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Indirect reciprocity is a mechanism that explains large-scale cooperation in human societies. In indirect
reciprocity, an individual chooses whether to cooperate with another based on reputation information, and others
evaluate the action as good or bad. Under what evaluation rule (called “social norm”) cooperation evolves has
long been of central interest in the literature. It has been reported that if individuals can share their evaluations
(i.e., public reputation), social norms called “leading eight” can be evolutionarily stable. On the other hand, when
they cannot share their evaluations (i.e., private assessment), the evolutionary stability of cooperation is still in
question. To tackle this question, we create a novel method to analyze the reputation structure in the population
under private assessment. Specifically, we characterize each individual by two variables, “goodness” (what
proportion of the population considers the individual as good) and “self-reputation” (whether an individual thinks
of him or herself as good or bad), and analyze the stochastic process of how these two variables change over
time. We discuss the evolutionary stability of each of the leading-eight social norms by studying the robustness
against invasions of unconditional cooperators and defectors. We identify key pivots in those social norms for
establishing a high level of cooperation or stable cooperation against mutants. Our finding gives an insight into
how human cooperation is established in a real-world society.

DOI: 10.1103/PRXLife.2.023009

I. INTRODUCTION

Cooperation has been a major topic in biology, psychology,
sociology, and economics [1–4]. Direct reciprocity explains
cooperation between two individuals who directly and repeat-
edly interact with each other [1,5]. However, cooperation is
also seen even in a large-scale society, such as in human
societies [3,4,6,7]. This large-scale cooperation is difficult to
explain because individuals frequently meet strangers and do
not always interact with the same person. A key to success in
large-scale cooperation is social information, such as reputa-
tions and gossip. In a real human society, individuals obtain
and use the reputations of others to judge whether they coop-
erate. This is a core mechanism of indirect reciprocity, where
those who have helped others receive help from a third party
through reputations [8–10]. In fact, two-thirds of all human
conversations are considered to involve reputations and gos-
sip [11–13]. Furthermore, many experimental studies support
that reputations and gossip contribute to human cooperation
[14–22].
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One of the difficulties in maintaining cooperation by in-
direct reciprocity concerns errors in choosing actions and
assigning reputations. In early studies of indirect reciprocity,
the social norm called “image scoring” has been discussed
[9,23]. An individual with this social norm assigns a good
reputation to those who cooperated and a bad reputation to
those who did not. A central question is whether cooperation
can be maintained by “discriminators,” who cooperate with
good persons while defect (i.e., not cooperate) with bad per-
sons. In an error-free world, a discriminator cooperates with a
good person, and this discriminator obtains a good reputation,
which invites cooperation from a third party. However, in a
world with errors in actions, a discriminator who accidentally
fails to cooperate obtains a bad reputation, which triggers
defection from a third party, and this third party obtains a
bad reputation, and this triggers another defection, and so on,
causing the collapse of cooperation. Therefore, discriminators
under the image scoring social norm cannot maintain cooper-
ation in the presence of errors [24–31].

Even under these action and assessment errors, eight social
norms have been reported to maintain cooperation in the case
of public reputation, where the reputation of each individual
is shared among all the individuals [25,26,29]. These social
norms are called the “leading eight” and have the following
four properties in common [26]: (i) Maintenance of coop-
eration: a good person who cooperates with a good person
should be evaluated as good. (ii) Identification of defectors:
defection with a good person should be evaluated as bad. (iii)
Justification of punishment: a good person who defects with
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a bad person should be evaluated as good. (iv) Forgiveness:
a bad person who cooperates with a good person should be
evaluated as good. Here, the above image scoring satisfies the
conditions of (i), (ii), and (iv) but not (iii). Many studies so
far have assumed that the reputation is publicly held [32–46]
because it is relatively easy to calculate distribution of reputa-
tions in the population.

In reality, however, humans do not always agree with oth-
ers on the reputation of the same individual, so the assumption
of public reputation usually does not hold. Instead, they can
have different opinions on the same individual (i.e., private
assessment). Thus, the reputation structure in the whole pop-
ulation is described by two-dimensional information of who
evaluates whom and how. In a binary reputation case where
evaluation is either good or bad, we have a matrix whose
elements are good or bad, which is called an image matrix
[47–53]. Given that assessment errors occur independently in
individuals, this image matrix becomes very complex. This is
one of the reasons why the performance of the leading-eight
social norms under private assessment has so far been inves-
tigated mostly based on numerical simulations. It is known
that the leading-eight social norms cannot maintain cooper-
ation [51] in stochastic processes of invasion and fixation
[54] against those who always cooperate (ALLC) and those
who always defect (ALLD). On the other hand, cooperation
is maintained if we additionally introduce somewhat spe-
cial settings such as empathy, generosity, or spatial structure
[55–64]. Although a recent study [53] has theoretically shown
that one of the leading-eight norms (called “L3” or “simple
standing”) can be evolutionarily stable, whereas another one
(called “L6” or “stern judging”) is not, the remaining six of
the leading-eight norms have yet to be analytically studied.
This is partly because these six norms assign reputations to
individuals in a more complex manner than the other two [53].
Indeed, when these six norms evaluate others, they take into
account not only the reputation of the recipient but also that
of the donor. This additional complexity hinders analytical
treatments of those social norms. In fact, the methodology
used in our preceding work [53] does not work. Therefore, we
still do not have a whole picture of which of the leading-eight
social norms can maintain evolutionarily stable cooperation
under private assessment in the presence of errors [4,31].

This study investigates whether each of the leading-eight
norms can sustain evolutionarily stable cooperation or not,
by discussing its robustness against invasions of ALLC and
ALLD mutants under private assessment with errors. To
this end, we develop a mathematical framework to analyze
stochastic processes of how the image matrix changes and
derive the equilibrium state of the image matrix. Based on this
theory, we calculate the payoffs of wild-types and mutants and
perform invasion analyses.

II. A MODEL

We consider a population of N individuals where a binary
reputation of either good (G) or bad (B) is given from each
individual to each one at any given moment. Reputations can
change over time. Every round, a donor and a recipient are
selected at random from the population. The donor chooses
an action of either cooperation (C) or defection (D) towards

FIG. 1. An illustration of how the model of indirect reciprocity
proceeds. (a) The donor chooses the action Action(Xd,Yd ) depending
on the recipient’s (Xd) and donor’s (Yd) reputations in the eyes of
the donor. If the donor cooperates (A = C), the donor pays the cost
c, while the recipient gains the benefit of b. If the donor defects
(A = D), neither cost nor benefit arises. (b) Each observer assigns
a new reputation Norm(A, Xo,Yo) to the donor, depending on the
donor’s action A (called “first-order information”), the recipient’s
reputation Xo in the eyes of the observer (called “second-order in-
formation”), and the donor’s reputation Yo in the eyes of the observer
(called “third-order information”).

the recipient. If the donor cooperates, he or she pays a cost of
c (>0) and gives the recipient a benefit of b (>c). Defection
generates neither cost nor benefit. Each player has a rule to
choose an action, called “action rule.” This study assumes
that in choosing one’s action, the donor considers (1) whether
the recipient is good (Xd = G) or bad (Xd = B) in the eyes
of the donor, and (2) whether the donor him or herself is
good (Yd = G) or bad (Yd = B) in the eyes of the donor [see
Fig. 1(a)]. Thus, the donor’s intended action is described by
a mapping, Action(Xd,Yd ), which takes a letter of either C
or D. Here, we assume that, because of an action error, the
donor takes the action opposite the intended one with the
probability of 0 � e1 < 1/2. We also assume that the donor
is aware of the error when he or she commits it. The situation
is formalized as follows: Let aXdYd be the probability that
the donor’s actual action, denoted by A, is cooperation (C)
when the recipient’s reputation in the eyes of the donor is Xd

and when the donor’s reputation in the eyes of the donor is
Yd. Then we have aXdYd = 1 − e1 if Action(Xd,Yd ) = C, while
aXdYd = e1 if Action(Xd,Yd ) = D. Thus, the action rule of an
individual can be characterized by a 4-dimensional vector
a := (aGG, aGB, aBG, aBB). See Table I for the list of symbols
appearing in this paper.

TABLE I. Table of notation introduced in Sec. II.

C, D Action: cooperation, defection
G, B Reputation: good, bad
A ∈ {C, D} Variable for action
X ∈ {G, B} Variable for recipient’s reputation
Y ∈ {G, B} Variable for donor’s reputation
d, o (subscripts of X and Y ) In the eyes of donor, observer
e1, e2 Error rates in action and assessment
b, c Benefit and cost of cooperation
N Population size
Norm(A, X,Y ) (or nA) Social norm
Action(X,Y ) (or a) Action rule
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TABLE II. Social norms of L1–L8 and their optimal action rules.
In the first column, Norm(C, X,Y ) and Norm(D, X,Y ) indicate the
donor’s new reputation assigned by each social norm when the donor
cooperates and defects with the recipient, respectively. The column
with the heading Action(X,Y ) indicates actions that each donor
chooses. In the second row, the first and second alphabets describe
the reputations of the recipient (X ) and the donor (Y ), respectively.

