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Inferring the Dynamics of Ionic Currents from Recursive Piecewise Data Assimilation
of Approximate Neuron Models
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We construct neuron models from data by transferring information from an observed time series to the state
variables and parameters of Hodgkin-Huxley models. When the learning period completes, the model will predict
additional observations and its parameters uniquely characterize the complement of ion channels. However, the
assimilation of biological data, as opposed to model data, is complicated by the lack of knowledge of the true
neuron equations. Reliance on guessed conductance models is plagued with multivalued parameter solutions.
Here, we report on the distributions of parameters and currents predicted with intentionally erroneous models,
overspecified models, and an approximate model fitting hippocampal neuron data. We introduce a recursive
piecewise data assimilation algorithm that converges with near-perfect reliability when the model is known.
When the model is unknown, we show model error introduces correlations between certain parameters. The
ionic current waveforms reconstructed from these parameters are excellent predictors of true currents and carry a
higher degree of confidence, greater than 95.5%, than underlying parameters, which is 53%. Unexpressed ionic
currents are correctly filtered out even in the presence of mild model error. When the model is unknown, the
covariance eigenvalues of parameter estimates are found to be a good gauge of model error. Our results suggest
that biological information may be retrieved from data by focusing on current estimates rather than parameters.
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I. INTRODUCTION

Data assimilation is a first-in-class method for building
models of nonlinear dynamical systems [1–6]. It estimates
parameters by synchronizing the model state variables to
time series observations. Once the training period is com-
plete, the optimized models successfully predict complex
time series oscillations ranging from chaotic dynamics [7,8]
to biological neurons [9–12] and networks [13]. The es-
timated parameters hold the further promise of revealing
hidden internal properties of biological systems. The chal-
lenge, however, is that the state equations of neurons are
generally unknown and modeling neurons with empirical
models such as the Hodgkin-Huxley model [9,10,14–19] in-
troduces model error which biases parameter estimates away
from true values [20–28]. Although much attention has been
paid to multivalued parameter solutions in biological in-
ference problems [29–32], a systematic study is needed to
understand its pervasiveness in the optimization of erroneous
nonlinear models which goes beyond the biological argument
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that redundant parameters are needed to preserve a ca-
pacity to adapt [31,32]. Correcting parameter sloppiness is
complicated by additional requirements that the optimiza-
tion problem has to meet such as observability [33–36] (the
state vector is uniquely constrained at every point of the
assimilation window) and identifiability [8,37–42] (the stim-
ulation protocol elicits enough information from the neuron
to constrain all model parameters). These conditions can
be difficult to quantify and are not systematically checked
[9,43–47]. As a result, several authors have opted to develop
leaner models with fewer parameters [48–50] in an attempt
to reduce parameter error or simply focused on predictions
alone [29].

Here, we show that the currents passing through ion
channels can be predicted more reliably than ion channel pa-
rameters. We propose that the covariance matrix of parameter
estimates constitutes a suitable metric of model error when the
biological model is unknown. We introduce recursive piece-
wise data assimilation (RPDA) as a novel parameter search
algorithm with improved convergence. Recursive piecewise
data assimilation biases the state vector towards the true solu-
tion by reinjecting membrane voltage data in the state vector
at regular intervals across the assimilation window. When
the model is known, RPDA obtains the true solution with
near perfect reliability and minimal error (less than 0.1%),
independently of the choice of initial state vectors and stim-
ulation protocols. The uniqueness of solutions proves that
the observability and identifiability criteria are fulfilled. We
then introduce model error by detuning the exponent of a
gate variable in the Hodgkin-Huxley model and study the
dispersion of parameters estimated by two erroneous variants
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of this model (ErrM1 and ErrM2). Two further model variants
adding a supplementary ion channel to the original model
(ErrM3) and to its ErrM1 variant (ErrM4) gave the parameter
and current dispersions of overspecified models. We find that
model error introduces correlations between blocks of param-
eters defining the same ion channel type. The calculation of
ionic currents integrates these correlations with the effect that
mean current predictions deviate by less than 8% from their
true values compared to over 100% for some parameters.
Uncertainty on current estimates is less than 4.5%, whereas
it is 47% on parameters. Overspecifying conductance models
by adding extra ion channels to them is not found to induce
significant compensation between parameters. Unexpressed
ion channels are correctly filtered out, while those present
are assigned the correct current values, even by the mildly
erroneous model ErrM4. We finally compare the uncertainty
on currents estimated with intentionally erroneous models
(ErrM1 to ErrM4) to those of a guessed CA1 model trained on
CA1 hippocampal neuron data. We find that the uncertainty on
the reconstructed CA1 currents is 14% compared to 4.5% on
ErrM2 currents. As the uncertainty on ionic currents increases
with model error, we estimate that the error in the CA1 model
is about 3 times greater than the error introduced by detuning
a single gate exponent in ErrM2. Our findings suggest that the
predictive accuracy of RPDA is sufficient to detect ion channel
dysfunction [23,51–58] and to infer the blocking action of ion
channel antagonists [59].

II. RECURSIVE PIECEWISE DATA ASSIMILATION

We use data assimilation [1,2] to optimize the state vari-
ables and parameters of Hodgkin-Huxley-type models [60] by
minimizing a least-squares cost function [9,10,19]. This func-
tion measures the misfit between a state variable representing
the membrane voltage x1 and the experimental membrane
voltage Vmem recorded at discrete times ti, i ∈ [0, N] spanning
the assimilation window of duration T :

c(�x(0)) = 1

2

N∑
i=0

{[x1(ti, �x(0)) − Vmem(ti )]
2 + xL+1(ti )

2}. (1)

The state of the neuron is represented by a vector �x with L +
K + 2 components. Vector components are x1, the membrane
voltage; x2, . . . , xL, the gate variables of ion channels; xL+1

and xL+2, the Tikhonov regularization variable [61–63] and its
time derivative; and xL+2, . . . , xL+K+2, the model parameters.
Model parameters are treated as state variables whose time
derivative is zero. If a parameter were believed to change
in time, as is sometimes the case in biology, the problem
formulation would easily account for this by replacing zero
with the rate of change of the parameter. The cost function is
minimized subject to both equality constraints

dxl

dt
= Fl (x1, . . . , xL+K+2), l = 1, . . . , L + K + 2, (2)

specified by the neuron model and the zero time derivatives of
model parameters expressed as

Fl (�x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−J/C − xL+1(x1 − Vmem ), l = 1
(xl∞ − xl )/τl , l = 2, . . . , L
xL+2, l = L + 1
unspecified, l = L + 2
0, l = L + 3, . . . , L + K + 2

(3)

and inequality constraints

xmin
l � xl � xmax

l , l = 1, . . . , L + K + 2, (4)

specifying the range of variation of membrane voltage, gate variables, regularization term, and parameters

[
xmin

l , xmax
l

] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−100 mV, 50 mV l = 1
0, 1 l = 2, . . . , L
0, 1 l = L + 1
−1, 1 l = L + 2
pmin

l , pmax
l l = L + 3, . . . , L + K + 2.

