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Biological cells and small organisms navigate in concentration fields of signaling molecules using two
fundamental gradient-sensing strategies: spatial comparison of concentrations measured at different positions
on their surface and temporal comparison of concentrations measured at different locations visited along their
motion path. It is believed that size and speed dictate which gradient-sensing strategy cells choose, yet this has
never been formally proven. Using information theory, we investigate the optimal gradient-sensing mechanism
for an ideal chemotactic agent that combines spatial and temporal comparisons. We account for the physical
limits of chemosensation: molecule counting noise at physiological concentrations and motility noise inevitable
at the microscale. Our simulation data collapse onto an empirical power law that predicts an optimal weighting
of information as a function of motility and sensing noise, demonstrating how spatial comparison becomes more
beneficial for agents that are large, slow, and less persistent. This refines and quantifies the previous heuristic
notion. Our idealized model assuming unlimited information processing capabilities serves as a benchmark for
the chemotaxis of biological cells.
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I. INTRODUCTION

Biological cells employ two different gradient-sensing
strategies for chemotaxis [1–3]: spatial comparison (SC),
where a cell measures the external concentration of signaling
molecules simultaneously at different positions on its surface,
enabling it to directly estimate a spatial concentration gradient
[4–8], and temporal comparison (TC), where a cell moves
actively and determines whether the local concentration mea-
sured sequentially along its path increases or decreases in
time [9–13]. Small bacteria such as E. coli employ TC, while
larger and slower eukaryotic cells commonly employ SC.
Gradient sensing allows these cells to move up concentration
gradients. This chemotaxis enables bacteria to forage for food
[9–11], social amoeba to aggregate [5–8], and immune cells
to migrate to inflammation sites [4]. Sperm cells of marine
invertebrates use a mixed strategy of temporal sampling along
chiral paths to find the egg [14]. What is common to these
examples is the paramount presence of noise.

In seminal work, Berg and Purcell investigated physical
limits of chemosensation in light of sensing and motility
noise [15]. Cells sense extracellular concentrations by de-
tecting stochastic binding events of signaling molecules to
specialized receptors on their surface, which, even if intra-
cellular signaling were perfect, comprises inevitable molecule

*Contact author: benjamin.m.friedrich@tu-dresden.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

counting noise. Thermal noise and active fluctuations during
cell migration cause motility noise that randomizes cell ori-
entation, rendering previous estimates of gradient direction
uncertain [1,15]. The Berg-Purcell limit was later refined and
fundamental sensing limits for either pure SC or TC were
derived (see Refs. [16,17] for SC and Refs. [18–21] for TC).
It was shown that biological cells operate at the information-
theoretic limits of gradient sensing during chemotaxis if
concentration gradients are shallow (see Refs. [6,7,22] for SC
and Refs. [12,13,23,24] for TC).

However, the basic question, which of the two gradient-
sensing strategies, SC or TC, provides more information for
cells of a given size, is still open. As a first step towards
an answer to this long-standing question, we consider here
an ideal agent with unlimited information processing capa-
bilities, building on recent advances in strategies involving
information-theoretical characterization of optimal navigation
[25–32]. While it would be naive to assume that single bi-
ological cells can perform the same information processing
tasks, our ideal case serves as a baseline for the chemotaxis
of biological cells [13] and can give hints on the evolutionary
choice of gradient-sensing strategy.

We address both extremes of the exploitation-exploration
trade-off, investigating greedy strategies that either maxi-
mize exploitation, i.e., use of existing information (maximum
likelihood), or maximize exploration, i.e., acquisition of ad-
ditional information (infotaxis). Infotaxis as pioneered by
Vergassola et al. [25] harnesses the concept of information
maximization from engineering [33] and provides an efficient
and reliable heuristic for source-tracking problems [31]. It
describes an idealized chemotactic agent that continuously
updates a spatial likelihood map of putative target position
based on noisy concentration measurements, moving at each
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time step in the direction that maximizes the expected in-
formation gain. A recent mathematical theory developed by
Auconi extended the infotaxis model of Vergassola to spa-
tially extended agents [34]. Here, we build on this theory,
which we interpret as agents performing both SC and TC.
Linearization of the originally nonlinear model enables ef-
ficient simulations. This allows us to dissect the optimal
weighting of SC and TC in agents capable of both, akin
to a nonlinear Kalman filter that optimally weights different
noise-corrupted information sources [35], using as reference
scenario static concentration fields established by a single
source. We quantitatively show how SC becomes increasingly
beneficial for agents of larger size that move slowly and with
less directional persistence, suggesting why crawling eukary-
otic cells use SC and swimming bacteria use TC.

II. SPATIAL AND TEMPORAL COMPARISON

Principally, chemotactic agents are characterized by their
size a, speed v, and sensing rate J0 at which chemoattrac-
tant molecules are detected, which may be assumed linear
in concentration c as J0 = λc [15], with rate constant λ that
gauges sensing noise. Motility noise randomizes the direction
of motion with the effective rotational diffusion coefficient
Drot.