Norm(C, X,Y ) Norm(D, X,Y ) Action(X,Y )

XY GG GB BG BB GG GB BG BB GG GB BG BB

L1 G G G G B B G B C C D C
L2 G G B G B B G B C C D C
L3 G G G G B B G G C C D D
L4 G G G B B B G G C C D D
L5 G G B G B B G G C C D D
L6 G G B B B B G G C C D D
L7 G G G B B B G B C C D D
L8 G G B B B B G B C C D D

We assume that everyone observes this interaction as
an observer, evaluates the chosen action by the donor, and
updates the reputation of the donor as good or bad, inde-
pendently of the other observers [see Fig. 1(b)]. We assume
that all individuals adopt the same rule to update the donor’s
reputation; such a rule is called “social norm.” In updating the
donor’s reputation, observers take the following three pieces
of information into account: (1) whether the donor’s actual ac-
tion is cooperation (A = C) or defection (A = D), (2) whether
the recipient is good (Xo = G) or bad (Xo = B) in the eyes of
the observer, and (3) whether the donor was good (Yo = G) or
bad (Yo = B) before the interaction in the eyes of the observer.
The reputation that an observer intends to assign to the donor
is thus represented by the function of Norm(A, Xo,Yo), which
we call intended reputation. Here, we also assume that each
observer erroneously assigns the opposite reputation to the
intended one with probability 0 < e2 < 1/2 independently
of others. The situation is formalized as follows: We refer
to the reputation that is actually assigned to the donor as
actual reputation and distinguish it from the intended one.
We define nAXoYo as the probability that the actual reputa-
tion that an observer assigns to the donor is good when the
donor took action A, when the recipient’s reputation in the
eyes of the observer is Xo, and when the donor’s previous
reputation in the eyes of the observer was Yo. Then we have
nAXoYo = 1 − e2 if Norm(A, Xo,Yo) = G, while nAXoYo = e2 if
Norm(A, Xo,Yo) = B. Each social norm is characterized by
two 4-dimensional vectors nC := (nCGG, nCGB, nCBG, nCBB)
and nD := (nDGG, nDGB, nDBG, nDBB). When the reputation
updates are over, the current donor-recipient pair is resolved,
and we repeat the process by sampling a donor and a re-
cipient again. We repeat this process infinitely many times
and calculate the expected payoff of each player. In computer
simulations for a finite population of size N , we assume that
N donor-recipient interactions occur in one unit of time.

The leading-eight social norms are of particular interest in
this study. We label these norms L1–L8 [30]. These norms
and their corresponding action rules are described in Table II.
There are several common features in the leading eight, and

TABLE III. Table of notation introduced in Sec. III

p ∈ [0, 1] Goodness
s ∈ {0, 1} Self-reputation
p′, s′ Recipient’s goodness and self-reputation
p′′, s′′ Donor’s goodness and self-reputation before an

update
hAY (p′, s′′) Probability that donor chooses A and assigns Y to

itself
f A(p′, p′′) Average donor’s goodness after an update when A

is chosen
V Variance of donor’s goodness
φ(p, s) Frequency distribution of p and s

Ohtsuki and Iwasa [26] explained these commonalities as
follows: (i) Norm(C, G, G) = G and Action(G, G) = C rep-
resent “maintenance of cooperation”; a good person who
cooperates with a good person should be evaluated as good,
(ii) Norm(D, G, ∗) = B represent “identification of defec-
tors”; defection with a good person should be evaluated as
bad, (iii) Norm(D, B, G) = G and Action(B, G) = D repre-
sent “punishment and justification of punishment”; a good
person who defects with a bad person should be evaluated
as good, and (iv) Norm(C, G, B) = G and Action(G, B) = C
represent “apology and forgiveness”; a bad person who coop-
erates with a good person should be evaluated as good. On
the other hand, the other three pivots in social norms, which
are Norm(C, B, G), Norm(C, B, B), and Norm(D, B, B), were
left unspecified; they can be either good or bad. This leads
to 23 = 8 combinations, and this is the reason why they are
called leading eight [26].

III. ANALYSIS OF REPUTATION STRUCTURE

A. Overview of mathematical framework

Before going into any details, let us first overview what
we do in this section (see Table III for notation). This sec-
tion considers the reputation structure formed in the wild-type
population of one of the leading eight. First, we characterize
each individual by two variables: its goodness p ∈ [0, 1] and
its self-reputation s ∈ {0, 1}. Here, p indicates the proportion
of others who evaluate the focal individual as good, while s
indicates whether the individual evaluates him or herself as
good (s = 1) or bad (s = 0). Let φ(p, s) denote the frequency
distribution of (p, s) for the whole population. Our goal is
to calculate its equilibrium distribution, denoted by φ∗. For
that purpose, we derive a recursive relation that φ∗ should
satisfy [Eqs. (5)], and this recursive equation is numerically
solved. By using this equilibrium distribution, we derive var-
ious quantities, such as h̄C [Eq. (6)], which is the probability
that wild-types cooperate. With these results, we suggest that
the eight social norms in the leading eight can be classified
into three different types.

More technically, in deriving the recursive equation for φ∗
[Eqs. (5)], we consider microscopically a single interaction
between a donor and a recipient. We assume that this recipient
is characterized by (p′, s′), that this donor is characterized
by (p′′, s′′), and that the donor’s reputation status is updated
to (p, s). The probability with which (i) the donor’s choice
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FIG. 2. An illustration of the stochastic transition of the donor’s reputation state from (p′′, s′′) to (p, s). The recipient’s icon has a single
prime (′) while the donor’s icon has double primes (′′), which corresponds to our notations that (p′, s′) represents the recipient’s reputation
status while (p′′, s′′) represents donor’s reputation status before an update (see Table III). (a) First, a donor, whose reputation status is (p′′, s′′),
either cooperates (C) or defects (D) with a recipient, whose reputation status is (p′, s′). The action A ∈ {C, D} depends on the recipient’s
reputation in the eyes of the donor (which is G with probability p′ because the donor is a random sample from the population) and the donor’s
self-reputation (given by s′′). (b) The donor updates its self-reputation s′′ to s, based on the donor’s action A, the recipient’s reputation in the
eyes of the donor [the same as in panel (a)], and the donor’s previous self-reputation s′′. (c) The observers update the donor’s reputation in their
eyes. The donor’s goodness p′′ is updated to p, which depends on the donor’s action A, the recipient’s reputation in the eyes of each observer
(which is G with probability p′), and the donor’s previous reputation in the eyes of each observer (which is G with probability p′′).

of action toward the recipient is A and (ii) the updated self-
reputation of the donor is Y will be represented by hAY in
Eq. (1), and they depend on (p′, s′′). Since assessment errors
occur independently of observers, the value of p (donor’s
new goodness) is a stochastic variable, but with the help of
large N , we can approximate its distribution with a Gaussian
distribution, where its mean and variance shall be given by
Eqs. (3). The next section provides a detailed description of
our mathematical framework, followed by the section that
shows the results obtained by this framework.

B. Detailed mathematical framework

Let us consider a stochastic process describing how the
reputations of a chosen donor in the eyes of itself and
the others are updated. For a moment, we assume that every-
one in the population adopts the same social norm and action
rule and that they are one of the leading eight (see Table II).
This assumption will be relaxed later.

We characterize individual’s reputations by two variables
(p, s), where p ∈ [0, 1] and s ∈ {0, 1}. We define p ∈ [0, 1]
as the proportion of the individuals in the population except
for the focal one who assigns a good reputation to the focal
individual, and call it the “goodness” of the focal individual.
The second variable s ∈ {0, 1} is called “self-reputation” of
the focal individual; s = 1 means that the individual considers
him or herself as good, while s = 0 if bad. Hereafter, we call
the pair (p, s) “reputation state” of an individual. For the sake
of our later analysis, we introduce vector notations of these
variables as p := (p, 1 − p) and s := (s, 1 − s).

Let φ(p, s) be a joint probability distribution of individuals
whose reputation status is (p, s) [that is, the chance that a ran-
domly sampled individual from the population has reputation
status (p, s)]. To derive the equation that φ(p, s) satisfies, we
suppose that the chosen recipient’s reputation state is (p′, s′)
and that the chosen donor’s reputation state is (p′′, s′′). Given
these, we want to calculate the transition probability that

after one round of interaction, the donor’s reputation state is
updated from (p′′, s′′) to (p, s). See Fig. 2 for a schematic
illustration.

For that purpose, we calculate hAY , which is the probability
that the donor actually takes action A ∈ {C, D} and actually
assigns reputation Y ∈ {G, B} to him or herself. It is obtained
as

hCG(p′, s′′) = (p′ ⊗ s′′) · (a ◦ nC), (1a)

hCB(p′, s′′) = (p′ ⊗ s′′) · {a ◦ (1 − nC)}, (1b)

hDG(p′, s′′) = (p′ ⊗ s′′) · {(1 − a) ◦ nD}, (1c)

hDB(p′, s′′) = (p′ ⊗ s′′) · {(1 − a) ◦ (1 − nD)}. (1d)

Here, we used tensor product p′ ⊗ s′′ := (p′s′′, p′(1 −
s′′), (1 − p′)s′′, (1 − p′)(1 − s′′)), which generates a vector of
probabilities with which the recipient’s reputation in the eyes
of the donor and the donor’s reputation in the eyes of the donor
are good-good, good-bad, bad-good, and bad-bad, respec-
tively. The symbol ◦ represents the Hadamard product of two
4-dimensional vectors, which returns a 4-dimensional vector
whose component is a component-wise product of the two
original vectors, defined as (x1, x2, x3, x4) ◦ (y1, y2, y3, y4) :=
(x1y1, x2y2, x3y3, x4y4). For example, in Eq. (1a), the vector a
represents the probabilities with which the donor cooperates
with the recipient in each of the four situations above (i.e.,
good-good, good-bad, bad-good, and bad-bad), and the vector
nC represents the probabilities with which the donor assigns a
good reputation to him or herself in each situation given that
the donor cooperates with the recipient, so their Hadamard
product a ◦ nC represents the probabilities with which the
donor in each of the four situations above cooperates with the
recipient and assigns a good reputation to him or herself. The
symbol 1 represents the 4-dimensional vector with ones in all
components. Finally, the symbol · represents the inner product
of two vectors.
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Next, we calculate the probability that the donor’s good-
ness changes to p after the interaction, given that the donor has
chosen action A ∈ {C, D}. The vector p′ ⊗ p′′ = (p′ p′′, p′(1 −
p′′), (1 − p′)p′′, (1 − p′)(1 − p′′)) represents the proportions
of observers who thought that the recipients’ reputation and
the donor’s reputation are good-good, good-bad, bad-good,
and bad-bad before the interaction, respectively. Given that
the donor has chosen action A ∈ {C, D}, each observer inde-
pendently updates the donor’s reputation by using the social
norm, which is represented by vector nA, while an assignment
error occurs independently. Thus, the number of others who
update the donor’s reputation to good, denoted by NA

