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In and Out of Criticality? State-Dependent Scaling in the Rat Visual Cortex
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The presumed proximity to a critical point is believed to endow the brain with scale-invariant statistics, which
are thought to confer various functional advantages in terms of its information processing, storage, and transmis-
sion capabilities. To assess the relationship between scaling and cortical states, we apply a phenomenological
renormalization group analysis to 3-h spiking data recordings from the urethane-anesthetized rat’s visual cortex.
Under this type of anesthesia, cortical states dynamically shift across a spectrum of synchronization levels,
defined by population spiking rate variability. By developing a scaling criterion based on the kurtosis of the
momentum-space activity distribution, our study combines the coarse-graining method with state-dependent
analysis. We find that scaling signatures only appear as spiking variability surpasses a specified threshold.
Notably, within this regime, scaling exponents show relative stability. Conversely, subthreshold activity is
primarily asynchronous and fails to meet the scaling criterion. Our results suggest that a wide range of cortical
states corresponds to small deviations around a critical point, with the system fluctuating in and out of criticality,
spending roughly three-quarters of the experiment duration within a scaling regime.

DOI: 10.1103/PRXLife.2.023008

I. INTRODUCTION

The concept of criticality in living systems has attracted
growing interest in recent decades due to its potential to shed
light on the behavior of complex biological systems, including
the brain [1-6]. In particular, since the first observation of
power-law-distributed neuronal avalanches in slices of the rat
cortex by Beggs and Plenz [2], the critical brain hypothesis
[4,5,7,8] has been intensively investigated both theoretically
[9-26] and in diverse experimental setups [27—47].

Amongst the brain areas, the cerebral cortex has been the
focal point in the exploration of the critical brain hypoth-
esis, mainly the primary sensory cortices [2,4,34,43,48,49].
Such cortical areas play a paramount role in sensory process-
ing from the environmental stimuli [50]. The technological
development in simultaneous recordings of large neuronal
populations [51] has fueled the exploration of the critical
brain hypothesis at the neuronal population level, especially
during periods in the absence of stimuli (spontaneous activity)
[43,52]. The characteristics of this type of activity closely
parallel those observed in spiking-evoked activity within the
sensory cortex of freely moving animals, particularly in the
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primary visual cortex (V1) [33,34,53,54]. Furthermore, spik-
ing activity assumes different levels of variability in V1, with
behavioral relevance [55]. The level of spiking variability has
been used as a proxy for the cortical state [55-60].

Recently, Fontenele et al. proposed a relationship between
criticality and cortical states in a study including spiking
data of urethane-anesthetized rats [43]. In such experimen-
tal setup, cortical activity spontaneously drifts between more
desychronized states, similar to what one finds in awake and
alert behavior, and more synchronized states, as observed in
drowsiness and slow-wave sleep [55,61]. Spiking variabil-
ity, characterized by the coefficient of variation (CV) of the
population spiking rate, was chosen as a de facto control
parameter to assess the cortical state every few seconds (with
CV increasing with synchronization levels). Scaling relations
of avalanche exponents were observed only for intermediate
CV values, suggesting that a critical point occurred only in
a narrow range of spiking variability, whereas the brain dy-
namics fluctuated widely around this point. In other words,
the brain would be close to criticality frequently, but still en
passant. Very often it would operate with ranges of spiking
variability that did not satisfy scaling relations of avalanche
exponents [43].

This interpretation was later challenged by Carvalho et al.
[24], who reproduced most of the experimental results with
an analytically solvable model. The model has a true control
parameter, which accounts for the relative weight of inhibitory
coupling [62]. By changing this control parameter within only
3% of its critical value, the model could reproduce almost the
whole range of spiking variability observed in the data. These

Published by the American Physical Society


https://orcid.org/0000-0002-2761-2133
https://orcid.org/0000-0002-0472-8205
https://orcid.org/0000-0003-1968-7968
https://orcid.org/0000-0002-5666-9606
https://orcid.org/0000-0001-7441-2858
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXLife.2.023008&domain=pdf&date_stamp=2024-05-21
https://doi.org/10.1103/PRXLife.2.023008
https://creativecommons.org/licenses/by/4.0/

DANIEL M. CASTRO et al.