An agent of finite size a can detect concentration differ-
ences across its diameter, with corresponding signal-to-noise
ratio of gradient sensing by SC [7,16],

SNRSC = a2tλ|∇c|2
c

, (1)

where t denotes measurement time. Alternatively, for gradient
sensing by TC, active motion enables agents to detect con-
centration changes at a rate v∇c along their trajectory, with
a signal-to-noise ratio that increases with the cubic power of
measurement time t [21],

SNRTC = v2t3λ|∇c|2
c

. (2)

It has been proposed that effective measurement times are set
by the rotational diffusion time t ∼ D−1

rot on which swimming
direction becomes randomized [1,36], yet recent works sug-
gest more general power laws [37–39].

III. BAYESIAN CHEMOTAXIS COMBING SPATIAL
AND TEMPORAL COMPARISON

We present a minimal model of an ideal chemotactic agent
combining SC and TC, to dissect the relative importance of
SC for finding a target at the center of a radial concentra-
tion profile c(x) of signaling molecules, assuming a baseline
scenario of unlimited information processing capabilities. The
agent is characterized by three fundamental parameters: size
a, rate constant of molecule detection λ, and rotational diffu-
sion coefficient Drot (see Fig. 1) (all other parameters such as
speed can be eliminated by rescaling space or time).

The agent continuously updates a likelihood map p(x) of
relative target position, based on the timing of molecule detec-
tion events and the position of detection on its circumference
using Bayesian inference [see Eq. (A2) in the Appendix].

Different from Refs. [25,27,29–32], the agent uses a comov-
ing egocentric map, which allows us to study motility noise.
The expected change in information of this ideal chemotactic
agent is the sum of two terms of information gain for SC
and TC, respectively, and a loss term due to motility noise
[see Eq. (A3)]. Active motion with velocity v changes this
expected information gain (to second order in the duration
of the time step), again comprising an SC term (equal to the
spatial gradient of a rate of information gain from SC) and
a TC term (equal to a weighted gradient of the local rate of
molecule detection) [see Eq. (A4)]. This analytical theory,
developed in Ref. [34], is rewritten here in more compact
form to highlight information gain from SC and TC. While
the originally nonlinear theory was numerically challenging,
a simple linearization proposed here speeds up simulations
substantially.

Without loss of generality, we assume that agents move
with constant speed v = |v|. Changing v can be compensated
by rescaling time, which rescales λ and Drot; likewise, chang-
ing concentration c is equivalent to changing λ.

The agent needs to choose its direction of motion in each
time step. We tested two prototypical decision rules, which
maximize either exploitation or exploration of information,
respectively. In a maximum-likelihood (ML) strategy max-
imizing exploitation, the agent moves straight towards the
global maximum of the current likelihood map p(x, t ). Info-
taxis provides a second possible navigation strategy, in which
the agent chooses its velocity vector v such that the expected
change in information is maximized [25]. For our spatially
extended agent, this is the case if v maximizes Eq. (A4),
which represents two possibly conflicting decision incentives,
represented by the SC term and the TC term, respectively (see
above). In the following, we study both strategies for different
noise regimes and agent sizes.

IV. STEREOTYPIC NAVIGATION IN THE ABSENCE
OF MOTILITY NOISE

We first simulated chemotactic agents without motility
noise using either the maximum-likelihood strategy or info-
taxis [see Fig. 2(a)]. Agents using infotaxis display stereotypic
behavior and first move along a straight path whose direc-
tion is determined by initial conditions. After a characteristic
turning event that defines a time tturn, these agents home
in on the target along approximately circular arcs. In con-
trast, agents using a maximum-likelihood strategy display
more erratic motion before they move approximately bal-
listically to the target. Snapshots of likelihood maps shown
as insets indicate that agents can swiftly estimate target dis-
tance, but less so target direction, as reflected by the initially
annulus-shaped likelihood map. As agents accumulate direc-
tional information, these annulus-shaped distributions become
crescent shaped. Occasionally, distributions become bimodal
when agents move towards the center of the crescent (where
likelihood is high), but do not sense the expected increase in
molecule detection frequency, thus erasing likelihood there,
which splits the crescent in two.