G below,
is given by the sum of four stochastic variables. Each of the
variables follows a binomial distribution as

NA
G := NAGG

G + NAGB
G + NABG

G + NABB
G , (2a)

NAGG
G ∼ B[(N − 1)p′ p′′, nAGG], (2b)

NAGB
G ∼ B[(N − 1)p′(1 − p′′), nAGB], (2c)

NABG
G ∼ B[(N − 1)(1 − p′)p′′, nABG], (2d)

NABB
G ∼ B[(N − 1)(1 − p′)(1 − p′′), nABB], (2e)

where B(Mtrial, Psuccess ) represents the binomial distribution of
parameters Mtrial (number of trials) and Psuccess (probability

of success). For a sufficiently large population (N � 1), the
donor’s next goodness p = NA

G/(N − 1) approximately fol-
lows the Gaussian distribution by the central limit theorem,
where its mean and variance are calculated from Eqs. (2) as

E[p] = E
[
NA

G

]
N − 1

= (p′ ⊗ p′′) · nA (=: f A(p′, p′′)), (3a)

Var[p] = Var
[
NA

G

]
(N − 1)2

= (p′ ⊗ p′′) · nA ◦ (1 − nA)

N − 1

= e2(1 − e2)

N − 1
(=:V ). (3b)

In deriving Eq. (3b), we have used the fact that each com-
ponent of vector nA is either nAXoYo = e2 or nAXoYo = 1 − e2,
so each component-wise product in the form of nAXoYo (1 −
nAXoYo ) is always equal to e2(1 − e2).

Below, we use this Gaussian approximation. The density
function of the Gaussian distribution with mean μ and vari-
ance σ 2 is denoted g(x; μ, σ 2):

g(x; μ, σ 2) := 1√
2πσ 2

exp

[
− (x − μ)2

2σ 2

]
. (4)

From Eqs. (1)–(3), we can formulate the dynamics of
φ(p, s). The equilibrium state of φ(p, s), denoted by φ∗(p, s),
satisfies

φ∗(p, 1) =
∫ 1

0
dp′ ∑

s′

∫ 1

0
dp′′ ∑

s′′

∑
A

hAG(p′, s′′)g(p; f A(p′, p′′),V )φ∗(p′, s′)φ∗(p′′, s′′), (5a)

φ∗(p, 0) =
∫ 1

0
dp′ ∑

s′

∫ 1

0
dp′′ ∑

s′′

∑
A

hAB(p′, s′′)g(p; f A(p′, p′′),V )φ∗(p′, s′)φ∗(p′′, s′′). (5b)

On the right-hand side of each equation, the term
φ∗(p′, s′)φ∗(p′′, s′′) represents the probability that the
chosen recipient’s reputation status is (p′, s′) and the
donor’s one is (p′′, s′′) at the equilibrium. The term
hAG(p′, s′′)g(p; f A(p′, p′′),V ) in Eq. (5a) represents the prob-
ability the donor takes action A ∈ {C, D} and assigns a good
reputation to him or herself, times the probability density that
the donor’s goodness p′′ is updated to p. Similarly, the term
hAB(p′, s′′)g(p; f A(p′, p′′),V ) in Eq. (5b) corresponds to the
case of donor’s assigning a bad reputation to itself. Finally,
the summations over s′ and s′′ and the integrals for p′ and
p′′ represent all possible combinations of (p′, s′) and (p′′, s′′).
Note that the Gaussian function g takes a positive value in
(−∞,∞), but we truncate it to p ∈ [0, 1], so Eqs. (5) has
an approximation error. As long as the variance of Gaussian
function V is small (which is the case if e2 is small and/or
N is large), however, this error is not so large. As seen in the
left-hand sides of Eqs. (5), the updated distribution should be
the same as the original distribution φ∗ because φ∗ is at the
equilibrium.

Equations (5) cannot be solved analytically in general.
As for the leading-eight social norms and action rules (see
Table II), the study [52] has found that, for L3 (simple stand-
ing) and L6 (stern judging), the equilibrium distribution can

be solved analytically when it is approximated by a sum-
mation of Gaussian distributions, while it cannot be for the
others, L1, L2, L4, L5, L7, and L8. This is mainly because
social norms in L3 and L6 do not use the previous reputation
of the donor in updating the donor’s reputation. Such social
norms are categorized as “second-order” norms [10,27,43].
In contrast, the other social norms use the reputation of
the donor as well, and they are categorized as “third-order”
norms [10,27,43], which are more complex than second-order
norms.

Consequently, we numerically derive a solution of φ∗. To
obtain a solution, we replace φ∗s on the right-hand sides of
Eqs. (5) with φk and those on the left-hand sides with φk+1 and
regard it as a recursion. There is a truncation error in Eqs. (5)
because the support of Gaussian function g is not [0,1] but
(−∞,∞), but we performed an error estimation and found
that this error is negligibly small as long as Ne2 � 1 (see
Appendix C). As far as we explore, the choice of initial state
φ0 does not affect the results, either (see Appendix D for the
detailed method).

For an arbitrary function X , we denote its expected value
under the equilibrium distribution φ∗ as X̄ . For example, the
probability with which a recipient receives cooperation in a
randomly chosen interaction, denoted by h̄C := ∑

Y =G,B h̄CY ,
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FIG. 3. The equilibrium states of φ∗(p, s) for the leading-eight norms (labeled L1–L8). In each panel, the horizontal axis indicates p,
the goodness of an individual. The colored areas represent φ∗(p) = φ∗(p, 0) + φ∗(p, 1) in individual-based simulations, that is the marginal
distribution of p, as indicated by the left axis of the panel. The colored “x” markers indicate r∗(p) = φ∗(p, 1)/φ∗(p) in individual-based
simulations, which is the conditional distribution of individuals who assign a good reputation to themselves, given their goodness is p, as
indicated by the right axis of the panel. We also give the numerical solutions: the black solid lines show numerical solutions of φ∗(p), while
the black broken ones show numerical solutions of r∗(p). We see nearly a perfect match between individual-based simulations and numerical
calculations. The individual-based simulations are based on (e1, e2) = (0.03, 0.1), N = 800, and 2000 samplings from time 51 to 2050. The
numerical solutions are derived for N = 800; we stop the iteration when the L2 distance of ‖φK (p) − φK−1(p)‖2 < 10−6 is achieved for the
first time and regard φK as the equilibrium distribution φ∗, where ‖ · ‖2 is the L2 norm.

is obtained as

h̄C =
∫ 1

0
dp′ ∑

s′

∫ 1

0
dp′′ ∑

s′′

∑
Y

hCY (p′, s′′)

︸ ︷︷ ︸
=(p′⊗s′′ )·a

× φ∗(p′, s′)φ∗(p′′, s′′)

=

⎡
⎢⎢⎢⎢⎣

∫ 1

0
dp′ ∑

s′
p′φ∗(p′, s′)

︸ ︷︷ ︸
=:p̄

⊗
∫ 1

0
dp′′∑

s′′
s′′φ∗(p′′, s′′)

︸ ︷︷ ︸
=:s̄

⎤
⎥⎥⎥⎥⎦ · a

= ( p̄ ⊗ s̄) · a, (6)

where p̄ and s̄ represent the population average of p and s,
respectively.

C. Three different types in the leading eight

Figure 3 shows the converged distribution by this iterative
method for each of the leading-eight social norms and its
corresponding action rule (see Table II), which well fits the
equilibrium distribution computed from an individual-based
simulation. There, the marginal distribution of p defined as
φ∗(p) := φ∗(p, 0) + φ∗(p, 1) and its conditional distribution
for s = 1 defined as r∗(p) := φ∗(p, 1)/φ∗(p) are simulta-
neously plotted in the same figure. We remark that the
computational complexity of our numerical method is inde-
pendent of N , while that of the individual-based simulation
is of order N2. Thus, our numerical method is much more
efficient than individual-based simulations for large N .

According to Fig. 3, we can classify the leading eight into
three types, as follows:

(Type 1) L1, L3, L4, and L7. Those norms are charac-
terized by Norm(C, B, G) = G (see Table II). Under these

norms, there is a sharp peak at a very high goodness (i.e.,
around p = 0.9 in Fig. 3) in the equilibrium distribution,
φ∗(p), suggesting that a large majority of individuals in the
equilibrium population has a good reputation in the eyes of
most observers. The second highest peak is at a very low
goodness, although its height is considerably lower than the
first one, suggesting that some minority of individuals have a
bad reputation in the eyes of most observers. The third highest
peak is slightly left of the first peak, the fourth peak is slightly
right of the second one, and so on. This behavior, that is,
where peaks exist, has already been observed for L3 (simple
standing) in our previous study [53], where we developed its
analytical treatment. In short, under these four norms, most of
the individuals in the population keep very high goodness in
spite of errors.

(Type 2) L2 and L5. Those norms are characterized by
Norm(C, B, G) = B and Norm(C, B, B) = G (see Table II).
Under these norms, the equilibrium distribution φ∗(p) looks
rather continuous, which is in contrast with Type-1 norms
that admit discrete peaks in the equilibrium. The highest peak
exists at a high goodness value (i.e., around p = 0.8 in Fig. 3),
but this value is not as high as the corresponding highest
peak (i.e., around p = 0.9 in Fig. 3) for Type-1 norms. The
second highest peak is at a low goodness value. In short,
under these two norms, some portion of individuals in the
population keep moderately high goodness, while others have
either intermediate or low goodness.

