
low-concentration molecular switches for regulating biolog-
ical processes by controlling the morphologies of multiphase
condensates.

II. MINIMAL MODEL OF A PROGRAMMABLE
SURFACTANT

Our model is motivated by the multicomponent SG/PB
system studied in Ref. [22]. At a molecular level, the for-
mation of the immiscible SG and PB condensates is dictated
by the interactions among the constituent protein and mRNA
components. In this system, the relevant intermolecular in-
teractions can be described by a protein/RNA interaction

network [Fig. 1(a)], in which nodes represent proteins, protein
complexes, or RNA, and edges indicate attractive interactions
between species.

To reduce the complexity, we coarse-grain the endoge-
nous SG/PB protein/RNA interaction network to three explicit
molecular components based on the organization of the net-
work. We refer to these coarse-grained species as “Node 1”
(N1), “Bridge” (B), and “Node 2” (N2) throughout this work.
N1 and N2 are the majority components of the immiscible α

and β condensed phases, respectively, that form as a result
of attractive homotypic interactions [Fig. 1(b)]. The α and β

phases coexist with a dilute phase (D), which represents the
cytosol in our implicit-solvent model. For simplicity, we con-
sider a three-dimensional lattice-gas model in which the N1,
N2, and B species occupy individual lattice sites on a cubic
lattice with lattice constant σ . The homotypic and heterotypic
interactions among these species are summarized in a pairwise
interaction matrix ε [24] [Fig. 1(b)]. Details of the simulation
approach are provided in Appendix A.

Bridge molecules (B) represent a “shared” species that
interacts with the majority components of the α and β phases
via attractive heterotypic interactions. In this work, we con-
sider two distinct models for the B species. We first analyze
an “isotropic” model in which B molecules interact with all
nearest-neighbor N1 and N2 molecules; this model is most ap-
propriate for describing highly multivalent protein and RNA
species when the net interactions between pairs of molecules
are weak compared to the thermal energy and can thus be
approximated via isotropic pair interactions [24]. We then
study an anisotropic “bivalent” model, in which B molecules
interact with node molecules via specific patches [Fig. 1(c);
see Sec. V D]. In this case, each of the two patches located
on opposite sides of a B molecule only engages in heterotypic
interactions with a specific node species. We show that these
two models yield qualitatively similar results for the wetting
transition, suggesting that our minimal model serves as a
reasonable approximation for many systems with anisotropic
and multivalent interactions.

023013-2



PREDICTING THE MORPHOLOGY OF MULTIPHASE … PRX LIFE 2, 023013 (2024)

(a)

(b)

FIG. 2. Characterizing interfaces using Monte Carlo simulations
and umbrella sampling. (a) Definitions of the characteristic interfa-
cial width parameter, ξ , the width of a single condensed phase, l0,
and the distances between the phase centers of mass (COMs), r,
and the Gibbs dividing surfaces (vertical dashed lines), �r. (b) The
potential of mean force (PMF) as a function of the dimensionless
distance parameter �r/ξ . Example PMFs are shown for typical
wetting (orange) and nonwetting (blue) scenarios. Statistical errors
are smaller than the linewidth.

III. COMPUTING WETTING TRANSITIONS
VIA MOLECULAR SIMULATION

In this section, we introduce a Monte Carlo technique
for computing the wetting transition between docked and
dispersed morphologies of a multiphase condensate. Using
direct-coexistence Monte Carlo simulations in the slab geom-
etry [25] [Fig. 1(b)], we determine the potential of mean force
(PMF) between a pair of condensed phases in the canonical
ensemble. We then show how the properties of these PMFs
can be related to the equilibrium morphology of a macro-
scopic multiphase system in the thermodynamic limit.

A. Potential of mean force calculations

To efficiently sample both wetting and nonwetting con-
figurations, we perform umbrella sampling [26] by applying
a harmonic biasing potential to the center-of-mass (COM)
distance between the α and β condensates [Fig. 2(a)]. We
first define the α- and β-phase regions, Sα/β , as the cross-
sections along the z axis of the simulation box with N1
or N2 volume fractions, φN1/N2(z), greater than φ∗: Sα/β ≡
{z | φN1/N2(z) > φ∗}. We find that using a threshold of
φ∗ = 0.56 reduces the effects of density fluctuations near
the interfaces and thus improves the efficiency of our cal-
culations; however, this choice has no significant effect on
the results, as long as φ∗ is situated between the molecular
volume fractions of the bulk condensed and dilute phases. We

then compute the COM distance, r, based on the center of
mass of the N1 or N2 molecules within the α or β phases,
respectively. The COM distance is therefore r ≡ 〈z〉(β ) −
〈z〉(α), where 〈z〉(α/β ) ≡ ∫

z∈Sα/β
z dz/

∫
z∈Sα/β

dz, and we use the
minimum-image convention to define distances given the pe-
riodic boundary conditions.

Our aim is to compute the potential of mean force (PMF)

F (r) ≡ −kBT ln
p(r)

p(rref )
, (1)

where p(r) is the probability of finding the α and β con-
densed phases separated by a COM distance equal to r. We
choose a reference point for the PMF calculations where the
interactions between the droplets are expected to be negli-
gible (see Appendix A). Following the canonical umbrella
sampling approach [26], we apply a harmonic biasing po-
tential, (ki/2)(r − r0,i )2, to constrain the COM distance near
a target distance r0,i. Independent simulations, indexed by
i = 1, . . . , M, are used to sample near target COM distances
at intervals of one σ . The spring constants {ki} are chosen
to ensure that the probability distributions, pi(r), sampled
from simulations at adjacent target distances overlap [27].
In production simulations, we calculate the COM distance
every 10 MC sweeps and record 200 000 samples for every
target distance {r0,i}. Finally, we utilize the multistate Bennett
acceptance ratio (MBAR) method [28] to combine samples
from the M independent biased simulations and to obtain the
unbiased PMF given by Eq. (1). Example PMF calculations
are shown in Fig. 2(b).

B. Morphology predictions using the PMF

The PMF defined via Eq. (1) reflects the propensity for the
α and β condensed phases to assemble into a docked config-
uration, since the minimum value of the PMF corresponds to
the equilibrium distance between the Gibbs dividing surfaces.
To assist in interpreting the PMF calculations, we characterize
the distance between the α- and β-phase interfaces by defin-
ing a dimensionless distance parameter �r/ξ ≡ (r − l0)/ξ
[Fig. 2(a)]. �r/ξ is equal to zero when the Gibbs dividing
surfaces of the two condensed phases are in direct contact,
whereas �r/ξ � 1 indicates that the distance between the
condensed-phase interfaces is large compared to the typical
interfacial width.

Two representative PMFs for wetting and nonwetting sce-
narios are shown in Fig. 2(b). In the nonwetting case, the
PMF is non-negative, indicating a net repulsion between the
α and β phases. We find that the PMF begins to increase
as �r/ξ decreases below ∼4, suggesting that the fluctuating
interfaces interact well before the Gibbs dividing surfaces
come into contact. By contrast, the PMF has a clear minimum
in the wetting case. The negative values of the PMF at COM
distances in the range 0 � �r/ξ � 4 indicate a net attraction
between the α and β condensed phases that also occurs over a
length scale comparable to that of the interfacial fluctuations.

The PMFs from finite-size simulations enable us to predict
the multiphase morphology of the systems in the thermo-
dynamic limit (see Appendix B). The PMF minimum for
a wetting interface [Fig. 2(b)] is proportional to the cross-
sectional area, A, where the constant of proportionality is the
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difference between the surface tensions at the α-β interface,
γαβ , and the dilute-condensed interfaces, γαD,

F (req) = −A(−γαβ + 2γαD). (2)

Equation (2) is supported by the finding that the PMF profiles
scale linearly with A in our simulations in both wetting and
nonwetting cases (see Fig. 7). Thus, the multiphase mor-
phology is determined solely by the PMF, or equivalently by
the surface-tension difference −γαβ + 2γαD, in the thermody-
namic limit.