Bayesian updating is performed on the two-dimensional
map of possible target positions, comprising information on
both target distance and target direction. The estimated target
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(a)

(b)

FIG. 1. Chemotactic navigation by temporal and spatial comparison. (a) Schematic of gradient sensing by temporal comparison, where
chemotactic agents detect concentration differences along their motion path at different times (left), and spatial comparison, where agents
detect concentration differences across their diameter (right). These strategies represent information sources, from which agents can infer a
likelihood map p(x) of target position x. Agents make decisions on their next motion step with velocity v based on this map using either the
maximum-likelihood (ML) or infotaxis strategy. Motility noise randomizes motion direction and results in a continuous loss of information.
(b) Model of an ideal agent that registers both time and position of signaling molecules binding at rate λc to receptors on its surface. The agent
has size a; motility noise is modeled by an effective rotational diffusion coefficient Drot .

direction reflects cumulative gradient sensing by combined
TC and SC. To monitor the gain in this directional infor-
mation, we compute the negative Shannon entropy in bits
Iϕ = ∫

dϕ p(ϕ) log2[2π p(ϕ)], where p(ϕ) is the marginal dis-
tribution of the polar angle ϕ of relative target direction
[see Fig. 2(b)]. For the uniform distribution p(ϕ) = 1/(2π ),
Iϕ = 0, reflecting the complete lack of directional informa-
tion. When the agent gains information on target direction,
and thus p(ϕ) becomes more peaked, Iϕ increases to become
more positive. Indeed, the ensemble average of Iϕ increases
monotonically as a function of time, here normalized using the
signal-to-noise ratio SNRTC of TC [Eq. (2)]. The small spread
of curves for infotaxis agents indicates that information gain
before the first turning event is dominated by TC.

The characteristic turning events observed for infotaxis
agents consistently occur when Iϕ reaches the critical value
of one bit [see Fig. 2(c); see also Fig. S1 in the Supplemental

Material (SM) [40] for more examples]. This is exactly the
amount of directional information needed to judge whether
the target lies in one half space or the other.

V. INFORMATION FLOW BALANCE
WITH MOTILITY NOISE

Motility noise, modeled as effective rotational diffusion
with diffusion coefficient Drot, sets a finite persistence length
lp = v/Drot of agents (see Fig. 3), where lp = 1 in Fig. 3(a)
and lp = 0.2 in Fig. 3(b). The randomization of swimming
direction causes a continuous loss of information on putative
target position. The result is a quasisteady state of informa-
tion flow, where information gain due to chemosensation and
information loss due to motility noise balance each other,
reflected by a saturation of directional information Iϕ (t ) at a
maximal value I∗

ϕ [see Figs. 3(c) and 3(d)].
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(a) (b)

(c)

FIG. 2. Stereotypic motion without motility noise. (a) Typical trajectories of chemotactic agents (start point is green) navigating in a two-
dimensional concentration field c(x, y) of signaling molecules (blue) released by a target (dark blue). Agents use either a maximum-likelihood
decision rule ML, (orange) or infotaxis maximizing the expected information gain (red). Insets depict likelihood maps p(x) at selected times
for one example trajectory each. For infotaxis, we distinguish a first straight section of the trajectories (solid) and a second section (dashed)
after a turning point at time tturn. The scale bar is 0.2 length units. (b) Directional information Iϕ in target direction as a function of renormalized
time expressed in terms of a signal-to-noise ratio SNRTC of temporal comparison [Eq. (2)] for infotaxis (red) and ML (orange), for different
values of the rate constant λ of molecule detection and agent size a (ensemble mean; symbols for infotaxis indicate the turning point with
symbol shape indicating λ according to the legend and symbol size increasing with a). (c) Distribution of Iϕ (tturn ) at the first turning point for
the case of infotaxis for different agent sizes (represented by line style, shown in the legend; data are pooled for different values of λ). The
parameters are Drot = 0 and (a) a = 10−4 and λ = 1 and (b) and (c) a = 10−4–10−2 and λ = 1–100.

The mean angular information I∗
ϕ at this quasisteady state

collapses onto a master curve I∗
ϕ (X ) with a master parame-

ter X = λ0.28D−0.62
rot a0.10 that combines the rate constant λ of

molecule detection, Drot, and agent size a into an effective
power law [see Figs. 3(e) and 3(f)]. Power-law exponents were
determined by linear regression of the logarithm of I∗

ϕ (for
infotaxis) as a function of the logarithms of the independent
variables, which provides a robust collapse on a master curve
even for this nonlinear functional relationship. The behavior
for the maximum-likelihood strategy is remarkably similar.
The exponents of the power law reflect the competition be-
tween information gain due to TC (characterized by λ) and
SC (characterized by λa), and information loss (characterized
by Drot). A similar power law holds for the probability of
agents to eventually find the target [see Fig. S2 in the SM [40],
including Refs. [41–46]].