(Type 3) L6 and L8. Those norms are characterized
by Norm(C, B, G) = B and Norm(C, B, B) = B (see Ta-
ble II). Under these two norms, the equilibrium distribution
φ∗(p) looks unimodal. Its position is at p = 0.5 for L6
(“stern-judging”) and lower than that for L8. Note that this
result for L6 has already been known in previous litera-
ture [47,49,51,53]. In short, these two norms fail to sustain
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TABLE IV. Table of notation introduced in Sec. IV.

aM Action rule of mutants
pM ∈ [0, 1] Goodness of mutants from wild types
φM(pM) Frequency distribution of pM

individuals with a high goodness in the equilibrium pop-
ulation. Since corresponding action norms for L6 and L8
prescribe cooperation with good individuals and defection
with bad individuals (see Table II), it follows that the equilib-
rium level of cooperation in the population is low, suggesting
that indirect reciprocity does not sufficiently work under these
norms when assessment is private.

Figure 3 further shows the conditional distribution of self-
reputation r∗(p) tends to increase with p in all of the leading
eight. This increasing trend means a positive correlation be-
tween one’s self-reputation and goodness: the one who is
evaluated as good by a large proportion of others tends to think
of him or herself as good. Self-reputations in L7 and L8 are
relatively lower than L1–L6. This is because action rules in
L1–L6 always prescribe an action that is evaluated as good
under the corresponding social norm, whereas action rules in
L7 and L8 do not (see Table II). More specifically, action rules
in L7 and L8 choose Action(B, B) = D when both the donor
and the recipient are bad, but this behavior is evaluated as
Norm(D, B, B) = B by the corresponding social norms (see
Table II).

IV. INVASION ANALYSIS

A. Reputations of mutants

We first overview the flow of this section (see Table IV for
notation). This section aims to perform an invasion analysis,
where the wild type is one of the leading eight, and the rare
mutant is either ALLC (who always intends to cooperate) or
ALLD (who always intends to defect). The mutant’s goodness
is represented by pM, which is the proportion of wild types
who evaluate the focal mutant as good. Let φ∗

M(pM) denote the
equilibrium frequency distribution of pM among mutants. We
first derive the recursive equation that φ∗

M satisfies [Eq. (8)],
which is used to derive the average goodness of mutants
[Eq. (9)], which is in turn used to derive the probability that
mutants receive cooperation from wild-types h̄C

M [Eq. (10)].
With these, we compare the payoff of wild types and mutants
and derive the ESS parameter region of the leading eight
against ALLC and ALLD (Fig. 4).

Let us start to mathematically formulate the situation
where ALLC or ALLD mutants invade wild types who use
one of the leading-eight social norms and their corresponding
action rules. ALLC individuals are those who always intend to

cooperate with the recipient. ALLD individuals are those who
always intend to defect. We assume that they are susceptible
to action errors. On the other hand, they do not need to possess
a social norm because they choose their actions independently
of others’ reputations. This simple nature of ALLC and ALLD
enables us to perform the following invasion analysis.

Because these mutants always intend to choose C or D,
their action rules are simple enough. They are represented as
aM = (aM, aM, aM, aM), where aM = 1 − e1 for ALLC while
aM = e1 for ALLD. Here and hereafter, symbols with sub-
script M represent those for mutants, and symbols without
subscripts are those for wild types, unless otherwise specified.
Because there are no rational reasons to expect that ALLC and
ALLD are not susceptible to action errors, e1, while strategies
based on the leading eights are, assumptions aM = 1 − e1

(ALLC) are aM = e1 (ALLD) are quite natural. Note, how-
ever, that ALLC and ALLD are not susceptible to assessment
errors, e2, at all, while strategies based on the leading eights
are. Under this setting, we would like to know the payoffs of
wild types and mutants.

Since mutants are rare, the average payoff of wild types is
unaffected by mutants. The probability that a wild-type indi-
vidual receives cooperation as a recipient remains the same as
h̄C in Eq. (6), which is the same as the probability that a wild
type actually performs cooperation as a donor. Therefore, the
average payoff of wild types is

u = (b − c)h̄C. (7)

As for the payoff of mutants, the probability that a mutant
individual cooperates as a donor is aM. What remains is to
derive the probability that a mutant receives cooperation as
a recipient, and here we can assume that its donor is a wild
type because the chance of mutant-mutant interactions can be
negligibly small.

Since ALLC or ALLD do not use its self-reputation, we
do not have to consider the self-reputation of these mutants.
Thus, we consider only φM(pM), which is defined as the
probability density function of goodness pM of mutants in the
eyes of wild-type observers, in the following. Its equilibrium
distribution, i.e., φ∗

M(pM), should satisfy

φ∗
M(pM) =

∫ 1

0
dp′ ∑

s′

∫ 1

0
dp′′

M{aMg(pM; f C(p′, p′′
M),V )

+ (1 − aM)g(pM; f D(p′, p′′
M),V )}φ∗(p′, s′)

× φ∗
M(p′′

M), (8)

where the equation considers how the goodness p′′
M of a

mutant donor is updated to pM after an interaction with a wild-
type recipient whose reputation status is (p′, s′). In particular,
the average goodness of the mutants in the eyes of wild types,
denoted by p̄M, is calculated as

p̄M =
∫ 1

0
dpM pMφ∗

M(pM)

=
∫ 1

0
dp′ ∑

s′

∫ 1

0
dp′′

M

∫ 1

0
dpM pM{aMg(pM; f C(p′, p′′

M),V ) + (1 − aM)g(pM; f D(p′, p′′
M),V )}φ∗(p′, s′)φ∗

M(p′′
M)
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�
∫ 1

0
dp′ ∑

s′

∫ 1

0
dp′′

M{aM f C(p′, p′′
M) + (1 − aM) f D(p′, p′′

M)}φ∗(p′, s′)φ∗
M(p′′

M)

� aM f C( p̄, p̄M) + (1 − aM) f D( p̄, p̄M). (9)

Here, from the first to the second line we have used Eq. (8).
From the second to the third line we have computed the
integral with respect to pM. Note that in order to take the
expectation of Gaussian distribution, we have approximated
the range of integral

∫ 1
0 dpM as

∫ ∞
−∞ dpM. From the third

to the fourth line we have computed the integrals with re-
spect to p′ and p′′

M, where we have taken advantage of the

fact that both f C and f D are multilinear functions of p′
and p′′

M. Note that we have again approximated the ranges
of the integrals in the same way as above. Since the fi-
nal expression in Eq. (9) is linear in p̄M, we can solve
Eq. (9) with respect to p̄M (see Appendix C for the esti-
mation of errors). This approximate solution is a function
of p̄.

FIG. 4. (a) Cooperation probabilities of the leading eight. Colored lines in each panel show the probabilities that wild types of each of the
leading eight cooperate with wild types themselves (solid), wild types cooperate with ALLC mutants (dashed), and wild types cooperate with
ALLD mutants (dotted), respectively. These colored lines are obtained numerically by using Eqs. (6) and (10) for N = 800 and e1 = 0.03.
The gray markers at e2 = 0.1 and e2 = 0.2 show the probabilities that wild types cooperate with ALLC (triangles) and themselves (crosses)
when mutants are ALLC, and the probabilities that they cooperate with ALLD (inverted triangles) and themselves (pluses) when mutants are
ALLD. These markers are calculated from individual-based simulations with N = 10 000 and e1 = 0.03 where the proportion of mutants is
set to 0.03, and averages of 1000 samples from time steps 51 � t � 1050 are shown. (b) ESS regions of the leading eight against ALLC and
ALLD mutants are shown by colored areas. These regions are obtained by the cooperation probabilities plotted in panel (a). Note that the
scales of y axis are different between panels.
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FIG. 5. (a) The advantage of Norm(C, B, G) = G lies in that assessment errors cannot spread. In the left panel, both the donor and recipient
basically have good reputations. However, only one of two observers (i.e., the right observer) erroneously evaluates the recipient as bad. In
the right panel, we show how the observers update the donor’s reputation (dark-colored arrows). Despite the disagreement in their opinions on
the recipient’s reputation, the observers reach a consensus on the donor’s reputation because Norm(C, G, G) = G for the left observer while
Norm(C, B, G) = G for the right. (b) The advantage of Norm(C, B, G) = B lies in that unconditional cooperation is detectable. We consider a
situation where the recipient is considered as bad in the eyes of all individuals. In the left panel, a good donor who adopts the corresponding
action rule of the leading eight chooses defection with the recipient [Action(B, G) = D]. The observer updates the donor’s reputation to a
good one (dark-colored arrow) because Norm(D, B, G) = G. On the other hand, in the right panel, the donor is ALLC and unconditionally
cooperates with others. The observer updates the ALLC donor’s reputation to a bad one (dark-colored arrow) because Norm(C, B, G) = B.
Thus, the leading-eight norms satisfying Norm(C, B, G) = B can distinguish ALLC from punishers.

With this p̄M, the probability that a mutant recipient re-
ceives cooperation from a wild-type donor, denoted by h̄C

M, is
calculated as

h̄C
M =

∫ 1

0
dp′

M

∫ 1

0
dp′′ ∑

s′′

∑
Y

hCY (p′
M, s′′)

︸ ︷︷ ︸
=(p′

M⊗s′′ )·a

× φ∗
M(p′

M)φ∗(p′′, s′′)

= ( p̄M ⊗ s̄) · a. (10)

With this h̄C
M, the average payoff of mutants is calculated as

uM = bh̄C
M − caM. (11)

By comparing Eqs. (7) and (11), we can investigate the inva-
sibility of ALLC and ALLD mutants.