IV. PREDICTING MULTIPHASE MORPHOLOGY
WITH CLASSICAL DENSITY FUNCTIONAL THEORY

In this section, we develop a complementary approach
for predicting multiphase condensate morphologies using the
framework of classical density functional theory (CDFT). We
first show how to compute equilibrium concentration profiles
for the isotropic bridge model. We then discuss how these
calculations can be used to predict the wetting transition be-
tween docked and dispersed morphologies of a multiphase
condensate.

A. Classical density function theory

Assuming a regular solution model [29], the Helmholtz
free-energy density, f0, of the multicomponent lattice gas can
be written as

f0σ
3

kBT
=

∑
i

φi ln φi + 1

2

∑
i, j

φiχi jφ j, (3)

where the sums run over all N molecular components as
well as the implicit solvent. The molecular volume frac-
tions are constrained by

∑N
i=0 φi = 1, where φ0 represents

the volume fraction of the solvent. The interaction matrix
χi j is related to the nearest-neighbor interaction energy, εi j ,
by χi j ≡ (z/2kBT )(2εi j − εii − ε j j ), where the lattice coor-
dination number is z = 6. For the interaction matrix shown
in Fig. 1(b), Eq. (3) predicts three coexisting phases, α, β,
and D, when the B-species volume fraction, φB, is small, in
agreement with our Monte Carlo simulation results. Details
of the phase-coexistence calculation and its numerical im-
plementation are provided in Appendix C. This mean-field
regular solution model provides an adequate description of the
bulk phases under these conditions, which are chosen to be
sufficiently far from the critical points of the α and β phases.

In the grand-canonical ensemble, we express the grand-
potential functional in terms of the square-gradient approxi-
mation [30],

�[ 	φ(z)] = A
∫ ⎡

⎣ω0[ 	φ(z)] + 1

2

∑
i, j

φ′
i (z)mi jφ

′
j (z)

⎤
⎦dz, (4)

assuming planar interfaces as in our simulations. This ap-
proximation assumes that inhomogeneities, such as interfaces
between coexisting phases, vary slowly in space (i.e., over
long wavelengths) due to the absence of higher-order deriva-
tives [30]. � is a functional of the molecular volume fractions,
	φ(z) ≡ (φN1(z), φB(z), φN2(z))�, in a system at fixed chemi-
cal potentials, 	μ ≡ (μN1, μB, μN2)�. For interfacial property

calculations, the chemical potentials are determined from the
aforementioned coexistence conditions, such that the bulk
phases far from an interface are in coexistence. The first term
in the integrand of Eq. (4) is the local grand-potential density,
ω0 ≡ f0 − ∑

i μiφi. The second term, involving derivatives of
volume fractions with respect to z, φ′

i (z), represents the excess
grand potential due to an inhomogeneity.

We approximate the coefficients of the square-gradient
term, m = {mi j}, by again assuming that the inhomogeneity
is small in amplitude and varies slowly in space. In this case,
the mi j coefficients are determined from second derivatives of
the free-energy density [30,31]. For the free-energy density
given in Eq. (3), these conditions imply that

mi j = −σ−1εi j (5)

is a constant, concentration-independent matrix [30,31]. How-
ever, in our multicomponent model, this matrix may not be
positive-semidefinite, as required by the long-wavelength as-
sumption underlying the square-gradient approximation. If
the coefficient matrix instead has negative eigenvalues, then
large-amplitude inhomogeneities act to decrease the grand
potential, leading to unphysical negative surface tensions and
numerical instabilities. Qualitatively, this scenario tends to
occur when heterotypic interactions outcompete one or more
homotypic interactions. We propose that the square-gradient
approximation can nonetheless be applied to multicomponent
solutions in such scenarios by regularizing the m-matrix. We
therefore perform an eigenvalue decomposition of Eq. (5),
replace the negative eigenvalues (if there are any) with zeros,
and reconstruct the regularized low-rank [32] m-matrix for
use in Eq. (4). After regularization, the fluctuation modes
represented by the eigenvectors with zero eigenvalues do not
contribute to the square gradient term in Eq. (4).

The equilibrium interfaces between coexisting phases are
determined by minimizing the grand-potential functional,

δ�[ 	φ(z)]

δφi
= 0, (6)

which yields the equilibrium molecular volume-fraction pro-
files, 	φeq(z). Despite the shortcomings of the long-wavelength
assumption, we find that our approach for regularizing the m-
matrix leads to semiquantitative predictions for the molecular
volume-fraction profiles across a wide variety of conditions,
as we show in Sec. V A.

B. Morphology predictions based on CDFT

To predict the equilibrium morphology of multiphase con-
densates, we calculate the excess free-energy profile, �ω(z),
in the vicinity of an interface between bulk phases,

�ω(z) = ω0[ 	φeq(z)] − ω
(D)
0 + 1

2

∑
i, j

φ′
eq,i(z)mi jφ

′
eq, j (z), (7)

where ω
(D)
0 is the grand potential of the bulk dilute phase. The

associated surface tension,

γ =
∫

�ω(z)dz, (8)
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FIG. 3. Enrichment of the programmable surfactant at condensate interfaces. Here, calculations are performed using the isotropic bridge
model. (a) CDFT predictions (solid lines) closely agree with simulation measurements (points) of the equilibrium concentration profiles at
α-β (left) and α-D (right) interfaces. Vertical dashed lines indicate the Gibbs dividing surfaces. Results are shown for a typical wetting case
(εNB = −1 kBT , εBB = 0, φB = 0.1). (b) Excess free-energy profiles corresponding to the CDFT profiles shown in A. (c)–(e) Concentration
profiles across the interfaces trace out paths in the three-dimensional (N1,N2,B) concentration space. Comparisons are shown between the
simulation results (points), the full CDFT theory (solid lines), the linear-path approximation (dashed lines), and the minimum-free-energy-path
(MFEP) approximation (dash-dotted lines) for the cases shown in A. Simulation statistical errors are comparable to the symbol size.

is then obtained by integrating the excess free-energy profile
across the interface. Finally, we compute the surface-tension
difference −γαβ + 2γαD by applying Eq. (8) to both the α-β
and the α-D interfaces.

We emphasize that the Euler-Lagrange equation specified
by Eq. (6) must be solved numerically for our multicomponent
model, since the concentration of the B species can vary
nonmonotonically across an interface. In practice, this can be
achieved by minimizing �[ 	φ(z)] via gradient descent. Details
regarding our implementation of this numerical scheme, as
well as criteria for assessing convergence, are presented in
Appendix D. As we show in Sec. V B, this numerical approach
predicts wetting transitions in qualitative agreement with our
Monte Carlo simulation results. By contrast, assuming that
the molecular volume-fraction profiles follow linear paths
through concentration space [15,16,22] predicts nonwetting
behavior for a wide range of conditions, which is at odds
with our simulation results. We discuss this approximation,
as well as the relationship between our method and an alter-
native “minimum free-energy path” (MFEP) approximation,
in Appendix E.

V. CONTROLLING WETTING TRANSITIONS
USING A PROGRAMMABLE SURFACTANT

We now investigate how the “programmable surfactant”
(B) species, which is shared between the α and β condensates
in Fig. 1, controls the multiphase condensate morphology.
To this end, we first study the behavior of the isotropic

model at different B-species volume fractions, φB; heterotypic
N-B binding affinities, εNB; and homotypic B-B interaction
strengths, εBB. We focus specifically on the low-φB, weak-εNB

regime, in which the compositions of the bulk α and β phases
are negligibly affected by the presence of the B species, as
we expect that this regime is most relevant to the regulation
of multiphase condensate morphologies in a biological con-
text. We then demonstrate that the bivalent model results in
qualitatively similar behavior.