VI. RELATIVE IMPORTANCE OF SPATIAL COMPARISON

To gain further insight into the relative importance of tem-
poral comparison versus spatial comparison for target finding,
we computed their respective contributions to the directional
information Iϕ . While information decomposition remains
challenging in general, we can make use of our analytical
theory. For each information source, we computed the corre-
sponding information gains dITC

ϕ and dISC
ϕ to Iϕ using partial

updates that involve only that term on the right-hand side of

the update equation (A2) that corresponds to this information
source. By integrating over trajectories and averaging, we thus
obtain the mean cumulated information gains ITC

ϕ and ISC
ϕ for

TC and SC, respectively (conditioned on agents that found
the target) (see the SM [40] for details). Figure 4(a) shows the
relative fraction %SC = ISC

ϕ /(ITC
ϕ + ISC

ϕ ) of the information
gain for SC as a function %SC(Y ) of a second master parame-
ter obeying a second empirical power law Y = λ0.06D0.17

rot a0.77

obtained by a linear fit. All three exponents in this power law
are positive. Agent size a has the largest exponent and is thus
the presiding factor that determines the relative importance
of spatial comparison. This is consistent with the strong de-
pendence of the signal-to-noise ratio SNRSC of SC on agent
size a [see Eq. (1)]. An increase in motility noise (higher Drot)
likewise increases the contribution of SC. While rotational
diffusion invalidates previously obtained directional informa-
tion, irrespective of whether it was inferred from SC or TC,
TC additionally requires a motion path as straight as possible
to probe the concentration field and is thus more strongly
affected by reduced directional persistence. An increase in
sensing noise (lower λ) slightly reduces the contribution of
SC. This indicates a higher vulnerability of SC to sensing
noise, consistent with the notion that small concentration
differences need to be compared across a relatively small
distance in SC.

Because our theoretical analysis considers an ideal agent
with unlimited information processing capabilities, it is not
directly clear whether the behavior of biological cells is
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(a) (c) (e)

(f)

(b) (d)

FIG. 3. Quasisteady state of information flow with motility noise. Typical trajectories of agents subject to motility noise are shown using
either a maximum-likelihood strategy (orange) or infotaxis (red) with (a) low Drot (lp = 1) or (b) high Drot (lp = 0.2). Dashed trajectories failed
to find the target, but reached the absorbing boundary (black) at Rmax before. The scale bar is 0.2 length units. Plots of directional information
Iϕ as a function of normalized time t/tballistic with tballistic = Rtarget/v for cases of (c) low motility noise and (d) high motility noise reveal a
quasisteady state of directional information with saturating directional information I∗

ϕ (orange shows the maximum-likelihood strategy and
red infotaxis; ensemble mean±s.d.). The inset in (c) sketches information flow determining Iϕ , with information gained by TC (blue) and SC
(green) and lost due to motility noise (orange). (e) The three fundamental model parameters λ, Drot , and a can be combined into a single
empirical power law X = λαDβ

rota
γ for any simulated quantity such as I∗

ϕ to test if that quantity collapses on a master curve as function of
this single effective parameter X (with exponents determined by a linear fit of logarithms). (f) Quasisteady states of directional information
collapse on a master curve I∗

ϕ = I∗
ϕ (X ) with the effective master parameter X that obeys an empirical power law X = λ0.28D−0.62

rot a0.10 [the
maximum-likelihood strategy is shown by open symbols and infotaxis by closed symbols; agent parameters are encoded according to the
coordinate system in (e)]. Power-law exponents were determined for infotaxis agents by a multivariate fit and are visualized below the figure.
The parameters (unless stated otherwise) are (a) and (c) a = 0.01, λ = 1, and Drot = 0.01; (b) and (d) the same as in (a) but with Drot = 0.5;
and (e) and (f) a = 10−4–10−2, λ = 1–100, and Drot = 5×10−3 − 1.

dictated by similar laws. Therefore, we reanalyzed data
from 252 different cell types corresponding to four groups
(prokaryotes, ciliates, flagellates, and cells with amoeboid
motility) as reviewed in Ref. [2], as well as two unusual
bacteria described in Refs. [47,48]. Figure 4(b) shows for each
cell type the value of the power law derived in Fig. 4(a) for the
ideal agent. Prokaryotes commonly perform gradient sensing
by TC (with exceptions discussed below). Ciliates and flag-
ellates employ a mixed strategy, known as helical klinotaxis,
combining aspects of TC and SC, also reviewed below. Cells
with amoeboid motility use chemotaxis by SC [5–7].

Spatial comparison was recently demonstrated for pili-
based twitching chemotaxis of the bacterium Pseudomonas
aeruginosa [47], marked by a plus in Fig. 4(b). A bacterium
described in [48] and marked by a cross in Fig. 4(b) dis-
plays chemotaxis by SC at very high oxygen concentrations,
corresponding to a high effective value of λ. Other bacteria
that seem to deviate from the rule [open circles in Fig. 4(b)]
likewise display unusual types of motility, such as pili-based
motility or actin polymerization, or perform phototaxis in-
stead of chemotaxis [2]. Figure 4(b) thus demonstrates that
different cells employ temporal or spatial comparison exactly

when our idealized theory indicates a higher relative impor-
tance of one versus the other.