B. Evolutionary stability against ALLC and ALLD

Using the above equations, we discuss whether mutants
of ALLC or ALLD can invade wild types of each of the
leading eight. Figure 4(a) shows the probability that wild
types cooperate with wild types (i.e., h̄C) and two probabilities
that wild types cooperate with ALLC or ALLD mutants (i.e.,
h̄C

M for aM = 1 − e2 and e2). Figure 4(b) further shows the
ESS regions of the leading eight against ALLC and ALLD.
The upper bound of the ESS region in each panel corre-
sponds to the invasion condition of ALLC; that is, ALLC
can invade the wild-type population if b/c ratio is above
that boundary. Similarly, the lower bound of each ESS cor-
responds to the invasion condition of ALLD; ALLD can
invade the wild-type population if b/c ratio is below that
boundary.

(Type 1) L1, L3, L4, and L7. These norms can maintain
a maximum cooperation level when it is dominant in the
population for a small assessment error rate. Indeed, Fig. 4(a)
shows h̄C → 1 − e1 (=0.97 in this figure) in the limit of e2 →
0. Remember that these norms have Norm(C, B, G) = G in
common (see Table II). We find that this feature contributes to

a high level of cooperation. To see this, imagine two observers
of an interaction between a donor and a recipient, and suppose
that one of them evaluates the recipient as good, while the
other evaluates the recipient as bad possibly due to an assess-
ment error [see Fig. 5(a), left]. Suppose also that the donor
with a good reputation cooperates with the recipient. This
cooperation is viewed as “cooperation with a good recipient
by a good donor” by the former observer, and this observer
assigns the reputation Norm(C, G, G) = G to the donor. In
contrast, this cooperation is viewed as “cooperation with a
bad recipient by a good donor” by the latter observer, and
this observer assigns the reputation Norm(C, B, G), which is
G, to the donor. Therefore, even though observers disagree in
their opinions on the recipient, they can reach a consensus on
their opinions on the donor [see Fig. 5(a), right]. This is an
intuitive reason why Type-1 norms achieve a very high level
of cooperation. The result of study [53] is also explained by
the same logic.

In exchange for such maximum cooperation, however,
Type-1 norms have relatively narrower ESS regions compared
with Type 2. Indeed, Fig. 4(b) shows that these norms are
relatively more vulnerable to the invasion of ALLC for a large
b/c than Type-2 norms. This is because Type-1 norms have
Norm(C, B, G) = G in common, and hence they positively
evaluate the unconditional cooperation by ALLC mutants too
much. When e1 = 0 and e2 � 1, the ESS regions of Type-1
norms are analytically shown to be 1 < b/c < 2 (see Ap-
pendix A).

(Type 2) L2 and L5. The cooperation level of these norms
is high, but not as high as Type 1. When these norms
are dominant in the population and when the assessment
error rate is small, the cooperation level is h̄C � 0.8 in
Fig. 4(a). Unlike Type-1 norms, these norms have the feature
of Norm(C, B, G) = B (see Table II). Imagine again two ob-
servers described in Fig. 5(a), who disagree in the opinions
of the recipient. Unlike Type-1 norms, when a good donor
cooperates with the recipient, the observer who thinks of the
recipient as good assigns the reputation Norm(C, G, G) = G
to the donor, but the observer who thinks of the recipient as
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bad assigns the reputation Norm(C, B, G) = B to the donor.
Thus, the disagreement on the recipient’s reputation between
the two observers will trigger a new disagreement; that is,
the disagreement on the donor’s reputation. Bad reputations
spread in this way until another common feature of Type-
2 norms, Norm(C, B, B) = G, eventually prevents further
spread of bad reputations. This is because when a bad donor
cooperates with the recipient, the feature Norm(C, G, B) =
Norm(C, B, B) = G guarantees that such cooperation is al-
ways regarded as good irrespective of how the recipient is
viewed from observers. Thus, Type-2 norms can keep their
cooperation level high.

At the expense of their cooperation level, Type-2 norms
have wider ESS regions than Type-1 norms [see Fig. 4(b)].
This is mainly because Type-2 norms are more resistant to the
invasion of ALLC mutants than Type 1. Unlike Type-1 norms,
Type-2 observers regard cooperation toward a bad individual
as bad [Norm(C, B, G) = B], hence they occasionally assign
bad reputations to unconditional cooperators (i.e., ALLC).
Thus, Type-2 norms can selectively assign bad reputations
to ALLC mutants but not to residents, leading to wider ESS
regions.

(Type 3) L6 and L8. Their cooperation level is
low (h̄C � 1/2). This is because Type-3 norms suf-
fer from disagreements on one’s reputation among
individuals. Recall that Type-3 norms are character-
ized by Norm(C, B, G) = Norm(C, B, B) = B. Since
Norm(C, G, G) �= Norm(C, B, G), by the same logic as
Type-2 norms, disagreement between observers about a
recipient propagates to that about a donor. The feature
Norm(C, G, B) �= Norm(C, B, B) further worsens such
disagreements. Due to the accumulation of assessment errors,
individuals fail to synchronize their evaluations of the same
individual at equilibrium, as suggested by the unimodal
peak at an intermediate p value in Fig. 3, leading to a low
cooperation level.

Furthermore, Type-3 norms are fragile against the invasion
of ALLD mutants. Recall that individuals under Type-3
norms have only intermediate levels of goodness (see Fig. 3).
Since Norm(D, B, G) = G, these norms consider ALLD
mutants as good to some extent. Thus, their cooperation
levels toward themselves and ALLD mutants can differ little.
Indeed, Fig. 4(a) shows that L6 cannot distinguish themselves
and ALLD, while L8 barely does. Figure 4(b) also shows
that L6 is always invaded by ALLD, while L8 is invaded
by ALLD unless the benefit-cost ratio is unrealistically high
(b/c > 5 ≈ 10).

V. CONCLUSION AND DISCUSSION

The leading-eight norms have been known to maintain
cooperation under public reputation in indirect reciprocity
[25,26]. Whether these norms can maintain cooperation even
under private assessment (where all individuals independently
evaluate others), however, has been largely an open question
(but see Ref. [51]). In the present paper, we have extended
our previous mathematical framework for studying second-
order social norms [52,53] and developed a methodology that
enables us to study third-order social norms. We have revealed
that the leading-eight norms can be classified into three types

based on the shape of their reputation structure and the degree
of cooperation. We have also discussed the invasibility of
ALLC and ALLD mutants and found that these three types
of social norms are different in their resistance to invasion
by those mutants. In addition, we have provided intuitive
explanations of where this difference originates from.

Specifically, this study has shown that Type-1 norms have
a maximal cooperation level but are relatively weak to the
invasion of ALLC mutants, leading to relatively narrow ESS
regions. On the other hand, Type-2 norms have a lower co-
operation level than Type-1 norms, but their ESS regions
are relatively wider due to their resistance to ALLC mu-
tants. Thus, there is a trade-off between their cooperation
levels and resistance to ALLC mutants. We identified that
Norm(C, B, G) is a key pivot and that it is the source of this
trade-off. The pivot Norm(C, B, G) represents how to evaluate
cooperation by a good donor toward a bad recipient from the
viewpoint of observers. If this evaluation is good (i.e., Type-1
norms), then an advantage arises that the spread of disagree-
ments among individuals is avoided, with a disadvantage that
individuals show generosity toward unconditional cooperation
by ALLC mutants. On the other hand, if this evaluation is
bad (i.e., Type-2 and -3 norms), the opposite effects appear.
Whether the further spread of disagreements occurs or not
is determined by another key pivot, Norm(C, B, B). If this
evaluation is good (i.e., Type-2 norms), cooperation is sus-
tained, whereas if this evaluation is bad (i.e., Type-3 norms),
sustaining cooperation is difficult.

Fujimoto and Ohtsuki [53] specified parameter regions
where each of the second-order norms is not invaded by the
other norms. The leading-eight norms contain two second-
order norms, L3 and L6 (called S03, S07 in their study). Our
finding here that L3 can be evolutionarily stable but L6 can-
not is consistent with their result (although detailed settings
are different between these studies: for example, our study
assumes ALLC and ALLD as potential mutants, while their
study considered ALLG and ALLB mutants, which always
assign good or bad reputations to everyone, and they studied
several other mutants as well). In this sense, the current study
is an extension of Fujimoto and Ohtsuki [53]; we have studied
the other six leading-eight social norms as well, classified
them, and investigated their property.

Hilbe et al. [51] performed a classification of the leading-
eight norms according to their ability to recover from a single
disagreement in private reputation evaluation. One of their
classifications, based on the expected time until recovery (see
their Proposition 3 in its Supporting Information) matches
our classification here. That is, our Type-1 norms (L1, L3,
L4, L7) have the quickest recovery time from a single dis-
agreement, our Type-2 norms (L2, L5) are runners-up, and
our Type-3 norms (L6, L8) are the worst. Their result is
consistent with ours because a longer recovery time from a
single disagreement implies that goodness p tends to decline
more in an error-prone world, where errors constantly supply
the sources of disagreements (see Fig. 3). In contrast, previous
studies [51,65] report that the strategy based on L3, L4, L5,
or L6 rarely dominates the population during the competi-
tion with ALLC and ALLD strategies, and the reason for
that is explained by their common property Norm(D, B, B) =
G, which contributes to giving a good reputation to ALLD
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players. Our analysis here does not predict such patterns for
L3-L6 norms simply because we studied evolutionary stabil-
ity, and therefore, ALLD invaders are assumed to be rare.
In particular, norm L3 is classified as a promising candidate
in our analysis, while it is not in Refs. [51,65], but these
seemingly inconsistent results are attributable to the different
nature of the two analyses, and they have no contradiction at
all. Rather, we firmly believe that our analysis here and that of
Refs. [51,65] are complementary to each other, both revealing
fundamental properties of the leading-eight social norms.