(5)

The J = JNa + JK + · · · − Jinj is the current per unit area of
the neuron membrane. This includes all voltage-gated ionic
currents (Na, K, etc.) and the current injected to drive neuron
oscillations, Jinj. The slow pump and exchange currents main-
taining ionic gradients across the membrane are implicitly
included in the constant reversal potentials ENa and EK of Na+

and K+ ions. The C is the membrane capacitance, τl is the
recovery time of ionic gate l , and xl∞ is the steady-state value
of gate variable xl . The user sets the parameter search range
[pmin

l , pmax
l ] to the widest biologically plausible range for each

parameter. Data assimilation outputs the optimal parameters
and the state variables at t = 0 as �x(0).

The convergence of data assimilation is compromised by
badly conditioned problems that one encounters in biology.
When the model is known, the global minimum of Eq. (1)
is well defined. However, systems with a large number of
unobserved state variables (L > 12) may fail the observability
criterion. This may cause the parameter search to get stuck
in local minima of the cost function. These issues have been
partially remedied by increasing the embedding space [8,34–
36,42,64], improving the design of the injected current wave-
form, or using noise regularization [16,65]. These methods
did not achieve 100% convergence however. When the model
is unknown, as is always the case of real neurons, the global
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FIG. 1. RPDA algorithm. (a) Algorithm flowchart. (b) The RPDA algorithm synchronizes the membrane voltage variable x1 to the time
series data Vmem in blocks of M discrete time points. The algorithm reinjects Vmem in the model at the beginning of each block (red circle).
(c) Example of recursive convergence starting from M0 = 6 and increasing the block size to M = N . This follows two “false starts” at M0 = 2
and M0 = 4.

minimum may not coincide with the true solution. Parameter
searches starting from different initial state vectors may get
stuck at different minima, giving multivalued solutions.

The RPDA algorithm, which we present in Fig. 1(a), im-
proves the convergence of the parameter search by applying a
bias towards the true solution. This is achieved by reinjecting
membrane voltage data in the optimization problem every
M data points. The membrane voltage state variable x1 is
replaced with Vmem at time points t0, tM−1, t2M−1, . . . in the
expression of the equality constraints linearized by Simpson’s
and Hermite interpolation [65]

xl (ti+2) = xl (ti ) + �t

(
1

3
Fl (�x(ti )) + 4

3
Fl (�x(ti+1))

+ 1

3
Fl (�x(ti+2))

)
,

xl (ti+1) = 1

2
[xl (ti ) + xl (ti+2)] + �t

4
[Fl (�x(ti)) − F (�x(ti+2))],

l = 1, . . . , L + K + 2, i = 0, . . . , N − 2, (6)

where �t = T/N . At other times the state vector is propa-
gated normally from ti to ti+2 by Eqs. (6). The substitution
of Vmem also impacts the first and second derivatives of the
objective function with respect to x1. Where the cost function
ceases to depend on x1, its derivatives with respect to x1

vanish. We explicitly set these derivatives to zero at times
t0, tM−1, t2M−1, . . . . This produces a discontinuity in x1(t ) at
the beginning of each M block [Fig. 1(b)], which is the trade-
off for imposing the bias to the solution. Our piecewise fit
of data has similarities to the multiple shooting approach pro-
posed by Zimmer and co-workers [3,66]. However, our RPDA

method performs piecewise assimilation of blocks of data
through redefined constraints, whereas Zimmer and Sahle’s
approach redefines the cost function.

The RPDA algorithm recursively improves the accuracy of
parameter estimates by relaxing the bias and reinjecting data
over longer M intervals while restarting the parameter search
from the previous estimate. The initial block size is M0 = 2.
The estimated state vector is then used as the new initial
state in the next parameter search when M is incremented
from M0 to M0 + 2. The search terminates when M becomes
greater than N (N = 50 001). The iterations ultimately restore
the continuity of x1(t ) across the assimilation window. When
the initial bias is too strong the parameter search may fail.
The algorithm then restarts the parameter search from the
next larger block size (M0 = 4). This process is depicted in
Fig. 1(c), where the parameter search is restarted twice after
convergence failed starting from M0 = 2 and then M0 = 4 to
succeed with M0 = 6.

Previous work [16,65] has explored the use of additive
noise as a regularization method, showing that the stochastic
perturbation of the fitting landscape by noise can disrupt local
minima and improve convergence to the global minimum.
In the RPDA method, each segment of length M similarly
perturbs the fitting landscape. However, this perturbation will
be different for each value of M. Thus, if the minimization
stops at a (false) local minimum solution with one segment
length, it will be driven away from this minimum when the
next segment length is used. With each iteration, the solution
remains a good solution due to the bias from reinjected data.
As the segment length increases, minima become deeper and
narrower [67] until the bias vanishes at M = N and the true
solution is obtained.
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FIG. 2. Neuron oscillations and assimilation ranges. Membrane voltage (black trace) is generated by forward integration of the injected
current protocol (blue trace) with the original RVLM model. The w1, . . . , w11 are the 11 assimilation windows used to generate the data in
Table I from well-posed problems. Each window is 200 ms wide (yellow bands) and offset from the next by 40 ms. The top panel shows the
41 assimilation windows ω1, . . . , ω41 used to the generate the data in Table II from ill-posed problems. These windows are also 200 ms long
but offset by 2 ms so that all encompass the same action potential labeled by an asterisk at 88 ms.

III. RESULTS

We then examined the accuracy of RPDA in three cases of
model error in the assimilating model: (i) The model is known
and is correct, (ii) the model is erroneous but error is known,
and (iii) the model is erroneous and the error is unknown. In
the first case RPDA converges 100% of the time towards to the
true solution. In the second case, we assimilate the same data
with four variants of the original model incorporating either
an erroneous gate exponent or redundant ion channels, or a
combination of both. In the third case, we use a guessed con-
ductance model to assimilate membrane voltage recordings of
hippocampal neurons.

A. Well-posed problems

Our reference model is a single-compartment model of
the rostral ventrolateral medulla (RVLM). This model is an
exemplar of the models used to predict neuron oscillations
[9,10] and is easily extended to multicompartment models.
It comprises five common types of ion channels: transient
sodium (NaT), delayed-rectifier potassium (K), low-threshold
calcium (CaT), hyperpolarized cyclic nucleotide (HCN), and
leak (Appendix A). The model has L = 7 state variables
and K = 40 adjustable parameters whose reference values

pk [k = l − (L + 2)] are listed in Table I. The RVLM model
configured with these parameters was used to forward-
integrate the current protocol Iinj(t ) in Fig. 2 and generate
voltage oscillations Vmem(t ) over 1000 ms. The sequence of
depolarizing and hyperpolarizing steps of varying amplitudes
and durations was designed to elicit a response from all ionic
currents in the neuron.