A. Surfactant enrichment at wetting interfaces

We first examine the correspondence between the inter-
facial concentration profiles predicted by simulations (see
Sec. III) and CDFT (see Sec. IV) under wetting and nonwet-
ting conditions using the isotropic model [Fig. 3(a)]. In the
wetting case, we estimate the equilibrium concentration pro-
file at the α-β interface from simulations conducted with the
biasing potential centered at the equilibrium COM distance,
req [see, e.g., Fig. 2(b) and Appendix A]. In the nonwetting
case, we examine the α-D interface in the absence of the β

phase. We define the Gibbs dividing surfaces by symmetry
in the case of the α-β interface, and on the basis of φN1(z)
in the case of the α-D interface [30]. We generically find a
slight but statistically significant enrichment of the B species
at both α-β and α-D interfaces when εNB < 0. This effect is
greater at α-β interfaces under wetting conditions, as might
be expected for a surfactantlike species that is attracted to
both condensed phases. Nonetheless, we note that even under
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wetting conditions, only a small fraction of all B molecules
are located at the α-β interface.

Despite the approximations inherent to our CDFT ap-
proach, we find semiquantitative agreement between the
predicted and simulated concentration profiles [Fig. 3(a)]. The
interfaces predicted by CDFT tend to exaggerate the B-species
enrichment at the interface relative to the simulation results.
Furthermore, from CDFT calculations, we directly obtain
predictions for the excess free energy across each interface,
�ω(z) [Fig. 3(b)]. In the case of the α-D interface, the excess
free-energy profile is asymmetric about the Gibbs dividing
surface, with the maximum shifted toward the dilute phase.

The behavior of the B species near each interface is more
clearly seen in the three-dimensional (N1,N2,B) concentra-
tion space [Figs. 3(c)–3(e)]. The enrichment of the B species
relative to its concentration in either the condensed or dilute
phase results in a marked deviation from the linear-path ap-
proximation [dashed lines in Figs. 3(c)–3(e)]. Consequently,
the excess free energy predicted by the full CDFT approach
for the α-β interface shown in Figs. 3(a) and 3(b) is substan-
tially lower than that predicted by this linear-path constraint.
Because the deviation from the linear-path approximation
is greater for the α-β interface than the α-D interface, the
linear-path approximation tends to mischaracterize wetting
conditions as nonwetting. By contrast, MFEP calculations
[dot-dashed lines in Figs. 3(c)–3(e)] exaggerate the enrich-
ment of B molecules at all interfaces, and we find that the
MFEP between the α and β phases in concentration space
can actually pass through the dilute phase. The full CDFT
approach, which most closely matches the simulation results,
is intermediate between these limiting cases, exhibiting a
reduction of the N1 and N2 concentrations at the interface
without passing through the dilute phase [Fig. 3(d)]. We stress
that these predictions are dependent on our regularization
approach for the m-matrix (see Sec. IV), without which CDFT
would yield diverging interfacial fluctuations for the parame-
ters used in Fig. 3. Overall, these comparisons demonstrate
the semiquantitative accuracy of our CDFT approach and
highlight shortcomings of the linear-path approximation (see
Appendix E) in multicomponent settings.

B. Computing the wetting transition

To determine how the equilibrium multiphase morphology
changes with the concentration and heterotypic interactions
of the B species, we compute the surface-tension differ-
ence −γαβ + 2γαD using both simulation results and CDFT
calculations [Figs. 4(a) and 4(b)]. A positive surface-tension
difference, −γαβ + 2γαD > 0, indicates a stable wetting in-
terface between the α and β phases. From our simulation
results, we compute this quantity based on the PMF minimum
(Sec. III), and we identify the wetting transition where the
PMF minimum becomes statistically indistinguishable from
zero [blue arrows in Figs. 4(a) and 4(b)]. In our CDFT
calculations, the α-β interface spontaneously relaxes to two
dense-dilute interfaces when a nonwetting configuration is
predicted, in which case we obtain a near-zero value for the
surface-tension difference due to finite numerical precision
(see Appendix D). We therefore identify the CDFT wetting

(a)

(b)

FIG. 4. Identifying surfactant-dependent wetting transitions.
(a) The difference between the nonwetting and wetting surface ten-
sions, −γαβ + 2γαD, as a function of εNB at constant φB = 0.1 using
the isotropic bridge model with εBB = 0. Results are shown for
simulations (blue circles) and CDFT calculations (orange triangles).
Arrows indicate the locations of the wetting transition, where the
surface-tension difference equals zero to within twice the statistical
uncertainty, inferred from both methods. (b) The surface-tension dif-
ference as a function of φB at constant εNB = −0.75 kBT . Statistical
uncertainties are comparable to the symbol size.

transition by comparing the surface-tension difference to the
numerical precision [orange arrows in Figs. 4(a) and 4(b)].

Our simulations and CDFT calculations predict qualita-
tively similar behavior for the surface-tension difference and
the location of the wetting transition. In particular, both simu-
lation and theory predict that the surface-tension difference
tends to increase, leading to a stable wetting configura-
tion, with decreasing εNB and increasing φB. However, the
wetting transition occurs at weaker N-B interactions and
lower B concentrations in the CDFT theory. This quantitative
discrepancy likely arises from the mean-field and long-
wavelength assumptions invoked in the CDFT theory.
Nonetheless, it is interesting that the equilibrium concentra-
tion profiles predicted by CDFT appear to be in much closer
agreement with the simulation results [Fig. 3(a)] than the
surface-tension differences (Fig. 4). This comparison suggests
that the key shortcoming of the CDFT theory lies in the
neglect of interfacial fluctuations, which we expect to have
stronger effects on surface free energies than average concen-
tration profiles.
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(a)

(b)

(c)

FIG. 5. Wetting phase diagrams for programmable surfactants.
Phase diagrams are shown as a function of the B-species volume
fraction, φB, and the heterotypic N-B interaction energy, εNB, for
isotropic bridge models (a) without homotypic interactions and
(b) with weak homotypic interactions (εBB = −0.5 kBT ), and (c) for
the bivalent bridge model. Shaded regions indicate wetting condi-
tions. Phase boundaries are predicted from simulation results (black
points) and CDFT surface-tension calculations (green points).

C. Design rules for regulating multiphase condensate
morphology via programmable surfactants

The equilibrium multiphase morphology of the isotropic
bridge model can be summarized in a wetting phase dia-
gram [Fig. 5(a)]. Here we plot separate curves predicting

the wetting transition based on simulations and the CDFT
surface-tension difference in the absence of homotypic bridge
interactions (εBB = 0). The shaded region of parameter space
below each curve in the εNB-φB plane corresponds to an
equilibrium wetting configuration, where a docked multiphase
morphology is thermodynamically stable. We also report the
phase diagram for a model in which B molecules interact
via weak homotypic interactions, such that εBB = −0.5 kBT
[Fig. 5(b)]. Although the CDFT approach underestimates the
N-B interaction strength required to trigger the wetting tran-
sition, it captures the qualitative shape of the phase diagram
both with and without homotypic interactions.