An example of expected future studies is to extend the
analysis to more general situations. First, the current study
considered only ALLC and ALLD as potential invaders. It
would be interesting to study other types of mutants and see
the robustness of Type-1 and -2 norms in the leading eight.
This includes studying mutual invasibility among the leading-
eight norms. Second, the leading-eight norms are just eight
norms out of 28 = 256 possible third-order norms, so exhaus-
tively studying the property of each of the 256 third-order
norms is important in order to clarify the role of third-order
norms under private assessment. Third, studying higher-order
norms, which use more information in assigning a new repu-
tation such as the previous reputation of the recipient (called
fourth-order information [43,45]), is an interesting direction
of extension. In particular, how the norm complexity [43,45]
(concerning the order of norms) is related to its ability to
maintain cooperation is an open question under private assess-
ment. Fourth, we have assumed for simplicity that everyone
in the population observes every interaction in the population.
It would be more realistic to consider the situation of partial
observation, in which only a fraction (say, fraction 0 < θ < 1)
of individuals can observe a given interaction and update
reputations. Fifth, it would be interesting to investigate the
reputation structure of the population under nonbinary reputa-
tion, such as ternary reputation [66,67], where each individual
can be labeled as good, bad, or “neutral,” and qualitative
assessments [65], where reputations are integer scores. Sixth,
our current analysis is restricted to ESS analysis, but studying
full evolutionary dynamics when two or more strategies coex-
ist with some sizable frequencies would be interesting to see
the possibility of stable coexistence or evolutionary cycles.

Regarding the reality of the model, individuals that appear
in our model are highly idealized, such as having a high cogni-
tive capacity to remember reputations and achieve evaluations
of others based on a third-order norm, and having opportuni-
ties to witness all social interactions in the population. Real
humans are certainly less able to perform those tasks, and
their behavior cannot be perfect, so the level of cooperation
that would be established by those agents can be lower than
the one predicted by our results due to such imperfectness.
However, we believe that the value of our model lies in that
it gives a good theoretical reference point as to how much
cooperation can be established under the leading-eight social
norms if the most favorable conditions are met. As we briefly
mentioned above, relaxing those conditions to see how they
affect the cooperation level will give valuable insights into real
human cooperation.

In conclusion, we have successfully classified the leading-
eight norms into three types according to their performance
under noisy and private assessment. From the perspective

of the cooperation level and resistance to ALLC and ALLD
mutants, we find that Type-1 and -2 norms are promising. In
particular, the pivot Norm(C, B, G) in the social norm deter-
mines the trade-off between cooperation level and resistance
to ALLC. It is eagerly awaited to experimentally examine
whether Norm(C, B, G) is evaluated as good or bad in real
societies and how this pivot actually contributes to sustaining
a high level of cooperation by indirect reciprocity.

The code that we used is available online [68].
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APPENDIX A: RESULTS FOR e1 = 0

1. Simulation results

In the main text, we have assumed e1 = 0.03. To provide
theoretical insights into the differences among the leading-
eight norms, this section focuses on the case of no action
error, e1 = 0. First, Fig. 6 shows the reputation structure
of the leading-eight norms in the same way as Fig. 3 but
for e1 = 0. This figure shows that the leading-eight norms
can be again categorized into three types in their reputation
structure, namely, L1, L3, L4, and L7 are in Type-1, L2 and
L5 are in Type-2, and L6 and L8 are in Type-3. The only
qualitative difference is that the conditional distribution for
p given that s = 1 is constant, r∗(p) = 1 − e2, for L1–L6.
This is because a donor with L1–L6 is always able to take
actions that are evaluated as good in its own eyes [because
e1 = 0 and Norm(Action(X,Y ), X,Y ) = G for any X and Y ;
see Table II] and actually evaluates itself as good unless an
assessment error occurs. On the other hand, a donor with L7
and L8 inevitably chooses actions that are evaluated as bad in
its own eyes when both the recipient and donor are bad in its
own eyes [i.e., Norm(Action(B, B), B, B) = B; see Table II].
Thus, r∗(p) = 1 − e2 is not satisfied for L7 and L8.

Figure 7 shows the cooperation probabilities and ESS re-
gions of the leading-eight norms for e1 = 0 for the sake of
comparison with Fig. 4. From Fig. 7, we see that the results
of Fig. 4 look robust against the change of the action error
rate from e1 = 0.03 to e1 = 0. However, panel B in Fig. 7 for
Type-1 norms suggests that the ESS condition in the limit of
e2 → 0 for those norms is 1 < b/c < 2. Below, we analyti-
cally prove this result.

2. Analytical results

a. Equilibrium distribution

Let us assume e1 = 0 and consider the limit, N → ∞. Our
temporal goal is to derive the marginal distribution, φ∗(p) :=
φ∗(p, 1) + φ∗(p, 0), at the equilibrium when there are no mu-
tants.

First, we consider the quantity
∑

s′′
∑

Y hCY (p′, s′′)
φ∗(p′′, s′′); i.e., the probability that a randomly chosen donor
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FIG. 6. The equilibrium states of φ∗(p, s). All the panels are output based on the same parameters as Fig. 3 except for e1 = 0.

FIG. 7. (a) Cooperation probabilities of the leading-eight norms. (b) ESS regions of the leading-eight norms. Numerical calculations are
based on the same parameters as Fig. 4 except for e1 = 0.
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has goodness p′′ and it cooperates with the recipient whose
goodness is p′ at the equilibrium. We notice that the following
properties are satisfied:

(i) For L1 and L2, since we assume e1 = 0, donors always
choose the action evaluated as good by themselves unless an
assessment error occurs. Thus, r∗(p) = 1 − e2 holds for all p,
and therefore

φ∗(p′′, s′′) =
{
φ∗(p′′)(1 − e2) if s′′ = 1
φ∗(p′′)e2 if s′′ = 0

(A1)

holds. Hence we obtain

∑
s′′

∑
Y

hCY (p′, s′′)φ∗(p′′, s′′)

= φ∗(p′′)
∑

Y

⎧⎪⎨
⎪⎩hCY (p′, 1)︸ ︷︷ ︸

=p′

(1 − e2) + hCY (p′, 0)︸ ︷︷ ︸
=1

e2

⎫⎪⎬
⎪⎭

= φ∗(p′′){p′ + (1 − p′)e2}. (A2)

(ii) For L3–L8, donors do not change their actions depend-
ing on the self-reputation. So, we can obtain

∑
Y hCY (p′, s′′) =

p′. Thus, we obtain∑
s′′

∑
Y

hCY (p′, s′′)φ∗ p′′, s′′) = p′ ∑
s′′

φ∗(p′′, s′′) = φ∗(p′′)p′.

(A3)
To summarize these properties, we define hC(p′) as fol-

lows: ∑
s′′

∑
Y

hCY (p′, s′′)φ∗(p′′, s′′)

=
{
φ∗(p′′){p′ + (1 − p′)e2} (L1–L2)
φ∗(p′′)p′ (L3–L8)

= φ∗(p′′) {p′ + (1 − p′)e2aBB}︸ ︷︷ ︸
=:hC(p′ )

, (A4)

because aBB = 1 for L1 and L2 and aBB = 0 for L3–L6. Note
that hC(p′) represents the probability that a random donor who
faces the recipient of goodness p′ cooperates with him or her
at the equilibrium. We also define hD(p′) := 1 − hC(p′). With
these, the equilibrium marginal distribution of goodness is
given, from Eqs. (5), by

φ∗(p) =
∑

s

φ∗(p, s)

=
∫ 1

0
d p′ ∑

s′

∫ 1

0
d p′′ ∑

s′′

∑
A

∑
Y

hAY (p′, s′′)δ(p − f A(p′, p′′))φ∗(p′, s′)φ∗(p′′, s′′)

=
∫ 1

0
d p′

∫ 1

0
d p′′ ∑

A

∑
s′′

∑
Y

hAY (p′, s′′)φ∗(p′′, s′′)

︸ ︷︷ ︸
=hA(p′ )φ∗(p′′ )

δ(p − f A(p′, p′′))φ∗(p′)

=
∫ 1

0
d p′

∫ 1

0
d p′′ ∑

A

hA(p′)δ(p − f A(p′, p′′))φ∗(p′)φ∗(p′′). (A5)

Here, we used the fact that, in the limit of N → ∞, the
Gaussian g(p; f A(p′, p′′),V ) converges to the Dirac δ function
δ(p − f A(p′, p′′)).

We now consider the case of e2 � 1. To calculate the ESS
condition of Type-1 norms (L1, L3, L4, and L7), we need to
find the solution to Eq. (A5) up to the order of e2. In other
words, we neglect all the terms of O(e2

2) and higher in the
following calculations. Guessing from Fig. 6, we heuristically
seek the solution in the following form:

φ∗(p) =
m1∑
i=1

κiδ1−kie2 (p) +
m2∑
i=1

λiδlie2 (p). (A6a)

Here, δx(p) := δ(p − x) is the Dirac delta function that has a
unit mass at p = x, and κ and λ satisfy

κi = O(1) or O(e2), λi = O(e2),
m1∑
i=1

κi +
m2∑
i=1

λi = 1.

(A6b)

In words, Eqs. (A6) says that the equilibrium distribution φ∗
is given as a finite sum of masses κi at positions p = 1 − kie2

and masses λi at positions p = lie2, where masses κi are either
O(1) or O(e2) and masses λ j are O(e2).