PRX LIFE 2, 023008 (2024)

results therefore suggest that CV, as employed by Fontenele
et al. [43], is actually not a good “effective” control parameter
after all, since it fluctuated widely even for a fixed value
of the bona fide control parameter of the model. Moreover,
they raised the possibility that the urethanized rat cortex was
actually close to the critical point most of the time, instead of
only en passant. The model identifies subsampling in spiking
data as the key ingredient responsible for distorting avalanche
results, causing them to inaccurately suggest that the system
is not critical, when in fact it is [24].

If true, these results suggest that too large and too small
values of spiking variability would correspond to small fluc-
tuations around the critical point, a possibility that would be
important for the understanding of cortical states. Yet, these
inferences rely exclusively on model-derived results. How can
we go about testing whether this is true in the real data?

What we propose here is to address this question by an-
alyzing the data with the phenomenological renormalization
group method (PRG) introduced by Meshulam et al. [63].
The method consists of gradually coarse-graining neuronal
data, much like Kadanoff’s renormalization group block spins
method [64]. The renormalization group intuition is that,
given a system’s scale invariance at a second-order phase
transition, its collective dynamics is not sensitive to most
microscopic details. Thus, the recursive coarse-graining pro-
cedure should lead to a fixed point in model space. This, in
turn, is reflected in nontrivial scaling exponents associated
with different statistical features, as well as non-Gaussian
activity distribution. The PRG method conforms to these ideas
by yielding scaling exponents without relying on an explicit
model.

To assess to which extent scaling persists as spiking vari-
ability changes, we conjugate the PRG method [63] with a
state-dependent analysis, segmenting the data by CV [43]. If
indeed the brain is deviating significantly from criticality as
CV values fluctuate to very large or very small values, the
scaling exponents as revealed by the PRG should be trivial in
these extremes. But are they?

II. METHODS

A. Data acquisition and preprocessing

Nine extracellular recordings of ongoing activity in the
rat’s primary visual cortex (V1) under urethane anesthesia
are used. Each recording is about 3 h long. All nine datasets
use the same surgery and recording protocol, as previously
described [24,43,65].

As described previously, the recording has been done from
nonalbino and albino urethane-anesthetized male 3- to 4-
month-old rats (Long-Evans, n = 2 [24]; Wistar-Han, n =
7 [65]). They were anesthetized with urethane (1.58 and
1.44 g/kg, respectively). As soon as the animal reached plane
anesthetics, the surgery including trichotomy, craniotomy, and
durotomy (only nonalbino) was performed. The coordinates
used to guarantee V1 recording access [66] were AP (antero-
posterior) = —7.2 mm and ML (mesolateral) = 3.5 mm.

A 64-channel silicon probe (BuzsakiA64sp, Neuronexus)
with six shanks 200 um apart was implanted in the primary
visual cortex deep layers. In each shank, ten channels of area

160 um? were disposed from the shank tip in a staggered
configuration, 20 wm apart. Four extra channels exist along
the fourth shank for tissue depth reference. The raw data were
sampled at 30 kHz (16 bits/sample), amplified, and digitized
in a single head-stage Intan RHD2164. The extracellular elec-
tric potential raw data was preanalyzed using Klusta-Team
Software.

Out of the nine recordings, seven were performed at the
University of Minho/School of Medicine abiding by the Eu-
ropean regulations (European Union Directive 2010/63/EU),
and all the experiments were approved by the Ethics Commit-
tee of the University of Minho (SECVS protocol #107/2015).
Two of the recordings were performed at the Systems
and Computational Neuroscience Laboratory at the Fed-
eral University of Pernambuco in strict accordance with
the CONCEA-MCTI directives and were approved by the
Federal University of Pernambuco (UFPE) Committee for
Ethics in Animal Experimentation (23076.030111/2013-95
and 12/2015).

We employed both single-unit and multiunit activities
(SUA and MUA). Data were divided in 50-ms bins, as pre-
viously described [43—45]. A unit { was considered active
[oi(t) = 1] if there was a least one spike within a bin centered
at time ¢, and inactive [o;(t) = 0] otherwise. The population
firing rate p(¢) at each bin was estimated as the total number
of spikes divided by the bin duration. Due to the nature of the
method, only experiments with N > 256 units were selected
for this analysis.