For the above comparison, agent sizes and speeds as re-
ported in [2,47,48] were converted to values of the parameters
λ, Drot, and a, using a conservative estimate for Drot that
assumes rotational diffusion is set by thermal fluctuations,
hence Drot ∼ a−3 [49], while the diffusive flux of signaling
molecules to the agent scales linearly with its size λ ∼ a [15].
With these assumptions and a rescaling of time to account for
different speeds of cells, we can remap parameters and restate
the empirical power law from Fig. 4(a) in terms of the directly
measurable parameters cell size a (measured in microns) and
speed v (measured in microns per second) [see Fig. 4(b), bot-
tom, and the equivalent representation in Fig. 4(c)]. Explicitly,
we used the initial target distance Rtarget as a typical length
scale and tballistic = Rtarget/v as typical timescale to write the
power law from Fig. 4(a) in dimensionless form, for %SC(Y ),

Y ∼ (λc tballistic )0.06(Drot tballistic )0.17(a/Rtarget )
0.77

∼ a [µm]0.32

v [µm/s]0.23
. (3)
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(a) (b) (c)

FIG. 4. Information decomposition reveals relative importance of spatial comparison. (a) The relative importance of spatial comparison
%SC for target finding, computed by metering information flow, collapses on a master-curve %SC(Y ) as a function of an effective master
parameter Y that obeys an empirical power law Y = λ0.06D0.17

rot a0.77, which combines all model parameters (the maximum-likelihood strategy
is shown by open symbols and infotaxis by closed symbols; agent parameters are encoded according to the inset in Fig. 3). Specifically,
we computed the cumulated gain in directional information using partial update steps corresponding to TC and SC according to Eq. (A2),
respectively (see the text for details). Power-law exponents for Y were determined for infotaxis agents by a multivariate fit and are visualized
below the figure. (b) Values of the predictor Y estimated for biological cells performing chemotaxis with data taken from [2], using the
power law from (a) and making the conservative assumption that rotational diffusion is set by thermal fluctuations. The color code represents
different navigation strategies: cyan, bacteria which mostly perform gradient sensing by temporal comparison (dots) and likely exceptions
(other symbols, explained in the text); blue and red, ciliates and flagellates performing helical klinotaxis representing a mixed strategy; and
green, eukaryotic cells with amoeboid motility performing chemotaxis by spatial comparison. The power law can be equivalently expressed as
a0.32/v0.23 in terms of directly measurable parameters size a and speed v, using an assumption on the diffusion coefficient (see the SM [40]).
(c) Data from [2] replotted in a-v parameter space, together with the empirical power law for the relative importance of spatial comparison,
plotted using the same color code as in (a). The parameters are a = 10−3–(2×10−2), λ = 1–100, Drot = 0.1–1. In (b) and (c) the reference
concentration c = 1 nM.

In the second line, we used the scaling of Drot and λ as a
function of the directly measurable quantities of size a and
speed v (see the SM [40] for details).

By Eq. (3), additional factors can affect the relative impor-
tance of SC. The example of a bacterium using SC described
in [48] from above is characterized by a 5000-fold increased
value of λc relative to the reference value used otherwise.
Accounting for this high value of λc and thus reduced sensing
noise reflected in our predictor Y separates this unusual bac-
terium from other prokaryotes that perform TC. If only size a
and speed v are considered as in Fig. 4(c), this is not possible.

Ciliates and flagellates shown in Figs. 4(b) and 4(c) employ
a navigation strategy known as helical klinotaxis [2,14,50]. As
in TC with a single effective sensor, these cells sample a scalar
signal along their swimming path. However, swimming paths
are helical, so in the course of a single helical turn, this sensor
will have probed all directions, just like agents performing
SC, thus enabling directed steering. Equation (1) could be
extended to helical klinotaxis if instead of a the radius R of
helical swimming paths is used. Helical klinotaxis is most
efficient in three space dimensions and only possible if the
persistence time D−1

rot exceeds the period T ∼ R/v of helical
swimming [2,3].

In conclusion, our information-theoretic analysis explains
the previous heuristic observation that large and slow cells
commonly employ spatial comparison for gradient sensing,
while small and comparatively fast cells use temporal com-
parison instead [1,2,51].

VII. A PHOTOTACTIC ROBOT

For demonstrative purposes and as a proof of principle
that bioinspired Bayesian chemotaxis combining TC and SC
may be applied in autonomous search robots (instead of using
only TC [52–54]), we built a phototactic robot. Figure 5(a)
shows our mecanum-wheeled toy robot capable of motion
in all directions, which we equipped with a circular array
of four light sensors connected to a control unit (see the
SM [40] for details). Imperfections of the robot drive cause
small deviations between control signal and actual movement,
which we characterize by an effective rotational diffusion
coefficient Drot (see Fig. S12 in the SM [40]). As proxy for
a scalar field corrupted by shot noise, the robot navigates in
response to a fluctuating pixel pattern projected on the floor,
where the flashing probability of each pixel is proportional to
λc(x, y). The robot uses Bayesian inference as in simulations,
but neglects its own motility noise as if Drot = 0.