1. Uniqueness of solutions

The convergence of RPDA was probed by initializing the
state vector �x at 28 different locations: 18 initial parame-
ter values were chosen at random in the parameter search
range; the other 10 had parameters set every 1/10 of the
search interval. In this way, the initial state vectors mapped
the entire parameter space, allowing the parameter search to
approach the solution from different directions. All assimila-
tion runs used the same 200-ms-long data set labeled w1 in
Fig. 2.

Recursive piecewise data assimilation successfully con-
verged to the true solution from all 28 initial conditions
(100% convergence rate). Of these assimilation runs 23 con-
verged from M0 = 2. Three more required one restart from
M0 = 4. The last two required two consecutive restarts from
M0 = 4 and 6, as shown in Fig. 1(c). The mean block
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TABLE I. Dispersion of parameters estimated from different initial guesses and different assimilation windows. The pk are the true
parameters used to construct the data being assimilated (Fig. 2). The μk and σk are the mean values and standard deviations of parameters
estimated from different initial guesses of the state vector and assimilation window w1. The μ′

k and σ ′
k are the mean values and standard

deviations of parameters estimated from assimilation windows w1, . . . , w11 starting from the same state vector. Deviations from mean greater
than 1% are highlighted in bold. We set k = l − L − 2.

True 28 initial guesses 11 assimilation windows

k Parameter pk μk

∣∣μk−pk
pk

∣∣ (%)
∣∣ σk

μk

∣∣ (%) μ′
k

∣∣μ′
k−pk

pk

∣∣ (%)
∣∣ σ ′

k
μ′

k

∣∣ (%)

1 A (×0.1 mm2) 0.290 0.290 0.001 0.0001 0.290 0.0030 0.0050
2 gL (mS cm−2) 0.465 0.465 0.002 0.0008 0.465 0.0073 0.0143
3 EL (mV) −65.00 −64.99 0.0009 0.0001 −65.00 0.0011 0.0045
4 gNa (mS cm−2) 69.00 68.91 0.1310 0.0013 69.16 0.2254 0.8875
5 ENa (mV) 41.00 41.01 0.0135 0.0001 40.99 0.0069 0.0200
6 Vt2 (mV) −39.92 −39.92 0.0025 0.0002 −39.92 0.0017 0.0082
7 δV2 (mV) 10.00 10.00 0.0039 0.0002 9.99 0.0072 0.0293
8 δVτ2 (mV) 23.39 23.38 0.0286 0.0009 23.39 0.0187 0.0260
9 t2 (ms) 0.143 0.143 0.1370 0.0023 0.143 0.0731 0.1797
10 ε2 (ms) 1.099 1.099 0.0066 0.0003 1.099 0.0156 0.0382
11 Vt3 (mV) −65.37 −65.36 0.0095 0.0003 −65.40 0.0411 0.1285
12 δV3 (mV) −17.65 −17.65 0.0124 0.0009 −17.65 0.0187 0.0461
13 δVτ3 (mV) 27.22 27.21 0.0148 0.0011 27.23 0.0202 0.0807
14 t3 (ms) 0.701 0.701 0.0624 0.0007 0.701 0.0072 0.0662
15 ε3 (ms) 12.90 12.90 0.0174 0.0002 12.91 0.0906 0.2980
16 gK (mS cm−2) 6.90 6.91 0.0878 0.0080 6.90 0.0293 0.1265
17 EK (mV) −100.00 −100.00 0.0029 0.0003 −100.01 0.0066 0.0254
18 Vt4 (mV) −34.58 −34.57 0.0140 0.0012 −34.58 0.0127 0.0106
19 δV4 (mV) 22.17 22.18 0.0462 0.0027 22.18 0.0267 0.0210
20 δVτ4 (mV) 23.58 23.59 0.0241 0.0011 23.57 0.0307 0.0560
21 t4 (ms) 1.291 1.292 0.0491 0.0051 1.291 0.0343 0.0650
22 ε4 (ms) 4.314 4.312 0.0524 0.0036 4.315 0.0269 0.1059
23 gH (mS cm−2) 0.150 0.150 0.0348 0.0051 0.150 0.0455 0.1587
24 EH (mV) −43.00 −42.96 0.0861 0.0041 −42.99 0.0329 0.0791
25 Vt5 (mV) −76.00 −76.00 0.0006 0.0002 −76.02 0.0220 0.0242
26 δV5 (mV) −5.500 −5.517 0.3099 0.0062 −5.52 0.3440 0.5542
27 δVτ5 (mV) 20.27 20.28 0.0338 0.0016 20.26 0.0306 1.960
28 t5 (ms) 6.310 6.336 0.4088 0.0169 6.59 4.506 17.20
29 ε5 (ms) 55.05 55.03 0.0384 0.0013 54.67 0.6879 1.877
30 p̄ (µm s−1) 0.1034 0.1030 0.3674 0.4924 0.1030 0.7145 5.115
31 Vt6 (mV) −65.50 −65.49 0.0120 0.0006 −65.49 0.0109 0.0154
32 δV6 (mV) 12.40 12.39 0.0798 0.0032 12.41 0.0686 0.2568
33 δVτ6 (mV) 27.00 27.12 0.4613 0.0170 27.04 0.1503 0.3330
34 t6 (ms) 0.719 0.738 0.5071 0.1098 0.735 2.262 8.131
35 ε6 (ms) 13.05 13.06 0.0834 0.0072 13.03 0.1554 0.5307
36 Vt7 (mV) −86.00 −86.00 0.0033 0.0298 −85.98 0.0269 0.2461
37 δV7 (mV) −8.060 −8.064 0.0436 0.0378 −8.069 0.1164 0.2184
38 δVτ7 (mV) 16.71 16.76 0.3021 0.0041 16.67 0.2465 1.311
39 t7 (ms) 28.17 28.12 0.1802 0.0014 28.21 0.1389 1.366
40 ε7 (ms) 288.7 286.8 0.6526 0.2672 287.0 0.5688 2.347

size at which the parameter search arrived within 0.1% of
true values was 〈M〉 = 22. This shows convergence is rapid
once the algorithm has selected a suitable starting block
size M0.