The wetting phase diagrams presented in Figs. 5(a) and
5(b) exhibit a number of striking features. First, there is
a minimum heterotypic interaction strength, |ε∗

NB|, required
for a stable wetting configuration. Stable docked morpholo-
gies therefore cannot occur for εNB > ε∗

NB, regardless of the
B-species concentration. In this model, we find that ε∗

NB ≈
−0.6 kBT , which is considerably weaker than the critical in-
teraction strength of the cubic lattice gas model [33]. Second,
the wetting transition passes through ε∗

NB at a finite B-species
volume fraction. This observation implies that the wetting
transition is reentrant for values of εNB close to ε∗

NB, where
increasing φB at a constant heterotypic interaction strength
leads the system to transition from the nonwetting regime to
the wetting regime, and then back to the nonwetting regime
at high B-species concentrations. Third, the phase boundary
extends to low B-species volume fractions, on the order of
only a few percent. Importantly, at dilute B-species concen-
trations, the heterotypic interaction strength required to trigger
the wetting transition weakens rapidly with increasing φB. By
contrast, the phase boundary is comparably insensitive to φB

near ε∗
NB.

Finally, we observe that homotypic B-B interactions have
only a minor quantitative effect on the wetting phase dia-
gram. This finding indicates that weak homotypic interactions
among surfactantlike species play a secondary role in modu-
lating multiphase condensate morphologies. However, there
are slight differences between the phase diagrams. On the
one hand, introducing homotypic B-B interactions reduces
the minimum required interaction strength, |ε∗

NB|, by a small
amount. On the other hand, at dilute B-species concentrations,
the wetting phase boundary is shifted to slightly stronger
heterotypic N-B interactions.

Taken together, these observations establish general design
rules for programmable surfactants. Most importantly, our
results indicate that relatively low concentrations of a surfac-
tantlike species (φB � 0.03) and relatively weak heterotypic
interactions (εNB � −0.6 kBT ) are sufficient to trigger a wet-
ting transition in a multicomponent, multiphase mixture. We
note that these phase diagrams are insensitive to changes in the
concentrations of the N1 and N2 species, as these changes do
not substantially affect the compositions of the bulk α and β

phases when the B species is dilute. However, the equilibrium
multiphase morphology may transition from partial wetting
(i.e., a docked configuration) to complete wetting (i.e., a core-
shell structure) when the α- and β-phase volume fractions
differ substantially [15,16].
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D. Generalization to the bivalent bridge model

We next investigate the behavior of the bivalent bridge
model. In this model, each anisotropic B molecule has two
binding sites on opposite sides [Fig. 1(c)]. One site selectively
binds to N1 while the other binds to N2, each with interaction
strength εNB. Thus, to establish a node-bridge interaction,
a B molecule must be adjacent to a node molecule with
the correct binding site pointing towards it, resulting in a
larger entropic penalty for heterotypic interactions than in the
isotropic model.

Despite these differences in the N-B binding rules, we find
that the wetting phase boundary for the bivalent model is qual-
itatively similar to its isotropic-model counterparts [Fig. 5(c)].
In fact, we find that the enrichment of B molecules at α-
β wetting interfaces is more pronounced with the bivalent
model, since the B molecules are less miscible in the bulk
condensed phases. Minor differences arise since stronger N-B
interactions are required to stabilize a wetting interface in
the bivalent model due to the greater entropic penalty for
heterotypic interactions. As a result, the wetting transition
is shifted lower in Fig. 5(c). We also find no evidence for
a reentrant wetting transition at bridge concentrations up to
φB = 0.3. Yet overall, the strong dependence of the wetting
transition on the B-species volume fraction at low φB is pre-
served in the bivalent model. This observation suggests that
the switchlike mechanism for triggering a morphology change
at low φB is a general feature of programmable surfactants,
and is relatively insensitive to the details of the molecular
model.

E. Understanding programmable surfactant design rules
using an adsorption model

To gain a deeper understanding of these empirical design
rules, we introduce a simple adsorption model that recapitu-
lates the key features of the wetting phase diagrams in Fig. 5.
We examine the interplay between the parameters εNB, εBB,
and φB by considering a Langmuir-like model [34] in which
the B species acts as the adsorbate. We therefore assume that
each fluctuating interface between a pair of phases can be
described by a two-dimensional lattice gas with B-species
occupancy φ

(i)
B .

We first consider the isotropic and bivalent models without
homotypic B-species interactions (εBB = 0). The surface ex-
cess grand potential, �ex, due to the presence of the interface
[30] takes the form

�ex
(
φ

(i)
B

)
σ 2

AkBT
= h

(
φ

(i)
B

) − �S
(
φ

(i)
B

)
AkB

− μB

kBT
φ

(i)
B , (9)

where A is the interfacial area. The first enthalpic term
is linearly related to the occupied volume fraction in the
mean-field approximation, h(φ(i)

B ) = −aφ
(i)
B + b. For a sur-

factantlike adsorbate, a is positive. Meanwhile, b represents
the enthalpic penalty due to the creation of an interface
from a bulk condensed phase and is independent of φ

(i)
B .

The entropic contribution, �S(φ(i)
B )/AkB = −φ

(i)
B ln φ

(i)
B −

(1 − φ
(i)
B ) ln(1 − φ

(i)
B ) + s, accounts for the in-plane configu-

rational entropy of the adsorbed B molecules as well as the
entropic penalty, s, due to capillary fluctuations. Finally, μB

(a)

(b)

FIG. 6. An adsorption model predicts qualitative features of the
wetting transition. (a) The enrichment of B molecules at the α-β
interface can be described by a Langmuir isotherm. Simulation mea-
surements of the B-species enrichment for the isotropic model (blue
points; εNB = −0.75kBT , εBB = 0) are fit to a Langmuir isotherm,
Eq. (10), with fitting parameter aαβ = 2.1 and an empirical scaling
factor of 0.45. Measurements of the B-species enrichment in the
bivalent model (black points; εNB = −1.6kBT ) are fit to a Lang-
muir isotherm with fitting parameter aαβ = 0.69. (b) Wetting phase
boundaries as a function of the B-species volume fraction in the
dilute phase. (Data are obtained from the same simulations as pre-
sented in Fig. 5, although the quantities being plotted, φB vs φ

(D)
B ,

are different.) The adsorption model predicts the nonmonotonicity of
the isotropic-model phase boundary, the asymptotic behavior of all
models at low φ

(D)
B , and the increase of the maximum N-B interaction

on the phase boundary, ε∗
NB, due to homotypic B-B interactions.

is the B-species chemical potential. Since the dense phase is
in coexistence with the approximately ideal dilute phase, we
have μB/kBT  ln φ

(D)
B , where φ

(D)
B is the B-species volume

fraction in the dilute phase. By minimizing the surface excess
grand potential, Eq. (9), with respect to φ

(i)
B , we arrive at a

Langmuir adsorption isotherm for the B species,

φ
(i)
B,eq = K

1 + K
, (10)

where K ≡ φ
(D)
B ea. This prediction agrees well with the en-

richment of B molecules at α-β interfaces in our simulations
[Fig. 6(a)]. In the case of the bivalent model, we obtain quan-
titative agreement by tuning the coefficient a. For the isotropic
model, we find it necessary to introduce an overall scaling fac-
tor when fitting to the Langmuir isotherm, Eq. (10), since the
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diffuse interfaces are wider than 2σ , making the monolayer
assumption in the adsorption model less appropriate.