B. The PRG procedure

In this subsection, we provide a brief overview of the
PRG coarse-graining procedure, which is described in detail
in previous works [63,67]. In the context of the usual renor-
malization group applied to, say, the Ising model, Kadanoff’s
original idea of grouping neighboring spins into blocks makes
sense because the interactions are known and local. Since the
interactions are typically unknown for neuronal data, the idea
of the PRG method is to make use of pairwise correlations as
a proxy.

The procedure consists of repeatedly grouping the most
correlated pair of neurons until there are no other pairs left.
If al.(l)(t) is the binary (ai(l) € {0, 1}) time series of neuron i
(i=1,...,N), then after the first PRG iteration one has N/2
coarse-grained variables, or “clusters’:

6@ =g +U;*l()i)’ 1)

where a;*l()i) is the neuron maximally correlated with oi(l).

After k such iterations, we have Ne = N/2F units (clusters)
{cr;k“)} i=1,...Ne» €ach of size Cy,e = 2¢ (Fig. 1). To ensure we
restrict our analysis to cases where enough iterations can be
made, data trials with N < 256 are excluded.

Under this scheme, the presence of a nontrivial fixed
point in the renormalization group should be assessed by
scaling relations on several statistical quantities, namely, the
mean variance, the silence probability, the covariance matrix
spectrum, and the mean autocorrelation characteristic time.
Additionally, the activity distribution under a nontrivial fixed
point should approach a non-Gaussian form [63].
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FIG. 1. (a) Visual scheme for the PRG procedure. Repeated iterations sum up maximally correlated variables, resulting in clusters of
size Cyj,e = 2F after k iterations. (b) Data subject to the coarse-graining procedure. Correlation matrices for Cyj,. = 4, 8, and 16 provide us a
visualization of the change of scale after each step. Diagonal terms were removed for visualization purposes.

1. Mean variance

The mean variance of the activity of clusters of size Cgjze is
written as

Ne

Ma(Ca) = - L LEP) - L @

€ ol

Here, angle brackets denote temporal averages. M, grows with
cluster size as

M(Cize) ox CX 3

size?

where one expects @ = 1 for independent variables and & = 2
for completely correlated ones. Nontrivial self-similar struc-
ture should present itself as an intermediate exponent between
those two values.
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2. Probability of silence

When examining the distribution of individual coarse-
grained variables, we can track the probability that a cluster
remains silent at a given moment. For independent variables,
such probability decays exponentially, as clusters are simply
sums of uncorrelated activity. The presence of self-similarity
is assessed again through a power-law:

F(Csize) = — 10g Psitence X Cfize- “

F(Csize) can be thought of as an effective free energy of the
system [63], although there is no definition for a temperature
in this case. For independent variables, one expects, therefore,
B = 1. As the summing of identical variables does not affect
Piitence» the perfectly correlated case gives the opposite bound-

ary p =0.

3. Characteristic autocorrelation time

A third scaling relation results from dynamical scaling of
the coarse-grained variables. From the autocorrelation func-
tion of an individual cluster, namely,

(oD 10)o Dty + 1) — (O-i(k+l)>2

Ci(Csizea t) = s (5)
<(Ui(k+]))2> - (Ui(k+l)>2
we take the average across all clusters
1 &
CCest) = 1= Zc,(csm, ). 6)

From here, we can define the characteristic autocorrelation
time as C(Csize, Tc) = 1/e. In the presence of dynamical scal-

ing, it should behave as 7. o< C¢,,.. For uncorrelated units, we

find trivial exponential decay at all iterations (Z = 0).
4. Covariance spectrum

We start with the intracluster covariance matrix, defined by

Gj = (o,ﬁ”a;”) - (aﬁ”)(a;“), (7

1

with ai(l) and 0;1) being all original variables belonging to a
cluster at the kth iteration o ™. From this matrix, we take its
eigenvalues {A,},—i . c,., defined by

Ciize

Z Cijujr = Aty (®)

.....

and rank them in descending order. The resulting curve has
also been shown [63] to have scaling relations at a renormal-
ization group fixed point:

O\ M
Ay X <%> . C))
r

Notice that scaling occurs concomitantly with shape collapse
of the eigenvalues decay, another signature of scale invariance.