Camera-based tracking yields robot tracks that strongly re-
semble those in simulations [see Fig. 5(b)]. Changing the size
of the sensory array provides a simple means to probe differ-
ent effective sensing length scales a. The relative importance
of spatial comparison in the corresponding robot experiments
for different a [computed analogously to Fig. 4(b)] agrees well
with simulation results [see Fig. 5(c)]. This demonstrates the
feasibility of the approach, despite the complexities of a real
robot with actuator noise, which are only partly captured by
simulations.
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(a) (b) (c)

FIG. 5. Phototactic robot combining spatial and temporal comparisons. (a) Search robot equipped with an array of four light sensors
exposed to a fluctuating pixel pattern projected on the floor. Robots navigate in response to this light stimulus using the same algorithm as ideal
agents to find the center of a radial gradient of stochastically flashing pixels. (b) Typical tracks of robots using either maximum-likelihood
decision strategy (orange) or infotaxis (red) with different sensor array sizes (green dots mark start positions; tracks are rotated for visual
clarity). (c) The relative importance of spatial comparison (%SC) for target finding in experiments with ML robots with different sensor array
sizes (orange, mean±s.d., n = 22, 10, 14) matches simulation data for simulated agents from Fig. 4(a) (gray dots), using a measured estimate
Drot = 0.004 (see the SM [40] for details). The scale bars in (a) and (b) are 43.5 cm (which maps to 0.2 length units).

VIII. DISCUSSION

We used information theory to compare two fundamental
gradient-sensing strategies for chemotaxis, spatial compar-
ison (SC) and temporal comparison (TC), by quantifying
their relative importance in an ideal agent that combines
both. Specifically, a minimal model of an chemotaxis agent
with unlimited information processing capabilities allowed
us quantify “chemotaxis in bits” in a baseline scenario. An
analytical theory allows explicit information decomposition
and thus to dissect the relative importance of SC versus TC,
which collapses on a master curve. The corresponding power
law (3) reflects the expected competition between size a and
speed v [1,2,51], additionally tuned by the level of motility
noise. The relative importance of SC increases with increasing
motility noise, as reduced directional persistence negatively
impacts TC.

It could have seemed tempting to use the ratio of signal-
to-noise ratios SNRSC and SNRTC as a proxy for the relative
importance of SC versus TC. However, this ratio depends
on the choice of an effective measurement time, which can
depend on model parameters in nontrivial ways [37–39]. Our
Eq. (3) can thus be interpreted as an empirical power law for
the effective measurement time.

We tested two prototypical decision rules, which repre-
sent two extremes of the fundamental exploitation-exploration
trade-off: maximum likelihood and infotaxis. Both strategies
exhibit similar performances, underscoring the generality of
our results. While ML confines agents to the proximity of
the target, resulting in a slight overall advantage, infotaxis
initially performs better, as the persistent motion of agents
right after their start increases information gain from TC.
A mixed strategy, which balances exploitation and explo-
ration, may thus optimize performance. Importantly, both
strategies yield similar exponents for the empirical power law
on the relative importance of TC versus SC (Table S2 in

the SM [40]). Similar exponents are also found if a differ-
ent, exponential concentration field is used (Fig. S6 in the
SM [40]).

The ideal chemotactic agent introduced here unifies
previous theories of either pointlike chemotactic agents
[20,21,25,27,31,32] (only TC) or extended but mostly sta-
tionary agents [16,17,38,55,56] (only SC). The increased
usefulness of SC for larger agents was recently demonstrated
in chemotactic agents equipped with small neuronal networks
with SC and TC input trained with deep reinforcement learn-
ing [57]. An early computational work that addressed the
importance of SC versus TC in a one-dimensional model
(neglecting motility noise and assuming specific signaling cir-
cuits) identified the ratio between cell size and speed already
as a key discriminator for the relative importance of SC [51],
in line with the heuristic rule used in [2] and in agreement
with our more general result.

Our analysis thus provides a theoretical underpinning for
the previous heuristic notion on the evolutionary choice of
different chemotaxis strategies in different cell types [1–3],
which could be summarized as small and fast cells use TC,
while large and slow (and less persistent) cells use SC. The
power law derived here for a minimal model provides a robust
predictor for this choice of chemotaxis strategy in single-
celled organisms (see Fig. 4) despite the fact that biological
cells have limited information processing capabilities and of-
ten need to navigate dynamic gradients [26,28,58,59]. While
the optimal weighting of TC and SC could be different for
chemotactic agents with limited information processing capa-
bilities, our analysis for ideal agents indicates noise regimes,
where SC or TC would provide little additional information,
in semiquantitative agreement with data for biological cells.
Moreover, the run-and-tumble motion of the bacterium E. coli
shares features with the behavior of infotaxis agents in the
limit of low motility noise, which comprises a straight run
followed by a turn, which would be repeated if there were
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an information reset after each turn. Biased random walks as
observed for amoeboid cells in shallow gradients [6] emerge
naturally in our minimal model.