The mean values of parameter estimates μk and their stan-
dard deviations σk were calculated over the 28 sets (Table I).
A majority of μk (34/40) are within less than 0.1% of the
true parameter values. Outliers such as t3, t5, t7, and ε7 relate
to gate recovery times. This is unsurprising as the inverse
recovery time is proportional to the rate of change of its gate

variable. They nonetheless remain within 1% of the true val-
ues. In general, the ultranarrow dispersions (σk/μk < 0.01%)
confirm that parameters are fully constrained and the system
is observable.

With a 100% convergence rate, the RPDA method im-
proves over data assimilation and data assimilation with noise
regularization, which achieve 67% and 94% convergence
rates, respectively [65]. We next demonstrate that the current
protocol fulfills the identifiability criterion by sampling differ-
ent data sets.
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2. Identifiability

Identifiability was investigated by probing the dispersion
of parameters estimated from 11 different sections of the
stimulation protocol. These are the time windows labeled
w1, . . . ,w11 in Fig. 2. Each window is 200 ms long (10 001
data points) starting at 0, 40, 80, . . . , 400 ms. The vector com-
ponents of the initial state vector were set at the midpoint of
the search range in all assimilation runs.

Recursive piecewise data assimilation converged in all 11
assimilation windows. The mean values of parameter esti-
mates μ′

k and standard deviations σ ′
k are shown in Table I.

Most parameters are very well constrained with 31/40 show-
ing deviations of μ′

k from true values of less than 0.1%.
Unsurprisingly, parameters related to gate kinetics show the
largest standard deviations. Yet the deviations of their mean
values remain small, suggesting parameters retain good pre-
dictive power. For example, the standard deviations on t6 and
t5 are 8.1% and 17%, respectively, whereas the deviations of
mean predicted values from true values are 2.2% and 4.5%.
Closer examination of the 11 parameter sets shows that the
greater deviations occur in time windows which happen to in-
clude fewer action potentials, such as the 180–300-ms interval
in Fig. 2. Excluding these windows, the standard deviations
fall in the normal range reported in the previous section.
This underlines the importance of including a minimum of
five to six action potentials in the assimilation window for
the identifiability condition to hold. Recursive piecewise data
assimilation easily handles sparse actions potentials by assim-
ilating wider time windows up to 1000 ms long (50 000 data
points) and beyond using an adaptive step size [65].

For the identifiability criterion to hold, it is critical that
the stimulation protocol is sufficiently informative. Had we
chosen to stimulate the RVLM neuron with a constant current
instead of the complex current protocol of Fig. 2, the periodic
voltage oscillations induced by this current would not contain
enough information to constrain all 40 parameters. Some of
these parameters would hit interval boundaries [Eq. (5)] dur-
ing assimilation despite the model fitting the data perfectly.
The tonically stimulated neuron would be nonidentifiable
and could be described as having redundant parameters or
functionally overlapping parameters [31,32]. Identifiability is
always conditional to the system being sufficiently stimulated.
Even in large adaptive systems such as central pattern genera-
tors, changes in dynamics driven by increases in temperature
[68] or pH [69,70] partially lift the functional overlap of
parameters relative to the resting state. By stimulating our
RVLM neuron with a complex current protocol designed to
probe the hyperpolarization, subthreshold, and depolarization
regimes on multiple timescales, we have elicited membrane
voltage oscillations that are different for different parame-
ter values. As a result, all 40 parameters are now uniquely
constrained by the data as demonstrated by Table I. Having
taken great care to demonstrate identifiability, we can now
omit sloppiness associated with parameter redundancy from
our argument in the rest of this paper.

3. Size of the data set

We have carried out assimilations using RPDA over
larger windows of 20 001, 30 001, 40 001, and 49 999 points,

keeping the 0.02-ms time step constant. We found that the
well-posed model converges in all of these cases. The accu-
racy of parameter estimates is very similar to the accuracy
reported in Table I. This suggests that larger windows do
not produce further gains in accuracy in well-posed problems
once they include a minimum of approximately five action
potentials.

B. Ill-posed problems

We now study the dispersion of parameters inferred by
four variants of the RVLM model which keep parametrization
the same. The ErrM1 variant had an erroneous gate exponent
in the equation of the sodium current JNaT [Eq. (A2)] where
the gate probability x3

2x3 was replaced with x2
2x3. The ErrM2

variant increased this error further by replacing x3
2x3 with x2x3.

The ErrM3 variant was an overspecified RVLM model with
an extra potassium A channel. The ErrM4 variant combined
model error with overspecification by adding the extra A
channel to the ErrM1 model. Assimilating data with over-
specified models was useful to determine the degree to which
RPDA was able to filter out an unexpressed ion channel. A
hypothesis which we will be testing here is whether RPDA
assigns a finite conductance to the A channel to compensate
for model error in the Na gate probability or whether RPDA
succeeds in disentangling the contributions of each ion chan-
nel in spite of model error.

For each erroneous model, we estimated 41 sets of param-
eters from 41 assimilation windows ω1, . . . , ω41 in Fig. 2.
We then calculated the mean values and standard deviations
of the ErrM1 and ErrM2 parameters which we compared to
the true parameter values of the RVLM model (Table II).
The covariance matrices of the RVLM, ErrM1, and ErrM2
parameters are plotted in Fig. 3. These show the emergence
of parameter correlations as soon as model error is switched
on in ErrM1 and ErrM2. We then completed the ErrM1 to
ErrM4 models with the parameters estimated by RPDA and
forward integrated these models to predict the Na, K, HCN,
and A-type current waveforms (Fig. 4). These were compared
to the true waveforms of the original RVLM model (dashed
lines) to determine the error in the currents predicted by
erroneous models. The degree of confidence on predictions
was determined by computing the minimum and maximum
current waveforms (Fig. 4) and the standard deviations on
the integral charge under these curves (Table III). The Na, K,
and A-type current waveforms were reconstructed at the site
of one and the same action potential (labeled by an asterisk
in Fig. 2), which was chosen for being common to all 41
assimilation windows used to generate the statistical sample
of parameters. This choice is mainly for consistency as the
current waveforms reconstructed at the site of other action
potentials present a similar aspect. This is because once the
current initiates neuron depolarization, the positive feedback
dynamics of the Na and K currents is largely controlled by
internal neuron parameters and not so much by subsequent
stimulation.

1. Erroneous model variants: ErrM1 and ErrM2

Detuning the gate exponent from x3
2x3 (RVLM) to x2

2x3

(ErrM1) and x2x3 (ErrM2) introduces correlations between
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TABLE II. Dispersion of parameters inferred from erroneous models ErrM1 and ErrM2. The μk and σk are the mean values and standard
deviations of parameters estimated from windows ω1, . . . , ω41 using the RVLM model (reference estimates). The μ1k and σ1k , and μ2k and
σ2k are the means and standard deviations of parameters estimated with the erroneous models ErrM1 and ErrM2, respectively. Figures in bold
(bold and italics) single out deviations from mean greater than 1% (10%).