5. Momentum space activity distribution and its kurtosis

When analyzing the activity distribution of coarse-grained
variables, we make use of a momentum space (MS) trans-
formation [68]. This is done by employing a subset of the

covariance matrix eigenvectors {u,}, in descending order of
their respective eigenvalues, by means of the projectors

Ninodes
Pij(Nmodes) = Z UirU jr, (10)
r=1
where Nyodes = N, N/2,...,N/ 2k With these projectors we
can build momentum space coarse-grained variables,

N
d)i(Nmodes) = Zi(Nmodes) Zﬁij(Nmodes)[U;l) - <G;l))]a (11)
J

where 7;(Nmodes) is chosen to make (¢7 (Nmodes)) = 1 [67].
In this case, coarse-graining amounts to including an ever
smaller fraction of modes into building the new variables.
This can be done because, for systems with translational in-
variance, the eigenvalue spectrum is equivalent to the Fourier
transform of the correlation matrix [67]. In particular, we are
interested in the activity distribution of the coarse-grained
variables:

1 N
Pl @) = = D Pl (Nmoaes) = 1. (12)
i=1

In this representation, a trivial distribution (i.e., with-
out strong enough correlations) would fall into a Gaussian
form for a sufficiently small number of modes, whereas
self-similarity presents itself as a non-Gaussian distribution.
To assess the Gaussianity of the distribution, we calculate
the kurtosis x = (¢*)/(¢*)>. For a Gaussian distribution,
Kk =3.

C. Surrogate data and scaling criterion

In order to test the robustness of our results, we repeat
all the procedures for surrogate data, which were obtained
by shuffling the interspike intervals of each unit within each
analyzed time window (see Sec. II D).

We also choose a criterion to explicitly determine the
presence or absence of scaling in our data based on sur-
rogate data. For each analyzed time window, we compare
the kurtosis of the corresponding MS activity distribution
[Eq. (12)] with the kurtoses of the distributions of MS sur-
rogate data of all windows from the time series. Note that
this is a stronger criterion than comparing with the kurtosis
of a single window. We consider the activity in the time
windows to present scaling if the value of its kurtosis is 1
standard deviation above the mean kurtosis of the surrogate
data.

D. State-dependent analysis

To assess how different levels of spiking variability may
impact the coarse-graining analysis, we segment our data into
30-s windows. For the jth such window, we extract the popu-
lation firing rate coefficient of variation (CV), defined as

(02— (p);
(0);

where p(t) is the “instantaneous” firing rate (estimated every
50-ms time bin) and averages are taken within the jth time

CV; = , (13)
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FIG. 2. Scaling relations obtained from the coarse-graining procedure for a single animal. (a) Mean variance, (b) silence probability, and
(c) characteristic autocorrelation decay time as functions of cluster size. (d) Intracluster spectrum of the covariance matrix. Panels (e) and (f)
show the probability density Px(¢) of MS coarse-grained variables in the original and surrogate data, respectively. In panels (a)-(d), 7> stands
for the usual coefficient of determination, used to assess the quality of our power-law fits. Points (shades) are averages (standard deviations)

across all the 600-s windows.

window. We note that CV as defined above is also referred to
as “population firing rate variability” [69], but here we refer
to it as “spiking variability” for simplicity.

As mentioned previously, CV can be used as a proxy for
the cortical state, with higher (lower) values corresponding
to more (less) synchronized spiking activity. Accordingly,
pairwise correlations increase monotonically with increasing
CV [24,43,65].

We parse windows according to their CV values and inves-
tigate how scaling relations are affected by different levels of
spiking variability, i.e., across the spectrum of cortical states.
We then group results and average across windows of similar
CV values.

III. RESULTS

A. State-independent scaling results

Initially, we investigate the outcomes of applying the PRG
procedure to raw spiking data. In other words, at first we
disregard the fact that the spiking variability changes a lot
in the scale of the whole experiment and we obtain results
regardless of the CV value. The PRG procedure is applied to

600-s windows of the whole time series and then averaged
across those windows.

We find that, for each animal, the mean variance of the
cluster activity increases with cluster size as a power law with
a nontrivial exponent 1 < o < 2 [Eq. (3) and Fig. 2(a)]. For
surrogate data, obtained by shuffling the interspike intervals
of each neuron within a given time window, results are closer
to what is expected for independent data.