In fact, calculations in Appendix B show that we can find
the solution to Eq. (A5) in the form of Eqs. (A6) for each of
the Type-1 norms (L1, L3, L4, and L7) separately as

φ∗
L1(p) = (1 − 2e2)δ1−e2 (p) + e2δ1−4e2 (p) + e2δ2e2 (p),

φ∗
L3(p) = (1 − 2e2)δ1−e2 (p) + e2δ1−3e2 (p) + e2δ2e2 (p),

φ∗
L4(p) = (1 − 3e2)δ1−e2 (p) + e2δ1−2e2 (p) + e2δ1−3e2 (p)

+ e2δ2e2 (p),

φ∗
L7(p) = (1 − 3e2)δ1−e2 (p) + e2δ1−2e2 (p) + e2δ1−4e2 (p)

+ e2δ2e2 (p). (A7)

Note that these solutions are correct up to O(e2). We also
remark that with the same methodology, we cannot derive
the equilibrium distribution for Type-2 norms (L2 and L5),
because we eventually find that sums in Eq. (A6a) cannot be
finite but require infinite sums, which is consistent with our
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observation that the equilibrium distribution φ∗(p) for Type-2
norms look continuous, not discrete.

b. A calculation of payoffs

With the equilibrium distribution given by Eq. (A7), we can
calculate various quantities for studying the invasion condi-
tion of ALLC and ALLD mutants. In the following calculation
we use the facts that Type-1 norms and the corresponding
action rules are given by nC = (1 − e2, 1 − e2, 1 − e2, nCBB),
nD = (e2, e2, 1 − e2, nDBB), and a = (1, 1, 0, aBB).

Expected payoff of wild types. From Eq. (A7), the average
goodness p̄ of Type-1 wild types is calculated as

p̄ =
∫ 1

0
pφ∗(p)dp = 1 − 2e2 + o(e2) (A8)

for all Type-1 norms. The probability of giving or receiving
cooperation h̄C in the monomorphic population of residents at
the equilibrium is

h̄C = hC( p̄) = p̄ + (1 − p̄)e2aBB = 1 − 2e2 + o(e2) (A9)

for all Type-1 norms. Therefore, from Eq. (7), the expected
payoff of wild types is

u = (1 − 2e2)(b − c) + o(e2) (A10)

for all Type-1 norms.
Expected payoff of ALLC mutants. Consider rare ALLC

mutants invading one of the Type-1 norms. By putting aM = 1
in Eq. (9), the average goodness of these mutants is

p̄M = f C( p̄, p̄M)

=
{

1 − e2 (for L1 and L3)
1− e2− (1− 2e2)(1− p̄)(1 − p̄M) (for L4 and L7).

(A11)

For L4 and L7, this is further calculated as

p̄M = 1 − e2 − (1 − 2e2)(1 − p̄)

1 − (1 − 2e2)(1 − p̄)

= 1 − e2 − (1 − 2e2)2e2

1 − (1 − 2e2)2e2
+ o(e2)

= 1 − e2 + o(e2). (A12)

From Eq. (6), the expected probability that a wild type coop-
erates with an ALLC mutant is

h̄C
M = hC( p̄M) = p̄M + (1 − p̄M)e2aBB = 1 − e2 + o(e2)

(A13)

for all Type-1 wild types. By putting aM = 1 in Eq. (11) we
obtain the expected payoff of ALLC mutants as

uM = (1 − e2)b − c + o(e2) (A14)

for all Type-1 wild types. Thus, by comparing Eq. (A10) and
Eq. (A14), wild types are resistant to ALLC mutants if and
only if

b/c < 2 (A15)

in the limit of e2 → 0 for all Type-1 wild types.

Expected payoff of ALLD mutants. Consider rare ALLD
mutants invading one of the Type-1 norms. By putting aM = 0
in Eq. (9), the average goodness of these mutants is

p̄M = f D( p̄, p̄M)

= e2 p̄ + (1 − e2)(1 − p̄) p̄M

+ nDBB(1 − p̄)(1 − p̄M)

⇐⇒ p̄M = e2 p̄ + nDBB(1 − p̄)

1 − (1 − e2)(1 − p̄) + nDBB(1 − p̄)

= e2(1 + 2nDBB)

1 − 2e2(1 − nDBB)
+ o(e2). (A16)

Since nDBB = e2 for L1 and L7, and nDBB = 1 − e2 for L3 and
L4, we have

p̄M =
{

e2 + o(e2) (for L1 and L7)
3e2 + o(e2) (for L3 and L4). (A17)

From Eq. (6), the expected probability that a wild type coop-
erates with an ALLD mutant is

h̄C
M = hC( p̄M) = p̄M + (1 − p̄M)e2aBB. (A18)

Since aBB = 1 for L1, and aBB = 0 for L3, L4, and L7, we
have

h̄C
M =

⎧⎨
⎩

2e2 + o(e2) (for L1)
3e2 + o(e2) (for L3 and L4)
e2 + o(e2) (for L7).

(A19)

By putting aM = 0 in Eq. (11) we obtain the expected payoff
of ALLD mutants as

uM =
⎧⎨
⎩

2e2b + o(e2) (for L1)
3e2b + o(e2) (for L3 and L4)
e2b + o(e2) (for L7).

(A20)

Thus, by comparing Eq. (A10) and Eq. (A20), wild types are
resistant to ALLD mutants if and only if

b/c > 1. (A21)

in the limit of e2 → 0 for all Type-1 wild types.

APPENDIX B: DETAILED CALCULATION
OF APPENDIX A

To solve Eq. (A5) and to obtain the equilibrium distribution
φ∗(p), we iteratively solve the functional recursion

φt+1(p) =
∫ 1

0
d p′

∫ 1

0
d p′′ ∑

A

hA(p′)

× δ(p − f A(p′, p′′))φt (p′)φt (p′′), (B1)

where t = 0, 1, 2, . . . is a non-negative integer, by always
assuming that the function φt (p) is given in the form of
Eqs. (A6); i.e., a finite sum of Dirac δ functions. If we find that
φt∗+1(p) = φt∗ (p) holds at some t∗ � 0, then it is a solution to
Eq. (A5).

Suppose that

φt (p) =
m1∑
i=1

κiδ1−kie2 (p) +
m2∑
i=1

λiδlie2 (p) (B2)
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holds. Then, from Eq. (B1) we have

φt+1(p) =
m1∑
i=1

m1∑
j=1

κiκ j{hC(p′)δ f C(p′,p′′ )(p) + hD(p′)δ f D(p′,p′′ )(p)}|p′=1−kie2,p′′=1−k j e2

+
m1∑
i=1

m2∑
j=1

κiλ j{hC(p′)δ f C(p′,p′′ )(p) + hD(p′)δ f D(p′,p′′ )(p)}|p′=1−kie2,p′′=l j e2

+
m2∑
i=1

m1∑
j=1

λiκ j{hC(p′)δ f C(p′,p′′ )(p) + hD(p′)δ f D(p′,p′′ )(p)}|p′=lie2,p′′=1−k j e2

+
m2∑
i=1

m2∑
j=1

λiλ j{hC(p′)δ f C(p′,p′′ )(p) + hD(p′)δ f D(p′,p′′ )(p)}|p′=lie2,p′′=l j e2 . (B3)

Each line is further calculated as follows:
Case 1. Interaction of a good recipient and good donor.

We consider an event that the recipient with goodness p′ =
1 − kie2 and the donor with goodness p′′ = 1 − k je2 interact.
This event occurs with probability κiκ j , which can be either
O(1), O(e2), or O(e2

2). We consider only terms of up to O(e2)
in the following. From Eq. (A4), the donor cooperates with
probability

hC(p′) = p′ + (1 − p′)e2aBB

= 1 − kie2 + (kie2)e2aBB

= 1 − kie2 + o(e2). (B4)

In this case, the donor’s goodness is updated to

f C(p′, p′′) = (1 − e2) + {nCBB − (1 − e2)}(1 − p′)(1 − p′′)

= (1 − e2) + {nCBB − (1 − e2)}kik je
2
2

= 1 − e2 + o(e2). (B5)

On the other hand, the donor defects with probability

hD(p′) = 1 − hC(p′) = kie2 + o(e2). (B6)

In this case, the donor’s goodness is updated to

f D(p′, p′′) = e2 p′ + (1 − e2)(1 − p′)p′′

+ nDBB(1 − p′)(1 − p′′)

= e2(1 − kie2) + (1 − e2)kie2(1 − k je2)

+ nDBBkik je
2
2

= (ki + 1)e2 + o(e2). (B7)

Therefore, the first line of Eq. (B3) can be calculated as
m1∑
i=1

m1∑
j=1

κiκ j{(1 − kie2)δ1−e2 (p) + kie2δ(ki+1)e2 (p)} + o(e2).

(B8)
Case 2. Interaction of a good recipient and bad donor.

We consider an event that the recipient with goodness p′ =
1 − kie2 and the donor with goodness p′′ = l je2 interact.
This event occurs with probability κiλ j , which can be either
O(e2) or O(e2

2). We consider only terms of up to O(1) in
the following, because any terms of O(e2) or higher, after
the multiplication by the factor κiλ j , become O(e2

2) or higher.