We now compute the surface tension in this model from the
equilibrium surface excess grand potential,

γ ≡ �ex
(
φ

(i)
B,eq

)
A

= kBT

σ 2
[b − s − ln(1 + K )], (11)

and apply this formula to both the α-β and the α-D inter-
faces. The φ

(i)
B -independent enthalpic contribution must be the

same regardless of the distance between the α- and β-phase
interfaces, so that bαβ = 2bαD. By contrast, the entropic con-
tribution due to capillary fluctuations depends on whether one
or two distinct interfaces are present between the α and β

phases. We therefore define the dimensionless entropic dif-
ference �s ≡ −sαβ + 2sαD, which is necessarily positive and
increases with the interfacial roughness. In a wetting case,

−γαβ + 2γαD = −kBT

σ 2

[
�s + ln

(1 + KαD)2

1 + Kαβ

]
> 0. (12)

Equation (12) predicts a wetting phase boundary that is
quadratic with respect to φ

(i)
B (see Appendix F), which indi-

cates that wetting can only occur when [35]

aαD − aαβ < ln
1 − √

1 − e−�s

2
. (13)

Because the coefficients aαD and aαβ reflect the enthalpic
contribution due to the adsorption of B molecules, we assume
that the left-hand side of Eq. (13) is roughly proportional to
εNB. Moreover, by making the approximation aαβ  2aαD,
which implies that a B molecule engages in twice as many
N-B interactions at an α-β interface, we obtain a relation
between φ

(D)
B and �s at the minimum binding strength, |ε∗

NB|,
on the wetting phase boundary,

φ
(D)
B

∣∣∗ = −(1 − e−�s) + √
1 − e−�s

2
. (14)

Importantly, the existence of a minimum binding strength
|ε∗

NB|, resulting from Eq. (12), predicts a nonmonotonic wet-
ting phase boundary, with a reentrant wetting transition at
constant εNB < ε∗

NB, as observed in our isotropic-model simu-
lations. In the bivalent model, the entropic penalty to orient the
B-molecule binding sites perpendicular to the α-β interface
implies a substantially higher φ

(D)
B for reentrance, consistent

with our simulations (see Appendix F).
Finally, in the low-concentration and high-affinity regime,

eaαβ−aαD � e�s, we obtain an asymptotic formula for the low-
concentration phase boundary,

ln φ
(D)
B + aαβ = ln(e�s − 1). (15)

The logarithmic dependence on φ
(D)
B in Eq. (15) explains the

sensitivity of the wetting transition to the B-species concen-
tration under these conditions [Fig. 6(b)], where we see that
∂aαβ/∂ ln φ

(D)
B ∝ ∂εNB(kBT )−1/∂ ln φ

(D)
B is roughly constant

in both the isotropic and bivalent bridge models. The behavior
in the low-concentration, high-affinity regime can therefore
be interpreted as a competition between capillary fluctuations
and the free-energy change when adsorbing a B molecule to
the α-β interface.

We now consider the isotropic model with homotypic
interactions (εBB < 0). In this scenario, the mean-field ap-
proximation for the enthalpic contribution in Eq. (9) acquires
an extra term −a′(φ(i)

B )2, where a′ > 0, that accounts for B-
B interactions at the interface. The chemical potential μB

similarly picks up a term that is proportional to φ
(D)
B , since

the B molecules can also attract one another in the dilute
phase. The effects of these modifications can then be predicted
by perturbing the εBB = 0 results (see Appendix F). In the
low-concentration limit, both φ

(i)
B and φ

(D)
B are small, so that

the asymptotic behavior given by Eq. (15) remains unchanged;
this prediction is confirmed by plotting the wetting phase
boundary as a function of φ

(D)
B in Fig. 6(b). However, near

φ
(D)
B |∗, the perturbation due to a′ is non-negligible. Specif-

ically, turning on homotypic B-B interactions results in a
change to the surface tension difference,

�(−γαβ + 2γαD)|∗ = 2K2
αD|∗

(1 + K∗
αD)2

a′ > 0, (16)

at the maximum N-B interaction, ε∗
NB, on the phase boundary.

The sign of Eq. (16) indicates that homotypic B-B interactions
weaken the required N-B interaction strength, resulting in an
increased ε∗

NB. This prediction also agrees with our simulation
results [Fig. 6(b)].

In summary, this analytical model explains all the essential
features of our wetting phase diagrams, including the reen-
trant wetting transition and the low-concentration asymptotic
behavior. Notably, these predictions are obtained without as-
suming specific values of the coefficients in the mean-field
adsorption model. We therefore expect that the design rules
that we have derived for programmable surfactants hold be-
yond the lattice models that we have simulated in this work.

VI. DISCUSSION

In this work, we consider a simplified, coarse-grained
model of a “programmable surfactant” in a multicomponent
biomolecular mixture. Our central results are a set of design
rules for controlling multiphase condensate morphologies,
which are summarized in the wetting phase diagrams pre-
sented in Fig. 5. Most importantly, these phase diagrams
demonstrate that surprisingly low concentrations of a weakly
interacting programmable surfactant can induce a transition
from nonwetting (i.e., “dispersed”) to wetting (i.e., “docked”
or “core-shell”) configurations. More precisely, we find that
the heterotypic interactions between the surfactantlike species
and the majority component(s) of the condensed phases
must exceed a relatively weak binding strength. However,
given heterotypic interactions that are slightly stronger than
this threshold value, a surfactant volume fraction of only
a few percent is needed to trigger the wetting transition.
These observations imply that relatively small changes to
the state of the system—either small adjustments to the
concentrations or heterotypic binding strengths of the surfac-
tantlike species—can alter the equilibrium morphology of a
multiphase condensate.

We find that the qualitative features of the wetting phase
diagrams agree between our molecular simulation results
and the predictions of two theoretical approaches. From our
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molecular simulations, we predict the wetting behavior in
the thermodynamic limit using measurements of the po-
tential of mean force between condensates in a finite-size
system. In the CDFT approach, we minimize an approximate
grand-potential functional to obtain predicted equilibrium
concentration profiles in the vicinity of the condensate in-
terfaces, which agree semiquantitatively with our simulation
results. Finally, we show that a simplified adsorption model
captures the key features of our detailed calculations, sug-
gesting that the design rules that we have extracted from
the wetting phase diagrams are likely to apply much more
generally to related models of programmable surfactants with
different molecular details. For example, we have shown that
our simulation methods and adsorption model can be ap-
plied to biomolecules with directional as opposed to isotropic
interactions.

Returning to the stress granule (SG)/P-body (PB) sys-
tem that motivated our model, we propose that the insights
gained from our calculations can be applied directly to
protein/RNA interaction networks that underlie the phase
behavior of multiphase biomolecular condensates. The key
step lies in coarse-graining the interaction network to iden-
tify potential surfactantlike species, which should interact
with protein/RNA components in multiple, distinct condensed
phases. Such species are likely to be situated as “bridges”
between strongly interacting portions of the network [22].
For example, in the SG/PB system [22], the protein DDX6
[Fig. 1(a)] is an obvious candidate, as it is weakly recruited to
both condensates. Our model predicts that this species should
be weakly enriched at SG/PB interfaces in the endogenous
system, which exhibits a stable docked morphology. This
testable prediction is also reminiscent of recent findings that
certain proteins are localized to the nucleoli rim [36]. In future
work, we will examine theoretical methods for identifying
surfactantlike species on the basis of the interaction network
structure and experimentally determined binding affinities
and expression levels. In light of our current results, the re-
quirements of moderate binding strengths and low molecular
concentrations suggest that this proposed mechanism of a
molecular “switch” for controlling intracellular condensate
morphologies is likely to be biologically relevant. Further
experiments are needed to test the detailed predictions of our
model.