Ill-posedWell-posed
RVLM ErrM1 ErrM2

k Parameter μk

∣∣ σk
μk

∣∣ (%) μ1k

∣∣ σ1k
μ1k

| (%) μ2k

∣∣ σ2k
μ2k

∣∣ (%)

1 A (×0.1 mm2) 0.290 0.0038 0.291 0.1325 0.293 0.2814
2 gL (mS cm−2) 0.465 0.0107 0.4679 0.1104 0.4712 0.2812
3 EL (mV) −65.00 0.0353 −65.26 0.3737 −65.83 1.213
4 gNa (mS cm−2) 69.01 0.3138 40.68 2.794 19.21 1.260
5 ENa (mV) 41.00 0.0155 46.07 1.535 60.00 0.00
6 Vt2 (mV) −39.92 0.0033 −37.81 0.1669 −35.20 0.3431
7 δV2 (mV) 9.998 0.0021 8.090 0.0476 5.256 0.0778
8 δVτ2 (mV) 23.38 0.0041 20.76 0.1424 15.99 0.2437
9 t2 (ms) 0.1429 0.0203 0.0920 1.681 0.0257 0.0425
10 ε2 (ms) 1.099 0.0003 1.204 0.0107 1.357 0.0285
11 Vt3 (mV) −65.38 0.0542 −63.31 0.7557 −62.20 2.037
12 δV3 (mV) −17.65 0.0068 −18.53 0.1935 −20.79 0.6473
13 δVτ3 (mV) 27.22 0.0136 26.82 0.2939 26.63 1.994
14 t3 (ms) 0.7011 0.0035 0.8124 0.2339 1.077 0.6005
15 ε3 (ms) 12.90 0.0204 12.35 0.1620 11.98 0.2704
16 gK (mS cm−2) 6.901 0.0081 4.379 0.2335 3.046 0.0981
17 EK (mV) −99.99 0.0771 −113.9 8.812 −118.8 7.529
18 Vt4 (mV) −34.58 0.0069 −35.76 0.2745 −36.32 0.2053
19 δV4 (mV) 22.17 0.0078 19.97 0.4515 14.85 0.5289
20 δVτ4 (mV) 23.57 0.0102 22.20 0.3481 18.77 0.2407
21 t4 (ms) 1.291 0.0081 1.038 0.2834 0.7844 0.1177
22 ε4 (ms) 4.315 0.0039 4.797 0.1185 7.165 0.1520
23 gH (mS cm−2) 0.1500 0.0190 0.1499 1.1751 0.1396 2.080
24 EH (mV) −42.991 0.1401 −41.29 1.049 −34.33 8.490
25 Vt5 (mV) −76.012 0.0227 −75.89 0.6289 −75.96 1.735
26 δV5 (mV) −5.517 0.0531 −6.923 1.006 −9.162 3.374
27 δVτ5 (mV) 20.278 0.2831 36.27 16.92 55.35 30.57
28 t5 (ms) 6.445 0.7780 4.107 43.81 4.742 38.13
29 ε5 (ms) 54.85 0.7259 51.77 3.333 48.21 5.084
30 p̄ (µm s−1) 0.1035 0.4509 0.2065 36.04 0.0330 4.068
31 Vt6 (mV) −65.50 0.0191 −65.42 2.098 −63.48 16.48
32 δV6 (mV) 12.40 0.0242 13.59 3.394 15.58 8.806
33 δVτ6 (mV) 27.04 0.1222 19.25 9.183 13.49 10.42
34 t6 (ms) 0.7318 0.5071 2.126 35.76 4.318 46.99
35 ε6 (ms) 13.037 0.0509 27.97 32.26 51.12 42.38
36 Vt7 (mV) −86.00 0.2198 −80.91 9.23 −76.49 4.69
37 δV7 (mV) −8.061 0.0316 −4.811 3.24 −1.995 2.56
38 δVτ7 (mV) 16.72 0.1425 14.59 4.77 22.82 1.97
39 t7 (ms) 28.11 0.27 32.18 8.497 34.79 17.59
40 ε7 (ms) 288.1 0.5512 358.8 30.43 287.2 36.73

parameters. Their standard deviations jump by an order of
magnitude from RVLM to ErrM1 (Table II) and by a smaller
increment from ErrM1 to ErrM2. Gate recovery times previ-
ously identified as the least-well-constrained parameters such
as t5 and ε5 or t6 and ε6 are the most sensitive to model
error. The (t6, ε6) pair is an extreme example where standard
deviations jump from (0.5%,0.05%) (RVLM) to (35%,32%)
(ErrM1) and (47%,42%) ErrM2.

Parameter correlations are also evident in the finite
off-diagonal components of the ErrM1 and ErrM2 covari-
ance matrices (Fig. 3) compared to the RVLM covariance

matrix which has none, except for t5 (parameter 28). The
eigenvalues of the RVLM covariance matrix [Fig. 3(a)] are
vanishingly small. In contrast, the ErrM1 and ErrM2 co-
variances have six nonzero eigenvalues. These represent the
lengths of the principal semiaxes of the data misfit ellip-
soid. In other words, instead of having a well-defined global
minimum as in the well-posed case, the cost function now
has deep valleys along which parameter correlations occur.
We anticipate this result will hold more generally whenever
an erroneous nonlinear model is synchronized to time se-
ries data. The largest correlations are within the parameters
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FIG. 3. Covariance maps of parameters inferred with the RVLM, ErrM1, and ErrM2 models. (a) Eigenvalues of the covariance matrix of
parameters estimated with erroneous models ErrM1 (blue trace) and ErrM2 (red trace). The eigenvalues of the well-posed RVLM model (black
trace) are shown for reference. Covariance maps of the (b) RVLM, (c) ErrM1, and (d) ErrM2 parameters.

of the CaT and HCN currents (k > 25) and they increase
with increasing model error [Figs. 3(b)–3(d)]. An impor-
tant point to note is the clustering of off-diagonal terms in

blocks linking the parameters of individual ionic currents.
This raises the prospect that parameter correlations may com-
pensate each other in the calculation of ionic currents to

TABLE III. Na, K, and HCN ion discharge per action potential. The QNa, QK, and QHCN are the ionic volumes discharged during action
potential (labeled with an asterisk in Fig. 2). The Q̄1 and �1 are the mean values and standard deviations derived from a statistical sample of 41
ion current waveforms. These waveforms are predicted by 41 ErrM1 models completed with the 41 parameter sets from assimilation windows
ω1, . . . , ω41. The same was done for RVLM, ErrM2, ErrM3, and ErrM4. The Q̄N and �N are the mean charge and standard deviations obtained
by assimilating noisy data with the RVLM model.