From Eq. (A4), the donor cooperates with probability

hC(p′) = p′ + (1 − p′)e2aBB

= 1 − kie2 + (kie2)e2aBB

= 1 + o(1). (B9)

In this case, the donor’s goodness is updated to

f C(p′, p′′) = (1 − e2) + {nCBB − (1 − e2)}(1 − p′)(1 − p′′)

= (1 − e2) + {nCBB − (1 − e2)}kie2(1 − l je2)

= 1 − {(1 − nCBB)ki + 1}e2 + o(e2)

= 1 − {(1 − ñCBB)ki + 1}e2 + o(e2), (B10)

where ñCBB represents the value of nCBB evaluated at e2 = 0.
That is, if nCBB = 1 − e2 then ñCBB = 1, and if nCBB = e2

then ñCBB = 0. We do not have to discuss the event of de-
fection because the event occurs with probability hD(p′) =
1 − hC(p′) = o(1). Therefore, the second line of Eq. (B3) can
be calculated as

m1∑
i=1

m2∑
j=1

κiλ jδ1−{(1−ñCBB )ki+1}e2
(p) + o(e2). (B11)

Case 3. Interaction of a bad recipient and good donor. We
consider an event that the recipient with goodness p′ = lie2

and the donor with goodness p′′ = 1 − k je2 interact. This
event occurs with probability λiκ j , which can be either O(e2)
or O(e2

2). We consider only terms of up to O(1) in the
following, because any terms of O(e2) or higher, after the
multiplication by the factor λiκ j , become O(e2

2) or higher.
From Eq. (A4), the donor cooperates with probability

hD(p′) = 1 − {p′ + (1 − p′)e2aBB}
= 1 − {lie2 + (1 − lie2)e2aBB}
= 1 + o(1). (B12)
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TABLE V. How to calculate φt+1(p) from φt (p) for Type-1 norms.

p′ p′′ Event scale A hA(p′) p = f A(p′, p′′)

1 − kie2 1 − k je2 O(1) or O(e2) C 1 − kie2 1 − e2

D kie2 (ki + 1)e2

1 − kie2 l je2 O(e2) C 1 1 − {(1 − ñCBB)ki + 1}e2

lie2 1 − k je2 O(e2) D 1 1 − {li + (1 − ñDBB)k j + 1}e2

In this case, the donor’s goodness is updated to

f D(p′, p′′) = e2 p′ + (1 − e2)(1 − p′)p′′

+ nDBB(1 − p′)(1 − p′′)

= lie
2
2 + (1 − e2)(1 − lie2)(1 − k je2)

+ nDBB(1 − lie2)k je2

= 1 − {li + (1 − nDBB)k j + 1}e2 + o(e2)

= 1 − {li + (1 − ñDBB)k j + 1}e2 + o(e2), (B13)

where ñDBB represents the value of nDBB evaluated at e2 = 0.
That is, if nDBB = 1 − e2 then ñDBB = 1, and if nDBB = e2

then ñDBB = 0. We do not have to discuss the event of co-
operation because the event occurs with probability hC(p′) =
1 − hD(p′) = o(1). Therefore, the third line of Eq. (B3) can
be calculated as

m2∑
i=1

m1∑
j=1

λiκ jδ1−{li+(1−ñDBB )k j+1}e2
(p) + o(e2). (B14)

Case 4. Interaction of a bad recipient and bad donor. We do
not have to consider an event that the recipient with goodness
p′ = lie2 and the donor with goodness p′′ = l je2 interact, be-
cause the event occurs with the probability of λiλ j = O(e2

2).
Therefore, the fourth line of Eq. (B3) is simply o(e2).

The calculations in Cases 1 to 4 are summarized in Table V.
By using these results, we now solve Eq. (B1) iteratively. As
an initial function, we choose

φ0(p) = δ1−e2 (p). (B15)

A direct calculation shows, up to O(e2), that

φ1(p) = (1 − e2)δ1−e2 (p) + e2δ2e2 (p),

φ2(p) = (1 − 3e2)δ1−e2 (p) + e2δ1−(2−ñCBB )e2
(p)

+ e2δ1−(4−ñDBB )e2
(p) + e2δ2e2 (p),

φ3(p) = (1 − 3e2)δ1−e2 (p) + e2δ1−(2−ñCBB )e2
(p)

+ e2δ1−(4−ñDBB )e2
(p) + e2δ2e2 (p) (=φ2(p)),

(B16)

and therefore the solution to Eq. (A5) is

φ∗(p) = (1 − 3e2)δ1−e2 (p) + e2δ1−(2−ñCBB )e2
(p)

+ e2δ1−(4−ñDBB )e2
(p) + e2δ2e2 (p). (B17)

Substituting

(ñCBB, ñDBB) =

⎧⎪⎪⎨
⎪⎪⎩

(1, 0) (for L1)
(1, 1) (for L3)
(0, 1) (for L4)
(0, 0) (for L7)

(B18)

in Eq. (B17) gives us Eq. (A7).

APPENDIX C: ESTIMATION OF ERROR IN TRANSITION
OF EQUILIBRIUM DISTRIBUTION

This section evaluates the truncation error in calculating
Eqs. (5) and Eq. (9). Even if φ∗ on the right-hand side (RHS)
of Eqs. (5) is properly normalized, φ∗ on the left-hand side
(LHS) is not normalized, because it has some positive value
outside the interval p ∈ [0, 1]. Here we estimate how much
mass φ∗ on the LHS of Eqs. (5) has in the intervals (−∞, 0)
and (1,∞). A key observation for this error estimation is
that f A in Eq. (3a) always satisfies e2 � f A � 1 − e2, because
each component of the vector nA is either e2 or 1 − e2 and
because f A is a weighted average of these values. First, we
consider total weights in the interval (1,∞). For p > 1, we
obtain

φ∗(p) =
∑

s

φ∗(p, s) =
∫ 1

0
dp′ ∑

s′

∫ 1

0
dp′′ ∑

s′′

∑
A

∑
Y

hAY (p′, s′′) g(p; f A(p′, p′′),V )︸ ︷︷ ︸
�g(p;1−e2,V )

φ∗(p′, s′)φ∗(p′′, s′′)

� g(p; 1 − e2,V )
∫ 1

0
dp′ ∑

s′

∫ 1

0
dp′′ ∑

s′′

∑
A

∑
Y

hAY (p′, s′′)

︸ ︷︷ ︸
=1

φ∗(p′, s′)φ∗(p′′, s′′)

= g(p; 1 − e2,V )
∫ 1

0
dp′ ∑

s′

∫ 1

0
dp′′ ∑

s′′
φ∗(p′, s′)φ∗(p′′, s′′)

︸ ︷︷ ︸
=1

= g(p; 1 − e2,V ). (C1)
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Therefore, the leak to the interval (1,∞) is evaluated as∫ ∞

1
dpφ∗(p) �

∫ ∞

1
dp

1√
2πV

exp

[
− [p − (1 − e2)]2

2V

]

=
∫ ∞

0
d p̃

1√
2πV

exp

[
− ( p̃ + e2)2

2V

]

=
∫ ∞

0
d p̃

1√
2πV

exp

[
− p̃2

2V

]
︸ ︷︷ ︸

�1

exp

[
−e2 p̃

V

]
exp

[
− e2

2

2V

]

� 1√
2πV

exp

[
− e2

2

2V

] ∫ ∞

0
d p̃ exp

[
−e2 p̃

V

]

= 1√
2πV

exp

[
− e2

2

2V

]
V

e2

� 1√
2πe2(N − 1)

exp

[
−e2(N − 1)

2

]
[=:ε(e2, N )]. (C2)

Here, in the first line, we have used Eq. (C1). From the first to
the second line, we have substituted p̃ = p − 1. From the fifth
to the sixth lines, we use V = e2(1 − e2)/(N − 1).

In a similar way, we can prove that the leak to the other
interval (−∞, 0) is upper-bounded by ε(e2, N ). Therefore,
the total error is upper-bounded by 2ε(e2, N ).

We provide some representative examples of ε(e2, N ). For
realistic parameters (e2, N ) = (0.1, 100), we have ε(e2, N ) �
10−3. For the parameter used in our simulations (e2, N ) =
(0.1, 800), we have ε(e2, N ) � 10−18. Thus, the truncation

FIG. 8. The convergence to the equilibrium distribution φ∗. We
have randomly generated Nsample (=100) samples. Here, the equilib-
rium distribution φ∗ := E[φ50] is estimated as the ensemble average
of φ50 (the distribution after 50 iterations). For each sample, the L2

distance between φk and φ∗ is calculated as ‖φk − φ∗‖2. Finally,
the indicator of convergence (i.e., E[‖φk − φ∗‖2]) is formulated by
the ensemble average of this L2 distance over all Nsample (=100)
samples. The initial condition of each sample, φ0, is generated by the
following procedure; we have three random numbers (r1, r2, r3) ∼
[0, 1]3, and define φ0 as φ0(p, 1) = 2r1{r2(1 − p) + (1 − r2)p} and
φ0(p, 0) = 2(1 − r1){r3(1 − p) + (1 − r3)p}.

of the Gaussian functions is estimated to be negligibly
small.

This bound of the approximation error, i.e., ε(e2, N ), is
useful for two numerical calculations in this paper. First, when
we numerically compute the equilibrium distribution φ∗ by
iterating Eqs. (5a) and (5b), 2ε(e2, N ) gives the upper bound
of errors per single iteration. Second, in the calculation of
Eq. (9), the difference between its LHS and RHS is smaller
than 2ε(e2, N ).

APPENDIX D: CONVERGENCE TO EQUILIBRIUM
DISTRIBUTION

To calculate φ∗ numerically in Eqs. (5). We replace φ∗s
on the RHSs of Eqs. (5) with φk and those on the LHSs with
φk+1 and calculate recursions as φ0 → φ1 → φ2 → · · · from
an initial state φ0. We have set φ0 as the uniform distribution
function, i.e., φ0(p, s) = 1/2 for all p ∈ [0, 1] and s ∈ {0, 1}.
We stop this iteration at K th step if ‖φK − φK−1‖2 � ε is
satisfied for sufficiently small ε(= 10−6). Here, ‖ · ‖2 rep-
resents the L2 norm (distance), defined as ‖φK − φK−1‖2 :=
{∫p dp

∑
s[φK (p, s) − φK−1(p, s)]2}1/2.

For our numerical calculation, we approximate φk (p, s)
by a step function, which is discretized by N (=800)
meshes for p. Here, however, we can take a more coarse-
grained mesh independent of N . If so, the computational
cost to find the equilibrium becomes small and theoretically
expected to be smaller than the cost of individual-based
simulation.

Although the initial state φ0 is set as the uniform distribu-
tion, the choice of it is optional. Indeed, Fig. 8 demonstrates
the convergence to φ∗ from various initial distributions, which
are randomly generated. We see that the ensemble-average
distance from the equilibrium distribution exponentially
decays over iteration steps. Interestingly, the speed of conver-
gence differs depending on the leading-eight norms: it seems
(L1, L2) > L3 > L5 > L4 > (L6, L7, L8).
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