Finally, we note that this mechanism is not limited to nat-
urally occurring biomolecular systems. Low-concentration,
surfactantlike molecular switches may also be useful for tun-
ing multiphase morphologies in materials engineering, where
approaches that do not require substantial changes to the
bulk properties of the coexisting phases are similarly desir-
able. For example, the phase behavior of multiphase DNA
“nanostar” liquids [37] can be interpreted in terms of an in-
teraction network, in which “cross-linker” nanostars can be
engineered to play the role of the molecular switch. Our model
and theoretical framework can also be applied to engineer
complex multiphase emulsions [21], which have broad ap-
plications including encapsulation and triggered delivery of
molecular cargoes. These systems and similar examples of
programmable soft matter [38] would be ideal opportunities
to test our predictions experimentally and to apply the design
rules developed in this work.
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APPENDIX A: DETAILS OF MONTE CARLO
SIMULATIONS

In our lattice model, each molecule interacts with its
six nearest neighbors according to the interaction matrix, ε.
Bivalent bridge molecules, which can engage in at most two
nearest-neighbor interactions, are the sole exception to this
rule. Vacant lattice sites represent the inert solvent. Since
we are interested in investigating how the B species controls
the condensate interfaces as opposed to the properties of the
bulk phases, we choose to keep the homotypic N1 and N2
interactions constant in this work. To guarantee stable α and
β phases, we fix these interaction strengths to be 1.5kBT
per bond, which is stronger than the critical binding strength
∼0.89 kBT of the cubic lattice gas model [33]. The heterotypic
interactions between the N1 and N2 species are set to zero to
ensure immiscibility of the α and β phases. The interaction
energies describing heterotypic N1-B and N2-B interactions,
εNB, and homotypic B-B interactions, εBB, are left as free
parameters. Under these conditions, the N1 and N2 concentra-
tions primarily affect the volume fractions of the coexisting α,
β, and dilute phases and have negligible effects on the compo-
sitions of the condensed phases. We therefore fix the volume
fractions of the N1 and N2 species to be φN1 = φN2 = 0.25,
such that the condensed phases occupy approximately half the
total volume.

We implement direct-coexistence simulations using a
100×8×8 lattice with periodic boundary conditions. Simula-
tions are carried out using the Metropolis Monte Carlo (MC)
algorithm [39], where we attempt to exchange the positions
of molecules of different types, including vacancies, at each
MC move. In each MC sweep, we attempt 6400 moves, which
is the total number of lattice sites in the simulation box. In
simulations with bivalent bridge molecules, each B molecule
has six orientational states. We therefore attempt particle-
swap and B-molecule rotation moves, applied to a randomly
selected B molecule, with equal probability. Each MC sweep
in this case consists of twice as many moves.

The simulation-box geometry results in approximately
planar interfaces between coexisting phases. We therefore
compute molecular volume-fraction profiles, 	φ(z), as a func-
tion of the z coordinate along the long dimension of
the simulation box. The interface between a condensed
phase and the dilute phase is well described by a hyper-
bolic tangent function [30], φN1(z) = (1/2)(φ(α)

N1 + φ
(D)
N1 ) +

(1/2)(φ(α)
N1 − φ

(D)
N1 )tanh[(z − z0)/ξ ], where φ

(α)
N1 and φ

(D)
N1 are

the volume fractions occupied by the molecular species N1
in the bulk α and dilute phases, respectively [see Fig. 2(a)].
This expression is used to define the interfacial width, which
is equal to 2ξ . We also define the width of the α condensed
phase, l0, based on the distance between the left and right
Gibbs dividing surfaces, where φN1(z) = (φ(α)

N1 + φ
(D)
N1 )/2.

We record volume fraction profiles and the COM distances
between condensates at the same time in simulations. We
first equilibrate the system for 5000 MC sweeps, which we
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(b)(a)

FIG. 7. Finite-size scaling of the PMFs. PMFs obtained for the
isotropic bridge model collapse onto a single curve when scaled
by the cross-sectional area, A = σ 2l2, in both (a) wetting (εNB =
−1kBT , εBB = 0, φB = 0.1) and (b) nonwetting (φB = 0) examples.
The cross-sectional dimensions of the lattice, l×l , are indicated
for each curve in units of σ . Statistical errors are smaller than the
linewidth.

determine to be much longer than the equilibration time based
on the COM distance fluctuations. We then perform a produc-
tion run as described in the main text. The reference point
for the PMF calculation is chosen to be rref = 35σ for the
isotropic bridge model, and rref = 33σ for the bivalent bridge
model. The target values for the COM distances during um-
brella sampling are in the range 25σ � r0,i � 35σ for the
isotropic bridge model and 23σ � r0,i � 33σ for the bivalent
bridge model. To estimate the equilibrium volume fraction
profiles shown in Fig. 3(a), we average the profiles from a sim-
ulation performed under the umbrella potential with r0,i = req.
Importantly, this approach does not affect the equilibration of
degrees of freedom orthogonal to the coordinate r.

APPENDIX B: FINITE-SIZE SCALING OF THE PMFs

In this Appendix, we show that the condensate morphol-
ogy of the system with an arbitrary finite size, or in the
thermodynamic limit, can be predicted on the basis of PMF
calculations obtained from finite-size simulations. Within a
finite simulation box, the probability of distribution of the α-β
COM distance is related to the PMF via p(r) ∝ e−F (r)/kBT =
e−A f (r)/kBT , where A is the cross-sectional area of the simula-
tion box and f (r) is the PMF per unit area. Consistent with
this expectation, we indeed find that the PMF profiles scale
with A in our simulations in both wetting and nonwetting
cases (Fig. 7). These results indicate that the PMFs capture
extensive properties of the condensed-phase interfaces in our
model and are not significantly influenced by the dimensions
of the simulation box. Next, we define a contact distance
rc = l0 + λ beyond which we consider the condensates to be
in a nonwetting configuration, such that F (rc)  0. Here l0
depends on the width of the condensed phase while λ is a
constant. The probability of finding the α and β condensed
phases in a wetting configuration in a simulation box of length
L can then be written as

pw = Zw

Zw + Znw
, (B1)

where Zw ≡ ∫ rc

0 e−A f (r)/kBT dr and Znw = L/2 − rc are the par-
tition functions associated with the wetting and nonwetting
macrostates, respectively.

We now consider changing the geometry of the simulation
box while keeping the concentrations of all molecular species
unchanged. As a result, the volume associated with each
condensed phase, l0A, scales with the system size, while the
volume fractions and compositions of the condensed phases
remain constant. Since Zw depends on the cross-sectional area
A and Znw depends on the box length L, the wetting probability
depends on both A and L in a finite-size simulation box. The
L-dependence indicates that configurational entropy plays a
role in determining pw in a finite-size system, implying that
the probability of forming a wetting interface tends to zero
if the simulation box is elongated with the cross-sectional
area A held constant. However, in the thermodynamic limit,
both A and L are taken to infinity with the ratio A1/2/L held
constant. The wetting probability then tends to either one or
zero, depending on whether the minimum of the PMF is less
than zero. If the PMF minimum is negative, then Zw scales
exponentially with A while Znw scales with A1/2; in this case,
pw = 1 according to Eq. (B1). By contrast, if the minimum
value of F (r) is non-negative, then Zw decreases with A, and
pw = 0.

These arguments are easily extended to describe the mor-
phology of spherical multiphase condensates. The finite-size
wetting probability, Eq. (B1), is now determined from the
partition functions Zw = 4π

∫ rc

0 e−A(r) f (r)/kBT r2dr and Znw =
V − (4π/3)r3

c , where the interfacial area, A(r), depends on
the COM distance, r. The nonwetting partition function, Znw,
represents the free volume available to a nonwetted con-
densate, and V is the total volume of the system. In the
thermodynamic limit, an analogous scaling argument implies
that the wetting behavior again depends solely on the surface-
tension difference, which is related to the PMF minimum
via Eq. (2). When −γαβ + 2γαD > 0, the docked condensates
take the shape of spherical caps [40], forming a circular
interface with each condensate spanning a contact angle
θ = arccos(−γαβ/2γαD) [41]; otherwise, spherical α and β

condensates do not form a stable shared interface in the ther-
modynamic limit.