Well-posed Ill-posed

Ionic volume RVLM ErrM1 ErrM2 ErrM3 ErrM4 Noisy

(nC cm−2) Q̄ (%) �

Q̄ (%) Q̄1 (%) �1
Q̄1

(%) Q̄2 (%) �2
Q̄2

(%) Q̄3 (%) �3
Q̄3

(%) Q̄4 (%) �4
Q̄4

(%) Q̄N (%) �N
Q̄N

(%)

QNa 1126 1.06 1186 0.25 1224 4.50 1148 1.48 1166 1.24 1119 0.98
QK 1098 1.54 1147 0.26 1174 3.32 1113 0.45 1131 0.97 1091 1.47
QHCN 260 3.46 266 2.69 291 4.85 263 2.28 263 1.90 258 3.49
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FIG. 4. Comparison of ionic currents predicted by erroneous and exact models. (a) Current waveforms predicted by the RVLM model. The
minimum and maximum in the Na and K traces give the range of variation of currents reconstructed from the 41 assimilation windows. For
reference, the true Na and K current waveforms predicted by the original RVLM model are shown as the black dashed lines in (b)–(f). Current
waveforms are predicted by erroneous models (b) ErrM1; (c) ErrM2, an overspecified RVLM model; (d) ErrM3, an overspecified erroneous
model; and (e) ErrM4 and from noisy data (f) Noisy.

make more accurate predictions than by relying on parameters
alone.

Figure 4 shows the range of current waveforms recon-
structed from our 41 sets of 40 parameters. For clarity, we only
plot the minimum and maximum waveforms of this range.
The minimum and maximum current waveforms predicted by
the RVLM model are virtually identical to the original wave-
forms [Fig. 4(a)]. Quite remarkably, the ErrM1 model still
predicts nearly identical minimum and maximum waveforms
[Fig. 4(b)] despite the order of magnitude larger uncertainty in
the underlying parameters (Table II). Only in the ErrM2 model
does the dispersion in predicted currents become noticeable
[Fig. 4(c)]. Note also the excellent agreement between the

currents predicted by ErrM1 and ErrM2 and the true RVLM
current waveform (dashed lines). These results demonstrate
that approximate models can still predict the true currents
with a high degree of confidence despite large uncertainty in
underlying parameters.

We then calculated the total Na and K charge transferred
under the predicted current waveforms. The mean values Q̄
and standard deviations � are given in Table III. The standard
deviations �1/Q̄1 (ErrM1) and �2/Q̄2 (ErrM2) remain under
5% for all currents. This is considerably lower than the uncer-
tainty on underlying parameters which can be as high as 50%
(Table III). If we examine how close the average estimates
are to true values we find that the Q̄1 is within 5% (Na) and
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4% (K) of the original model prediction and Q̄2 is within 9%
(Na) and 7% (K). The ionic charges predicted by erroneous
models ErrM1 and ErrM2 are therefore an excellent predictor
of the true ionic charges. In our example, decreasing the Na
gate exponent effectively decreases the slope of the activation
curve. Recursive piecewise data assimilation compensates for
the subsequent widening of the activation curve by reducing
the width parameter δV2 from 10 (RVLM) to 8.1 (ErrM1) and
5.2 (ErrM2) in Table II. The large deviation (50%) of such a
parameter from the true value is a second reason why ionic
currents constitute more stable predictors of true values when
the model is unknown.

2. Overspecified models: ErrM3 and ErrM4

It is sometimes argued that model overspecification causes
multivalued solutions. We investigate this hypothesis by con-
structing two overspecified models, adding a supernumerary
A-type current to the RVLM model (ErrM3) and to the
ErrM1 model (ErrM4). The A-type current density is JA =
gAx14x15(x1 − EK), where x14 and x15 are the activation and
inactivation variables, respectively, and EK is the potassium
reversal potential.

We find that the ErrM3 problem has a single-value solu-
tion that yields the true RVLM parameters. In the process,
RPDA correctly filters out the A-type current by assigning a
negligible value to gA. The standard deviations of the ErrM3
parameters are also small (less than 0.01%) and comparable to
those of the RVLM model (Table II). The narrow dispersion
of parameter estimates explains the narrow dispersion of the
predicted current waveforms and their similarity to the true
current waveforms [dashed lines in Fig. 4(d)]. The mean ion
volume discharged per action potential, Q̄3, is within 1.5%
(Na) and 3% (K) of true values and hence is also an excellent
predictor of true ion discharge. The standard deviations �3

are similar to those of the RVLM model (Table III). These re-
sults show that model optimization successfully disentangles
the contributions of individual ion channels to the membrane
voltage based of the characteristic mathematical form of each
ionic current [Eqs. (A2) and (B2)], which act like a fingerprint.
This allows RPDA to prune out the extra A current even
if a priori the identifiability criterion is broken by model
overspecification.

Now turning to the ErrM4 model, one might argue that
large models succeed in inferring the correct parameters and
currents because it is the exact (RVLM) model that one
overspecifies. One hypothesis is that if the A channel was
added to a wrong model such as ErrM1, its parameters might
compensate for the erroneous Na gate exponent. Examination
of parameter distributions show nothing of the sort occurs.
Recursive piecewise data assimilation assigns a vanishing
conductance gA to the supernumerary “A channel.” This can
be seen in Fig. 4(e), where the A current is zero within a
standard deviation. The predicted Na and K current wave-
forms remains in excellent agreement with true waveforms
(dashed lines) and carry a high degree of confidence in spite
of model error. Turning to the mean charge transferred per
action potential, Q̄4, we find ErrM4 predicts the true ionic
discharge within 3.5% (Na) and 3% (K) of true values. The
volume of A-type charge transfer, Q̄4 = 82 nC cm−2, remains

tiny compared to 1166 nC cm−2 for Na and 1131 nC cm−2

for K, indicating the A channel does not compensate for gate
exponent error. The standard deviations on discharged ions,
�4, are small and comparable to those of the RVLM model
(Table III).

These remarkable results indicate that RPDA successfully
disentangles the contributions of all ion current types even
with approximate models that may include redundant ion
channels. Naturally, we have restricted our study to mild
model error. It is evident that increasing the degree of model
error by altering the equations of several ionic currents at the
same time would eventually degrade the ability of RPDA to
disentangle individual ion currents.

3. Data error: Assimilating noisy RVLM data

For completeness, we examine the case where the Vmem

time series in Fig. 2(a) is corrupted by additive Gaussian
noise. The noise rms amplitude of 0.1 mV is comparable to the
noise level in patch-clamp recordings. Figure 4(f) shows the
Na and K currents predicted by the RVLM model in this case.
The current waveforms have a very narrow dispersion and are
virtually identical to the true waveforms (dashed lines). Hence
the impact of data error on predicted quantities will often be
small compared to model error. The implications of noisy data
in data assimilation were further discussed by Taylor et al.
[65]. Nowadays, current-clamp recordings are of such high
quality that noise and data error are rarely an issue. The real
challenge is model error.