As we progressively coarse grain and our variables become
sums of an increasing number of neurons, the probability of a
variable being completely silent decreases for large Cgize. We
obtain a power-law decay for the free energy with § < 1, as
expected for self-similar correlations [Eq. (4) and Fig. 2(b)].
Surrogate data, on the other hand, show a faster decay, which
amounts to the trivial case 8 = 1.

Dynamical scaling can also be found in the coarse-grained
variables. With autocorrelation decaying exponentially with
characteristic time 7., we find that 7. o< C%,, [Fig. 2(c)]. This
means that, as we look at clusters comprising an increasing
number of neurons, their autocorrelation takes longer to de-
cay. For surrogate data, this correlation time is independent of
cluster size.
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FIG. 3. Results of state-dependent PRG analysis for the same subject shown in Fig. 2. (a) Example of the coefficient of variation over time
for a single experiment. The curve on the right depicts a histogram of CV. (b) Examples of raster plots for different CV values. (c) Activity
distribution of variables built from N/64 eigenmodes. Each curve averages all trials within a range of CV [in this case separated in 30 quantiles,
3 between each dashed line in (a)]. (d) Kurtosis of the distribution of MS coarse-grained variables (built from N/64 eigenmodes). The darker
curve is the moving average over windows of 12 consecutive points. Gray stripes comprise the range of x values that fail to meet the scaling
criterion (Sec. I1C), i.e., 0 < K < (K)moete 4 o™ () _(h) Impacts of state dependence on the scaling exponents. (e), (f) Exponents for
the scalings of the mean variance (@) and log silence probability inside a cluster (E). For low enough CV, such that « is within the surrogate
range, exponents (represented by crosses) approach their trivial values of 1, close to the surrogate results (white dots). Increasing CV, exponents
continuously evolve to a stable value. (g), (h) Exponent fx for the scaling of the covariance matrix eigenvalues and exponent 7 for the scaling of
the mean autocorrelation decay time. In these cases, state-dependent analysis does not directly impact the scaling exponents’ values, although

exponents obtained from low CV trials, like surrogate data, fail to achieve a good power-law fit.

The last power-law relationship comes from the eigenvalue
spectrum of the covariance matrix. We find that the eigenval-
ues decay with rank with an exponent it < 1 [Eq. (9)], but not
so for the surrogate data [Fig. 2(d)].

Finally, we also obtain the probability distribution of the
activity as we coarse-grain variables by reducing the number
of modes in momentum space (Sec. IIB5). The procedure
leads to a non-Gaussian distribution [Fig. 2(e)], which is
a signature of a self-similar correlation structure. Surrogate
data, on the other hand, are consistent with a trivial Gaussian
distribution [Fig. 2(f)].

Averaging these results over the group of nine
animals [henceforth denoted by (---),], we obtain
(o), = 1.66 +0.28, (E)g =0.70 £ 0.08, (z), = 0.33 £ 0.07,
and (ft), = 0.56 = 0.10. To quantify the difference between
the activity distributions of regular and surrogate data, we
obtain the following values of kurtosis at the highest level of
coarse graining: (i), = 43 £23 and (k) %" = 6.4 + 1.4.
As we see in the following, the large standard deviation
observed in the kurtosis of the actual data is a consequence
of having disregarded the wide variation of cortical states
produced by urethane [24,43,61,65]. This amounts to lumping
together regimes which, as far as scaling is concerned, turn
out to be quantitatively and qualitatively different.

B. State-dependent scaling results

Next, we investigate to which extent the scaling results
change as we parse the data according to spiking variabil-
ity. The procedure is similar to that of previous studies
[24,43,44,65], as we calculate the CV of the population firing
rate in windows of 30 s and run the PRG analysis pipeline in
each window (Sec. II D).

The cortical CV time series of a typical urethane-
anesthetized rat is erratic [Fig. 3(a)], with low values
corresponding to asynchronous activity and high values corre-
sponding to more synchronized spiking [Fig. 3(b)]. Low and
high levels of CV and synchronization, on the other hand,
are associated with low and high mean values of pairwise
spiking correlations [55]. Given that these correlations play
an essential role in the PRG coarse-graining procedure, it is
reasonable to expect that CV levels will have some impact on
the results.