APPENDIX C: CDFT PHASE-COEXISTENCE
CALCULATIONS

We solve for phase coexistence in the regular solution
model (see Sec. IV) following the numerical strategy de-
scribed in Ref. [24]. Specifically, we solve for the molecular
volume fractions, { 	φ(k)}, and the mole fractions of the coexist-
ing phases, {x(k)}, given the total molecular volume fractions,
	φtot. Mass conservation requires that

	φtot =
m∑

k=1

x(k) 	φ(k), (C1)

if there are m phases in coexistence.
We now consider the conditions for phase equilibrium. The

grand-potential density is related to the free-energy density
via ω0 = f0 − ∑N

i=1(∂ f0/∂φi )φi, where the chemical poten-
tials of the nonsolvent molecular species are μi = σ 3∂ f0/∂φi.
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Coexisting phases are located at minima of ω0, ensuring that
all components have equal chemical potentials in all phases.
Phase equilibrium also requires equal pressures across all
coexisting phases, implying that the ω0( 	φ) has the same value
at all local minima. Together, these conditions require

ω0( 	φ(k) ) = min ω0( 	φ; 	μ). (C2)

We solve Eq. (C2) numerically by minimizing the norm of the
residual errors of Eqs. (C1) and (C2) iteratively. At each iter-
ation, we first locate the local minima of the grand potential,
	φ(k) = arg min 	φ ω0( 	φ; 	μ) for all phases k = 1, . . . , m, using
the Nelder-Mead method [42]. We then update 	μ and {x(k)}
using the modified Powell method [43].

Success of this optimization procedure requires that the
initial estimates of { 	φ(k)} are not too far from the values at
coexistence. We obtain an initial guess for { 	φ(k)} from the con-
vex hull method [15,24], in which we locate the convex hull
of points on a discretized (N + 1)-dimensional free-energy
surface. We initialize our optimization procedure with N + 1
vectors { 	φ(k)} that correspond to the vertices of the convex
hull facet that encompasses 	φtot. From the linear equation that
defines this facet, we also obtain initial guesses for 	μ and
{x(k)}. When the number of coexisting phases m is less than
N + 1, some of the N + 1 vectors { 	φ(k)} are identical to within
numerical tolerance after optimization; in this case, we restart
the optimization procedure with a unique set of vectors and
the corresponding 	μ and {x(k)}. In this way, we determine
the number of coexisting phases, m, as well as the molecular
volume-fraction vectors, { 	φ(k)}, and chemical potentials, 	μ, at
phase coexistence.

APPENDIX D: NUMERICAL SOLUTION OF THE CDFT
EULER-LAGRANGE EQUATION

To minimize the grand-potential functional in Eq. (4), we
employ a numerical approach based on gradient descent. We
first discretize the z coordinate, oriented perpendicular to the
planar interface between phases, as {zk} for k = 1, 2, . . . , n.
As a result, the integration in Eq. (4) becomes a summation,
and the grand-potential functional becomes a function of n N-
dimensional vectors 	φk ≡ 	φ(zk ). Using the central difference
formula for differentiation, Eq. (4) becomes

�

Ah
=

n−1∑
k=2

[
ω0( 	φk )+ ( 	φk+1− 	φk−1)� · m · ( 	φk+1− 	φk−1)

2(2h)2

]
,

(D1)

where h ≡ zk+1 − zk is the discretization interval. We fix the
vectors 	φk at the two points closest to each boundary, k =
1, 2, n − 1, and n, to be equal to the bulk phase densities. In all
calculations, we set h = 0.02σ and n = 1004. These choices
separate the bulk-phase boundary conditions by a distance of
20σ , which is much greater than the typical interfacial width
[see Fig. 2(a)].

We then apply gradient descent to minimize the discretized
grand potential, Eq. (D1), by calculating the partial derivatives
∂�/∂ 	φk . At each optimization step l , the densities are updated

according to

	φ (l+1)
k = 	φ (l )

k − λ

(
∂�

∂ 	φk

)
	φ (l )

, (D2)

where λ controls the step size. We choose 10−3 as the initial
value of λ and reduce it by half if an attempted step increases
the grand potential. We initialize this optimization algorithm
using an interface with a width of 4σ and a piecewise-linear
spatial variation of the molecular volume fractions. The algo-
rithm terminates when the norm of the gradient falls below
a threshold value, 10−3, at which point we take 	φk to be the
equilibrium profile.

To verify the convergence of this algorithm, we perturb the
concentration profiles by moving the α and β interfaces apart
by 0.04σ and then restarting the optimization algorithm. In a
wetting scenario, the profile converges back to the result of the
original optimization. However, in a nonwetting scenario, the
profile remains close to the perturbed profile, consistent with
an unstable interface. In practice, we compare the norms of the
distances between the reoptimized, perturbed, and originally
optimized profiles to verify the optimization result.

In predicted wetting cases where the CDFT surface tension
is positive yet close to zero, we observe that the equilibrium
excess free-energy profile becomes doubly peaked [inset of
Fig. 8(a)]. This feature can serve as an empirical, yet prac-
tically useful, criterion for estimating the conditions for the
wetting transition, since it is numerically much easier to detect
this feature than to converge the calculations to the precision
required to compute the surface tension difference [Figs. 8(a)
and 8(b)]. We empirically find that the transition from singly
to doubly peaked excess free-energy profiles results in rea-
sonable agreement with the wetting phase diagram computed
from our simulation results [Fig. 8(c)].

APPENDIX E: CDFT LINEAR PATH AND MINIMUM
FREE-ENERGY PATH APPROXIMATIONS

In some cases, the CDFT results that we obtain by solving
Eq. (6) numerically differ qualitatively from the predictions of
a “linear path approximation” that has appeared in previous
studies of multicomponent fluids [15,16,22]. To demon-
strate the important differences between these approaches,
we follow the Cahn-Hilliard approach [31] and integrate the
Euler-Lagrange equation, Eq. (6), to obtain

ω0[ 	φeq(z)] − ω
(D)
0 = 1

2

∑
i, j

φ′
eq,i(z)mi jφ

′
eq, j (z), (E1)

which relates the bulk and square-gradient contributions to
the excess free energy, Eq. (7), of the equilibrium interface.
However, to make further progress using Eq. (E1), we need to
know the path through concentration space that corresponds
to the equilibrium interface between the coexisting phases
α and β. In general, this path can be described paramet-
rically by 	φ(η), with 0 � η(z) � 1, limz→−∞ η(z) = 0, and
limz→∞ η(z) = 1.

Unlike the case of a binary mixture, the equilibrium path
through concentration space is typically not known a pri-
ori in a multicomponent system. Assuming a linear path,
	φ(η) = (1 − η) 	φ(α) + η 	φ(β ), leads to the expression utilized
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(a) (b) (c)

FIG. 8. Empirical criterion for locating the wetting transition in CDFT. (a), (b) The location of the wetting transition can be empirically
estimated from CDFT by examining where the double peaks of the excess free-energy profile merge (inset). In B, this method predicts a
reentrant wetting transition at constant εNB = −0.75 kBT . The calculations in A-B use the isotropic bridge model with εBB = 0. (c) The
wetting phase diagrams predicted by this empirical criterion.

in Refs. [15,16,22],

γαβ =
√

2
(
φ

(β )
i −φ

(α)
i

)
mi j

(
φ

(β )
j −φ

(α)
j

)∫ 1

0
[�ω0(η)]1/2dη,

(E2)
where �ω0(η) ≡ ω0( 	φ(η)) − ω

(D)
0 . However, this linear-path

assumption implies that the concentration of the B molecule
cannot be greater at the interface than it is in the coexisting
bulk phases, which is generally inconsistent with our simula-
tion results. For this reason, Eq. (E2) fails to predict wetting
configurations for all conditions that we consider in this work.