4. Unknown model: Hippocampal CA1 neuron

We complete our study of model error by investigating the
distribution of parameters and ionic currents estimated using
a guessed neuron model. Model error is now unknown, which
means that the mean parameter and current estimates can no
longer be compared to the biological values which we are
seeking. We used the model to assimilate the current-clamp
recordings of a hippocampal CA1 neuron [Fig. 5(a)]. We
refer the reader to the work of Abu-Hassan et al. [71] for
details on the experimental protocol. The guessed CA1 model
had 9 ion channels and 70 parameters (see Appendix B). It
includes the NaT, NaP, K, A-type, Ca, BK, SK, HCN, and
leak ion channels believed to be present in the CA1 soma
[72–74]. We obtained 71 sets of 70 parameters from sliding
time windows. Each window was 200 ms long. Consecutive
windows were offset by 2 ms, the same as in Fig. 2. The
CA1 models completed with any of the 71 sets of parameters
successfully predicted the observed membrane voltage [red
trace in Fig. 5(a)]. The good predictive power of the com-
pleted models therefore suggests that the error in the model
equations is mild.

From these 71 sets of parameters, we reconstructed the
ionic current waveforms at the site of the action potential
labeled by an asterisk in Fig. 5(a). The predicted sodium
currents (NaP and NaT) and potassium currents (K, A, SK,
and BK) are combined into Na and K waveforms in Fig. 5(b).
While the waveform shapes are similar to those of our ear-
lier models (Fig. 4), the predictions cover a wider range and
the potassium current has a slower rate of decay [Fig. 5(b)].
The standard deviations on the ionic charge transferred per
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FIG. 5. Uncertainty on currents and parameters estimated from a hippocampal CA1 neuron. (a) Membrane voltage oscillations (black
trace) driven by injecting a calibrated current waveform (blue trace) into a hippocampal neuron (Wistar rat, CA1 neuron). Voltage oscillations
were predicted by the hippocampal neuron model completed with one set of parameters. The asterisk labels the action potential whose ionic
current waveforms we predict in (b). (b) Minimum and maximum current waveforms (Na and K) predicted by 71 CA1 models completed with
the parameters from 71 assimilation windows. (c) Eigenvalues of the 70×70 covariance matrix of estimated parameters.

action potential are 14.4% (Na) and 14.6% (K) (Table IV).
These are 7 times larger than in the ErrM2 model, suggesting
that the discrepancy between the guessed CA1 model and
the actual CA1 neuron is approximately 7 times greater than
the discrepancy between the ErrM2 model and the RVLM
model. Another measure of model error is the eigenvalues
of the parameter covariance matrix [Fig. 5(c)]. Although the
CA1, ErrM1, and ErrM2 eigenvalues fall in the same range
[Figs. 3(b), 3(c), and 5(c)], the CA1 distribution has a fatter
tail of eigenvalues, which suggests the CA1 model has more
parameters with small functional overlap.

IV. DISCUSSION

In well-posed problems, the RPDA method achieves a
remarkable 100% convergence rate from 28 different initial
conditions (Table I) and with 41 current waveforms (Table II).
Improvement over the 64% convergence rate reported by

TABLE IV. Na and K ion discharge per action potential of a CA1
neuron. Mean ion volumes discharged Q and standard deviation �

are at the action potential in Fig. 5 (denoted by an asterisk therein).

Ion discharge CA1 neuron

(nC cm−2) Q̄ �

Q̄ (%)

QNa 73.43 14.4
QK 466.2 14.6

Taylor et al. [65] is achieved by reinjecting data in piecewise
intervals and by recursively restarting the parameter search
from a larger piecewise interval if convergence fails. The
well-posed case was used to validate the fulfillment of the
identifiability and observability criteria when the true param-
eter solution was recovered, starting from different initial
conditions and current waveforms. With the caveat that a
solution to such an NP-hard inference problem is not known to
exist in general, our empirical simulations suggest that in the
special case of neuron-based conductance models the RPDA
method obtains a solution for systems of up to at least 14
differential equations which describe most neuron types. The
RVLM model is an exemplar in this regard because any ionic
current which may be added will have a similar mathemat-
ical form including sigmoidal activation and first-order gate
dynamics.

By intentionally introducing model error in well-posed
data assimilation (ErrM1 and ErrM2), multivalued solutions
were found to occur due to correlations between parameters
(Fig. 3). Averaging the parameters estimated from sliding
assimilation windows gave mean parameter estimates within
15% of true values except for gate activation times, which de-
viated by a factor of 2 or more and had large uncertainty (up to
46%). In order to achieve a greater consistency in predictions,
we calculated the ionic currents which integrate parameter
correlations (Fig. 4). The mean ionic charge transferred per
action potential deviated by less than 5% (ErrM1) and 8%
(ErrM2) from true values and the coefficients of variation
were very low at 0.26% (ErrM1) and 4.5% (ErrM2). It is
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therefore anticipated that ionic currents could be predicted
with sufficient accuracy to resolve changes in individual ionic
currents induced by inhibitory drugs or ion channel dys-
function as done by Morris et al. [59]. The RPDA method
could thus be incorporated in the drug screening pipeline
as an effective drug toxicity counterscreen detecting changes
and compensation mechanisms in ionic conduction occurring
across the complement of ion channels. These are currently
difficult to resolve with voltage clamps that analyze one ion
channel at a time.

Overspecifying conductance models (ErrM3 and ErrM4)
is no impediment to recovering the true parameters. The mean
current waveforms estimated by ErrM3 are identical to those
of the RVLM model and their coefficient of variation are
identical (less than 1.5%). The ErrM3 waveforms remain
close to the true waveforms (dashed lines in Fig. 4) and their
coefficient of variation is also small (less than 1.2%). The
charge transferred under the ErrM4 waveforms was within
4% of true values and the uncertainty on predictions was less
than 1.3%, despite model error and overspecification. This
demonstrates the ability of the RPDA method to disentangle
the correct contribution of each ion channel to the membrane
voltage without the overspecified current compensating for
model error. The implication is that a universal conductance
model could infer accurate information on ion channels with-
out requiring any prior assumption on which ion channel
might be expressed. The approximate models on which our
conclusions are based had small model error affecting one
ionic current. It is evident that systems incorporating more
severe model error would eventually fail to make sensible
predictions when optimized. Identifying how much model
error the RPDA method can tolerate before its predictions
would fail is an interesting question for future study. Our
findings also suggest that reductionist models that minimize
the number of parameters may not be the best route to improve
accuracy of parameter estimates. Instead, focus should be on
mitigating model error.