And, indeed they do. When the MS coarse-graining is
applied to high-CV data, the procedure converges to nontrivial
(i.e., non-Gaussian) activity distributions [Fig. 3(c)]. How-
ever, as the value of CV under analysis is gradually decreased,
the distributions eventually approaches a trivial, Gaussian-like
shape [Fig. 3(c)].
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subject. Results for real (surrogate) data in solid (dashed) lines. Hatched area represents the region where both scaling and no scaling may
be found for a given subject [also depicted in panel (g) for the group average]. (f) P(CV) for each subject. (g) P(CV, scaling): Probability
densities of CV for trials that do or do not exhibit scaling. Hatched area covers the range of CV where both scaling and no scaling may be
found, and a vertical line at CV* = 0.70 marks the point at which scaling and no scaling are equiprobable. (h) P(scaling|CV): Conditional

probability density of finding scaling given a CV value.

Employing the kurtosis to assess the non-Gaussianity of
the distributions, we observe that its dependence on spiking
variability is remarkable: for low enough CV, the distributions
are comparable to the Gaussians observed in surrogate data
[Fig. 3(d)]; above a characteristic value of CV (~0.7), the
kurtosis departs from its surrogate value and then increases
monotonically [Fig. 3(d)]. The MS coarse-graining analysis
therefore suggests two qualitatively different regimes, a trivial
one below a characteristic CV value and a nontrivial one
above it.

The dependence of kurtosis on spiking variability is similar
to a typical plot of order parameter versus control parameter
in a second-order phase transition, but such a comparison,
almost irresistible at first glance, would be wrong. The excess
kurtosis in the urethane data is a signature of nontrivial scaling
at all points above a certain level of CV. This is in contrast to
the scaling expected at a single critical value of the control
parameter in a phase transition [70]. The results of the PRG
coarse-graining procedure therefore support the conjecture
put forward by Carvalho et al. [24] that CV indeed is not a
good candidate for a control parameter.

The behavior of the other exponents aligns consistently
with this interpretation. Employing kurtosis above surrogate
levels as a criterion for proper scaling (as detailed in Sec. 11 C),
we find again two qualitatively distinct behaviors. For low
CV (£0.7) and near-surrogate «, scaling relations exhibit poor
goodness-of-fit, resulting in exponents that span a wide range
of values [as indicated by the gray regions in Figs. 3(e)-3(h)].

However, as CV increases sufficiently (=0.7), causing « to
depart from its surrogate levels and reveal the non-Gaussian
nature of the activity distributions, the exponents @, B8, i,
and 7 stabilize within scaling relations characterized by excel-
lent goodness-of-fit [Figs. 3(e)-3(h)]. Note that these stable
values differ slightly from the values obtained for the state-
independent analysis (shown in Sect. IIT A), since those mix
together two regimes that in hindsight we discover to be
completely different.

C. Group results

We systematically repeat the state-dependent scaling anal-
yses for all nine subjects available in our study. By computing
averages over data segments that meet our defined scaling
criterion (Sec. IIC), we observe a consistent behavior of
exponents across the subjects (@ =1.7+0.3, 8 =0.62 +
0.08, it = 0.63 +0.12, and 7 = 0.36 £ 0.07), and the range
of these exponents exclude their surrogate counterparts
[Figs. 4(a)-4(d)].

Although the range of kurtosis values varies across subjects
[Fig. 4(e)], this variation is in line with their widely different
distributions of spiking variability [Fig. 4(f)]. Notably, despite
these differences, the characteristic CV value at which scaling
emerges remains remarkably robust [Fig. 4(e)].

It is important to note that, below the characteristic CV
value, fluctuations in the kurtosis allow it to enter and leave
the region that we chose to be our scaling criterion [gray
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stripe in Fig. 3(d)]. We therefore estimate the joint probabil-
ity P(scaling, CV) (see Supplemental Material [71]), which
skews towards higher CV values in the presence of scaling
and lower CV values in its absence [Fig. 4(g)]. Overall, we
observe that a substantial proportion of the subjects’ data
analysis time is spent within the scaling regime, accounting
for 76% of the entire duration [Fig. 4(g)]. Still, the nonscal-
ing regime is far from negligible. These metrics can also be
calculated for each subject (Figs. S2-S10 in the Supplemental
Material [71]) and then averaged, yielding 72% =+ 21% of the
time spent within the scaling regime.