Bayesian chemotaxis requires agents to have a model
of typical search environments yet should be robust with
respect to deviations between internal model and reality
[38,60]. Supplemental simulations show that chemotactic
agents still exhibit similar performance even if the assumed
sensing-noise parameter or rotational diffusion coefficient
used in their update step differs from the true value used to
generate the input signal and simulate their motion (Figs. S7
and S8 in the SM [40]) or if concentration fields are distorted
by shear or drift (Figs. S9 and S10). For biological cells,
concentration fields may vastly differ for different cells and
habitats [26,58], making it difficult to draw general conclu-
sions. We thus resorted to an idealized yet prototypical case
of a static concentration field shaped by a single source,
which allows us to compare different chemotaxis strate-
gies in a single model. In biological cells, knowledge about
the environment (including characteristic dynamic changes
[8,21,29,30,37,58,61]) is likely hard-wired in biochemical
signaling networks and learned through evolutionary adap-
tation. Future work should address the impact of different
gradient geometries and the timescale on which dynamic con-
centration fields change, yet this is beyond the scope of the
present work.

Finally, there exists extended literature on odor tracking
using sequential Bayesian updating, formulated as partially
observable Markov decision processes [29–33,62]. This liter-
ature uses an equivalent terminology, which we briefly review
in the SM [40]. Due to the lack of computationally efficient al-
gorithms, heuristics were proposed to find near-optimal poli-
cies [25,32,33,63], of which infotaxis turned out to be surpris-
ingly reliable, efficient, and safe [31]. Other algorithms per-
formed slightly better in specific scenarios, but usually only
with a 10% decrease in mean first-passage time to find a target
and at the expense of reduced robustness [31,32]. This moti-
vates our use of infotaxis as one of two decision rules tested.

In conclusion, an information-theoretical characterization
of optimal chemotaxis as studied here for an ideal chemotactic
agent, which weights gradient sensing in space and time,
provides a baseline scenario to discuss the evolutionary choice
of distinct gradient-sensing strategies under the pressure of
sensing and motility noise.

The simulation data and PYTHON code for efficient sim-
ulation of the Bayesian chemotaxis investigated here are
available in Ref. [64]. The data on speed and size of chemo-
tactic cells analyzed in Fig. 4 are available as Supplemental
Data of [2].
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APPENDIX: ANALYTICAL THEORY

We review a minimal model of an ideal chemotactic agent
subject to tunable sensing and motility noise previously devel-
oped in our group [34] and adapted for efficient simulations
here. We first recall the mathematical theory from Ref. [34].
Equations (A2)–(A4) below are directly based on results
derived there, though rewritten in more compact form that
highlights information gain from SC and TC.

Following Ref. [34], we consider a disk-shaped agent of
radius a and center position x0(t ), which searches for a hidden
target at unknown position x∗ = x0 + x in the plane. The
agent can detect signaling molecules diffusing from the tar-
get at each point xe = x0 + ae of its circumference at a rate
density λc(xe)/2πa proportional to the local concentration
c(xe), where c(x) ∼ 1/|x| denotes the steady-state profile es-
tablished by diffusion from a spherical source. We introduce
a vector-valued chemotactic signal [38]

s(t ) =
∑

j

e jδ(t − t j ), (A1)

which records binding events occurring at time t j at position
x0 + a e j on the agent’s circumference, modeled as an inho-
mogeneous Poisson process [see the SM [40] for details and
Fig. 1(b) for visualization]. The absolute value s(t ) = |s(t )| =∑

δ(t − t j ) is simply the train of binding events, ignoring
their point of detection, as considered in [25]. If the target
is assumed to be located at relative position x, the conditional
expectation value E(s|x) = λa∇c/2 of the vector signal s(t )
encodes the local concentration gradient, while J = E(s|x)
equals the rate of molecular binding events. This rate is pro-
portional to the mean concentration along the circumference
of the agent, J ≈ λ[c(x0) + (a2/4)∇2c(x0)] [34].

The agent moves inside the concentration field with con-
stant speed v = |v|, subject to rotational diffusion with
effective rotational diffusion coefficient Drot, providing a min-
imal model of motility noise [38]. This dynamics extends the
popular model of an active Brownian particle (ABP) [65], as
our agent will continuously decide on its direction of motion
based on the directional chemosensory input it receives.

We are interested in the information-theoretic limits of
chemotaxis and therefore assume unlimited information pro-
cessing capabilities of the agent, which can store and update a
likelihood map p(x, t ) of relative target position x = x∗ − x0.
The choice of an egocentric map, in which the moving agent
is always at the center (with coordinate axes aligned to a
comoving material frame of the agent), is mathematically
convenient. We assume that the agent has implicit knowledge
of stereotypic concentration fields and hence knows the con-
ditional rate J (x0|x∗) and concentration gradient ∇x0 c(x0|x∗),
provided the target were at x∗ = x0 + x. Here ∇c points to-
wards the target.