A plausible alternative approximation is to find the path
through concentration space that minimizes the bulk con-
tribution to the excess free energy. This approximation
leads to a minimum-free-energy path (MFEP) assumption
for 	φ(η). More precisely, the MFEP minimizes the integral∫ 1

0 �ω0( 	φ(η)) dη and thus passes through a saddle point on
the grand-potential landscape between the bulk-phase con-
centrations 	φ(α) and 	φ(β ). In practice, we calculate the MFEP
using a direct implementation of the zero-temperature string
method [44]. (For a discussion of the algorithmic details of
this method, we refer the reader to Ref. [44].) Following the
terminology in Ref. [44], we use a total of N = 100 points
on a string between two local minima on the bulk excess
free-energy surface. In the “evolution step” of the algorithm,
the points evolve according to the gradient descent method,
as in Eq. (D2), where �t controls the step size. Here we use
the forward Euler method with �t = 5×10−4. Then in the
“reparametrization step” we reparametrize the string such that
the N points are equally spaced with respect to the arc length
along the string. We check for convergence by measuring the
norm of the displacement of all points from their positions in
the previous iteration, and we use a convergence tolerance of
TOL = 10−4.

By contrast with the linear-path assumption, the MFEP
tends to predict enrichment of the B component at the
interface whenever εNB < 0. Nonetheless, the MFEP approx-
imation can misclassify the interface as nonwetting in many
cases, particularly when the path is predicted to pass through
the dilute phase [see Figs. 3(d) and 3(e)]. The numerically
determined equilibrium path, 	φeq(η), is intermediate between
the linear path and the MFEP. We therefore interpret the
equilibrium path as resulting from a competition between the
bulk and square-gradient contributions to the grand-potential
functional in our multicomponent model. For this reason, the

optimal path is sensitive to the m-matrix, making our regu-
larization approach (see Sec. IV) an essential and nontrivial
aspect of our CDFT calculations.

APPENDIX F: FLUCTUATING-INTERFACE
ADSORPTION MODEL

In this Appendix, we detail the essential steps to bridge the
gaps between Eq. (12) and the subsequent results presented in
Sec. V E of the main text. Explicitly expressing the wetting
condition in Eq. (12) leads to(

φ
(D)
B

)2
e2aαD + φ

(D)
B (2eaαD −eaαβ−�s) + 1−e−�s < 0. (F1)

Equation (F1) only has solutions for φ
(D)
B when the discrimi-

nant of this quadratic function is positive, such that (2eaαD −
eaαβ−�s)2 − 4e2aαD (1 − e−�s) > 0. Setting the quadratic func-
tion to 0 and considering eaαβ−aαD � e�s, we obtain the
asymptotic formula for the low-concentration phase boundary,
Eq. (15).

Both aαD and aαβ are expected to be proportional to the
N-B binding energy, εNB. In addition, physical values of φ

(D)
B

must be between 0 and 1. With these conditions, Eq. (F1)
allows us to predict the weakest N-B binding strength for a
wetting interface. Setting the discriminant to 0, the volume
fraction at this binding strength is

φ
(D)
B

∣∣∗ = e−aαD
√

1 − e−�s. (F2)

At the weakest binding strength, we have a∗
αD − a∗

αβ = ln(1 −√
1 − e−�s)/2, from which we obtain Eq. (13). Then, by

making the approximation aαβ  2aαD, we are able to express
these quantities in terms of �s at the weakest N-B binding
strength, |ε∗

NB|, on the wetting phase boundary,

a∗
αD = ln 2 + ln[e�s +

√
e�s(e�s − 1)], (F3)

K∗
αD =

√
1 − e−�s, (F4)

φ
(i,αβ )
B

∣∣∗ = 2φ
(i,αD)
B

∣∣∗. (F5)

According to Eq. (F3), the minimum binding strength |ε∗
NB|

increases with �s, since aαD ∝ |εNB|. As �s increases, the
B-species volume fraction in the dilute phase, φ

(D)
B |∗, first

increases until reaching a maximum value of 0.125 at K∗
αD =

0.5, as evidenced by substitution of Eq. (F4) into Eq. (14).
φ

(D)
B |∗ then decreases with �s at larger �s. The wetting phase

boundary is always nonmonotonic for a positive �s. These
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observations suggest that an accurate treatment of the cap-
illary fluctuations, quantified here by �s, is essential for
obtaining an accurate prediction of |ε∗

NB|; this interpreta-
tion is consistent with the quantitative differences between
our CDFT and simulation results in Figs. 5(a) and 5(b).
We can also estimate φ

(D)
B |∗ by computing �s directly

from our simulated PMF at zero B-species concentra-
tion, where kBT �s/σ 2 = −(−γαβ + 2γαD)  F (�r = 0)/A.
From Fig. 7(b), we find �s ≈ 0.15, which, according to
Eq. (14), suggests that φ

(D)
B |∗  0.12. This prediction is rea-

sonable given our simulation results [see Fig. 6(b)].
We can similarly apply this framework to describe

the bivalent bridge model. To account for the entropic
penalty of aligning B molecules at the interface, we add a
density-dependent term to �S in Eq. (9), �S(φ(i)

B )/AkB =
−φ

(i)
B ln φ

(i)
B − (1 − φ

(i)
B ) ln(1 − φ

(i)
B ) + s + (− ln 6)φ(i)

B ,
assuming that the B molecules at the interface are all aligned
in the correct orientation with their binding sites pointed
into the condensed phases. This modification is equivalent to
decreasing a by ln 6. As a result, φ

(D)
B |∗ increases by a factor

of 6 according to Eq. (F2), explaining why we do not observe
the reentrant phase behavior in our simulations at bridge
volume fractions up to φB = 0.3.

To extend this adsorption model to incorporate homotypic
B-B interactions, we modify the mean-field expressions for
the enthalpic contribution to the surface excess grand potential
and the chemical potential in Eq. (9),

h
(
φ

(i)
B

) = −a′(φ(i)
B

)2 − aφ
(i)
B + b, (F6)

μB/kBT = ln φ
(D)
B − cφ(D)

B , (F7)

where a′ and c are positive constants that are expected to
be proportional to |εBB|. We can then show that these ad-
ditional terms in Eqs. (F6) and (F7) lead to an increase in
(−γαβ + 2γαD)|∗ by considering perturbations to the εBB = 0
case. Comparison with Eq. (9) shows that these additional
terms effectively alter the parameter a in the original model
by

�a = a′φ(i)
B − cφ(D)

B . (F8)

According to Eq. (11), introducing the perturbation �a
changes the surface tension by an amount

�γ = −φ
(i)
B �a = −φ

(i)
B

(
a′φ(i)

B − cφ(D)
B

)
, (F9)

and thus the surface tension difference by an amount

�(−γαβ + 2γαD) = [(
φ

(i,αβ )
B

)2 − 2
(
φ

(i,αD)
B

)2]
a′

− (
φ

(i,αβ )
B − 2φ

(i,αD)
B

)
φ

(D)
B c. (F10)

Again assuming that aαβ  2aαD, we apply these results to
the minimum binding strength, |ε∗

NB|, on the εBB = 0 wetting
phase boundary. Simplifying Eq. (F10) using Eq. (10) and
Eq. (F5), we find that the term involving the parameter c
cancels out, and we arrive at Eq. (16). The fact that �(−γαβ +
2γαD)|∗ is positive, regardless of specific choices for the pa-
rameters a′ and c, indicates that the minimum binding strength
|ε∗

NB| is reduced compared to the εBB = 0 scenario. Thus, this
model predicts that ε∗

NB increases for εBB < 0, consistent with
our simulation results.
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