Alternatively, we also calculate the conditional probability
P(scaling|CV) which, for the group data, reveals a character-
istic CV value at half-height of 0.7 [Fig. 4(h)]. This parameter
can be estimated for each subject and then averaged, resulting
in a group-average of (CV), = 0.72 & 0.06 (see Supplemen-
tal Material [71] for more details).

IV. CONCLUDING REMARKS

We have applied the coarse-graining procedure proposed
by Meshulam et al. [63] to spiking data from the primary
visual cortex of urethane-anesthetized rats and shown that it
consistently yields signatures of scale invariance. Then we
investigated to which extent these results depended on spiking
variability, which is a proxy for cortical states. The association
between cortical states and behavior is well established, with
asynchronous states appearing during active waking and REM
sleep, for instance, and synchronous states appearing during
drowsiness and slow-wave sleep [55]. Urethane anesthesia is a
convenient experimental setup that allows us to explore a wide
range of cortical states, from asynchronous to synchronous
regimes, and probe whether there is any relationship between
these regimes and scaling.

To determine the presence of scaling in a given time win-
dow, we compared the kurtoses of the MS activity distribution
and of the surrogate data. As we analyzed data with increasing
values of spiking variability, the scaling criterion was met only
above a characteristic value of CV, and exponents gradually
flowed from trivial values to nontrivial ones. Moreover, in
the presence of nontrivial scaling, exponents were relatively
stable. If we interpret scaling as a sufficient signature of a
second-order phase transition, our results suggest that the
system goes in and out of criticality, spending on average
about three quarters of the experiment duration in a scaling
regime.

Interestingly, the CV time evolution differs completely
among the nine analyzed rats. Nonetheless, all of them cross
the threshold between scaling and no scaling in the same
CV range. This means that, to some extent, we can infer
the existence of scale-invariant dynamics within a given time
window based solely on its spiking variability.

These findings are in stark contrast with what has been
obtained via avalanche analysis in the same dataset [43].
That difference is central to the significance of our results.
Fontenele et al. obtained scaling of avalanche exponents only
within a narrow range of intermediate CV values, which
was interpreted as a critical point with CV playing the
role of a control parameter of the system [43]. Carvalho
et al. [24], on the other hand, showed that a model with a

well-defined order parameter tuned very close to criticality
could reproduce the whole range of experimentally observed
CVs, therefore suggesting that CV would be a poor con-
trol parameter. Additionally, it suggested that avalanche-based
results were distorted by subsampling effects, yielding signa-
tures of noncriticality for a system that was, in fact, critical
[24]. The application of the phenomenological renormaliza-
tion group to urethane data presented here supports the model
results of Carvalho et al. [24]: the PRG signatures of criticality
are present in the same broad range of CV values that had been
predicted by the model.

One aspect currently overlooked by the PRG approach is
the influence of varying temporal resolutions on the outcomes
of the method. The selection of time bin durations to de-
fine statistical events, particularly when assessing criticality
in experimental data, remains a persistent challenge in the
field. Depending on the dataset, a wide range of timescales
have been employed to bin the data in different approaches
to assess criticality [72-76]. In our analyses, we opted to
standardize bin duration to 50 ms to ensure consistency with
our primary sources for result comparison [24,43]. However,
recognizing the importance of exploring temporal scales, we
conducted additional analyses on a single subject’s data to
investigate how different temporal resolutions might alter pre-
viously obtained results. Unsurprisingly, we find that PRG
scaling exponents are sensitive to the choice of bin duration
(see Supplemental Fig. S1 [71]), as it is known to occur with
previous methods used to empirically measure scale invari-
ance [24,42].