Bayes’ rule rationalizes how to update previous beliefs in
light of new information. In a time-continuous formulation,
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the time evolution of a likelihood map p(x, t ) of relative target
position reads

∂

∂t
p(x, t ) = [s − E(s|s > 0)] ·

(
a∇c

c
− 〈a∇c〉

〈c〉
)

J p

〈J〉︸ ︷︷ ︸
SC

+ (s − E s)

(
J

〈J〉 − 1

)
p︸ ︷︷ ︸

TC

+ Drot
∂2 p

∂ϕ2︸ ︷︷ ︸
motility noise

+ v · ∇p︸ ︷︷ ︸
coadvection

+O(a2), (A2)

which follows from Ref. [34] after linearization by moment
closure (see the SM [40] for details). This approximation
is key for efficient numerical simulations. Different from
Ref. [34] (and different from the usual Bayesian update
scheme), we can now integrate the dynamics using substan-
tially longer time steps that include multiple binding events.
We confirmed in initial simulations that the full nonlinear
scheme and our linearization gave essentially identical results.
The expectation values Es and E(s|s > 0) denote measure-
ments expected by the agent given its current likelihood
map p(x, t ), while 〈·〉 averages over x, again using p(x, t ).
Thus, Es = 〈E(s|x)〉. Each summand on the right-hand side
of Eq. (A2) has a straightforward physical interpretation. The
third summand describes loss of information due to motility
noise characterized as rotational diffusion, where ϕ denotes
the polar angle of x. The last summand describes the motion-
induced shift of the egocentric map, in which the relative
position of the target changes as ẋ = −v when the agent
moves with velocity v. The TC term describes the update of
target position based on the detection of signaling molecules,
yet without reference to their position of detection on the
circumference of the agent, thus generalizing TC. This term
is equivalent to an analytical theory developed previously
in Ref. [27] for the pointlike agents introduced in Ref. [25]
and has a simple geometric interpretation: Whenever binding
events are recorded at a rate higher than the expected detection
rate (i.e., s > 〈J〉), the likelihood p(x) is increased for all
target positions x, for which the local detection rate is higher
than this mean rate [J (x) > 〈J〉] but decreased for all other
positions. For s < 〈J〉, this update has the opposite sign. In
particular, even the absence of a binding event provides infor-
mation to the agent, namely, that the target might be further
away than expected [66].

The SC term is novel and describes the update due to
spatial comparison of concentration differences across the
diameter of the agent. This term is a scalar product of an
innovation vector, formed by the difference of the vector-
valued concentration measurement s(t ) and its conditional

expectation value E(s|s > 0) = Es s/〈J〉 if a binding event
has happened, and the local concentration gradient, likewise
corrected by a suitable expectation baseline. If no binding
event is detected, the innovation vector is zero, reflecting the
fact that it is impossible to record the position of a binding
event without noticing that there has been a binding event in
the first place.

Expected change in information. From the current prior
p(x, t ), the agent can infer the likelihood to detect a signaling
molecule at a particular position and thus forecast how the
negative Shannon entropy I = ∫

dx p(x) ln p(x) is expected
to change in the infinitesimal time interval [t, t + dt] ahead
(see [34] and the SM [40] for details):

E
d

dt
I = 1

4

〈
J

∣∣∣∣a∇c

c
− 〈a∇c〉

〈c〉
∣∣∣∣2

〉
︸ ︷︷ ︸

SC

+
〈
J ln

(
J

〈J〉
)〉

︸ ︷︷ ︸
TC

+ Drot

〈
∂2

∂ϕ2
ln p

〉
︸ ︷︷ ︸

motility noise

+O(a3). (A3)

The SC term characterizes information gain due to spatial
comparison and is always non-negative. If multiplied by a
characteristic sensing time, this term generalizes the signal-
to-noise ratio SNRSC of spatial comparison [see Eq. (1)] by
accounting for the expected gradient baseline 〈∇c〉. The TC
term characterizes information gain due to temporal compar-
ison; it is always greater than or equal to zero because it is
proportional to the Kullback-Leibler divergence between the
likelihood maps p and pJ/〈J〉 before and after a binding event,
respectively. The last summand characterizes information loss
due to motility noise; this Fisher information is always less
than or equal to zero by Bruijn’s inequality [67].

Active motility with velocity v affects the expected change
of information only to second order in the time step, which can
be expressed in terms of the time derivative of the expected
change in information

d

dt

(
E

d

dt
I

)
= C +

〈
∇

(
J

4

∣∣∣∣a∇c

c
− 〈a∇c〉

〈c〉
∣∣∣∣2

)〉
· v

︸ ︷︷ ︸
SC

+
〈
ln

(
J

〈J〉
)

∇J

〉
· v︸ ︷︷ ︸

TC

+ O(a3), (A4)

where C combines terms independent of v. Equation (A4)
reformulates a result in Ref. [34] in more compact form (see
the SM [40] for details). The first term characterizes informa-
tion gain due to SC, whereas the second term characterizes
information gain due to concentration sensing akin to TC.
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