In recent years, a rich debate has flourished on whether the
nontrivial, scale-free statistics found in brain activity stems
from type-1 criticality (scale-invariant avalanches [2]), type-2
criticality (edge-of-chaos [77]), or a combination of these, not
mutually exclusive in principle [78]. Since in our case only
a small fraction of the cortex is being measured, there is even
another possibility involving multiple external drivings, which
can also result in scale-invariant statistics [79]. Regardless
of the cause, the intermittency of self-similarity in cortical
dynamics invites us to think of which mechanisms could ex-
plain this phenomenon. It might be, for instance, a signature
of self-organized quasicriticality, as proposed in a family of
models with homeostatic dynamics [17,18,21,22,62,80-82].

Spiking data from nonanesthetized animals has recently
been examined within the PRG framework [75]. A logi-
cal progression from this analysis could be applying the
state-dependent approach outlined in this study to similar
datasets. This would allow one to check to which extent
the results obtained here for cortical states visited by the
urethane-anesthetized cortex can be extended to cortical states
that occur under more natural conditions. The fact that
asynchronous states in nonanesthetized animals do show sig-
natures of critical behavior [75], whereas under urethane
they do not, suggests that not all asynchronous states are
equivalent. On one hand, this should not be surprising, given
the obvious behavioral differences between the two condi-
tions. On the other hand, it underscores the necessity of
developing new tools to characterize asynchronous states elec-
trophysiologically, since both awake and urethanized cortices
display similar CV values and pairwise correlation structures
[43,55].

023008-8



IN AND OUT OF CRITICALITY? STATE-DEPENDENT ...

PRX LIFE 2, 023008 (2024)

Given the model-independent nature of the phenomenolog-
ical renormalization group technique, its applicability extends
to any high-dimensional data amenable to binarization. Sub-
sequent studies could explore the presence of scaling across
various experimental setups and within novel systems. Adapt-
ing its usage to human data, as has been done recently [83],
could provide us with markers for clinical aspects of an-
alyzed subjects, for example. This advancement would not
only broaden the utility of scaling analyses beyond theoretical
realms but also render them more accessible and appealing to
a broader audience, potentially sparking greater interest in the
subject.
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APPENDIX: SUA AND MUA

The fact that we employ both SUA and MUA might lead
to the concern that mixing together these different types
of activity will lead to distortions under the PRG proce-
dure. For instance, one MUA might contain spikes from
multiple neurons, hence murking the definition of a “cluster
size.” Moreover, MUAS typically have higher firing rates than
SUAs; hence, one could expect that the PRG procedure would
have a bias to favor the clustering of MUAs together, therefore
resulting in some clusters that represent far more actual neu-
rons than other clusters.

We probe these issues by calculating the fraction of actual
MUA + MUA, SUA + SUA, and SUA + MUA pairs in the
first step of the PRG procedure (across all 30 s time windows)
and comparing these fractions with what would be obtained
by randomly pairing the MUAs and SUAs. For instance, if
we have s SUAs and m MUAs in a given dataset, then the

total number of possible pairs is T = (*%,"). The fractions of

MUA + MUA, SUA + SUA and SUA + MUA possible pairs
are respectively (';) /T, (;) /T, and sm/T.If there were a prob-
lem with a bias in the PRG procedure, then we would expect
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FIG. 5. Comparison of how MUAs and SUAs are joined together
by the PRG procedure. (a) For each 30-s time window analyzed, we
calculate the ratio of MUA + MUA, SUA + MUA, and SUA + SUA
pairs in the first PRG iteration. Then, we compare their averages
(solid straight lines) with the ratio expected from random pairings
(dashed lines). We can see that the PRG does not favor combining
MUAs with themselves. In panel (b), we examine the final iteration
of the PRG, calculating the fractions of MUAs and SUAs within
each cluster (solid lines). The ratios are similar to those of the raw
variables (dashed lines).

to observe a much larger fraction of MUA 4 MUA pairs than
predicted by chance. However, what we find in the data is
the opposite [Fig. 5(a)]. The proportion of MUA + MUA,
SUA + SUA, and SUA + MUA pairs formed by the PRG
procedure in its first iteration is similar to what one would
obtain from random pairs.

We can also examine the final phase of the PRG pro-
cedure, i.e., the final grouping of neurons. In our case,
at this stage coarse-grained variables represent sums of 64
raw variables. We calculate the fraction of MUAs to SUAs
within each cluster [Fig. 5(b)]. As we can see, these frac-
tions closely mirror those of the raw variables, indicating
that MUA units are not inherently predisposed to being
combined.
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