We found that standard deviations on parameters (Table II)
and current estimates (Tables III and IV) increase with in-
creasing model error. Therefore, standard deviations provide
a metric to quantify how close a guessed model is to the
unknown biological model.

A possible strategy for correcting model error has been
outlined by Abarbanel and co-workers [75,76]. This consists
in adding a model error term to the cost function and balancing
data error and model error in such a way as to eliminate
the bias of model error on the parameter solution. When
model error is properly weighted, parameters are assigned
true values without having to compensate for model error.
The outstanding challenge here is to determine the covariance
matrix weighting the model error term. We have attempted to
include a model error term in Eq. (3) by weighting it with
a single hyperparameter as done by Ye et al. [75]. However,
this approximation of the model error covariance matrix has
proved too simplistic to resolve all constraint violations. The
optimal value of such a hyperparameter was found to drift
to zero or infinity during parameter search. Further progress
will require novel methods to be developed to evaluate the
covariance matrix weighting model error.

V. CONCLUSION

We have introduced recursive piecewise data assimilation
as a novel method for optimizing neuron-based conductance
models. Recursive piecewise data assimilation improves over
earlier parameter estimation methods by biasing the parameter
search with data and by iteratively improving the solution as
the bias is gradually released. When the model is known,
RPDA achieves a 100% convergence rate towards the true
solution for a wide range of initial conditions and training
data sets. When the model is unknown, model error intro-
duces correlations between parameters estimates. The largest
correlations occur between parameters that define each ionic
current. By reconstructing the ionic currents, parameter cor-
relations cancel out and the current waveforms are found
to approximate very well the true current waveforms. The
ionic charge transferred under these curves is also predicted
with a high degree of confidence of 95.5% when model error
affects a single ion channel and 85% when the true biological
model is guessed (CA1 neuron). The increasing uncertainty
of predictions with increasing model error suggests that the
covariance matrix of parameters is a good metric of model
error. We also found that model overspecification is not re-
sponsible for parameter sloppiness and that RPDA correctly
disentangles all ion channel contributions to the membrane
voltage data even when the model has a wrong gate exponent.
Our work shows that combining variational inference with sta-
tistical analysis offers good prospects for extracting sensible
biological information from data.
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APPENDIX A: RVLM NEURON MODEL

Our model of the rostral ventrolateral medulla con-
siders the soma as a single compartment [22,65] with
five types of ionic currents: transient sodium (NaT),
delayed-rectifier potassium (K), low-threshold calcium (CaT),
hyperpolarization-activated cation (HCN), and a leakage cur-
rent L. The model has seven state variables (L = 7) and 40
adjustable parameters (K = 40). The neuron membrane volt-
age x1 varies as

C
dx1

dt
= −JNaT − JK − JCaT − JHCN − JL + Iinj(t )

A
, (A1)

when driven by injected current Iinj. The A is the effective area
of the soma. The ionic current densities are

JNaT = gNaTx3
2x3(x1 − ENa),

JK = gKx4
4 (x1 − EK),

JHCN = gHx5(x1 − EH),

JCaT = 4 p̄x2
6x7

x1F 2

RT

[Ca2+]i − [Ca2+]oe−2Fx1/RT

1 − e−2Fx1/RT
,

JL = gL(x1 − EL ). (A2)

023007-12



INFERRING THE DYNAMICS OF IONIC CURRENTS FROM … PRX LIFE 2, 023007 (2024)

Nominal values of reversal potentials are ENa = +41 mV,
EK = −100 mV, EH = −43 mV, and EL = −65 mV; ionic
conductances gNaT = 69.0 mS cm−2, gK = 6.90 mS cm−2,
gH = 0.15 mS cm−2, and gL = 0.465 mS cm−2; maximum
calcium permittivity p̄ = 0.103 µm s−1; and intracellular
and extracellular calcium concentrations [Ca2+]i =
2.4×10−10 mol cm−3 and [Ca2+]o = 2.0×10−10 mol cm−6.
Here F = 9.65×104 C mol−1 is Faraday’s constant,
R = 8.324 J K−1 mol−1 is the ideal gas constant, and
T = 298 K.

Ionic gates follow a first-order dynamics

dxl

dt
= xl,∞(x1) − xl

τl (x1)
, l = 2, . . . , 7, (A3)

where xl ∈ {V, m, h, n, z, q, r},

xl,∞(x1) = 1

2

(
1 + tanh

x1 − Vt,l

δVl

)
,

τl (V ) = tl + εl

(
1 − tanh2 x1 − Vt,l

δVτ,l

)
. (A4)

The nominal RVLM parameters are listed in the “True” value
column of Table I. Equation (A1)–(A4) were configured with
these parameters to generate the membrane voltage data Vmem

in Fig. 2. The injected current waveform Iinj(t ) had 50 000
points with a 0.02-ms time step. The RVLM model was
forward integrated with the odeint function of the SCIPY

package in PYTHON 3. The resulting Vmem data were then
assimilated by the RVLM system and its Errm1 to ErrM4
variants.

APPENDIX B: HIPPOCAMPAL NEURON MODEL

This hippocampal neuron model includes the ion channels
in the soma of CA1 neurons [72–74,77,78]: persistent sodium
current (NaP), an A-type potassium current (A), and calcium
activated potassium currents (SK and BK) in addition to the
NaT, K, calcium, HCN, and leak currents of the previous
RVLM model. The model now has 9 ionic currents, 14 state
variables (L = 14), and 69 adjustable parameters (K = 69).
The membrane voltage dynamics is given by

C
dx1

dt
= −JNaT − JNaP − JK − JA − JCa

− JBK − JSK − JHCN − JL + Iinj(t )

A
. (B1)

The ionic current densities are

JNaT = gNaTx2x3
3 (x1 − ENa),

JNaP = gNaPx4(x1 − ENa),

JK = gKx4
5 (x1 − EK),

JA = gAx6x7(x1 − EK),

JCa = gCax2
8x9(x1 − ECa),

JBK = gBKx2
10x11(x1 − EK),

JSK = gSKx12(x1 − EK),

JHCN = gHx13(x1 − EHCN),

JL = gL(x1 − EL ). (B2)

The BK current depends on both the membrane voltage x1

and the internal calcium concentration [Ca2+]i ≡ x14, whereas
the SK current depends on [Ca2+]i only. The BK current has
fast activation, which we take to be instantaneous in line with
that of Warman et al. [72],

x10,∞ =0.5

[
1+tanh

(
x1 − V10 + 130

1 + tanh x14
0.2 − 250

δV10

)]
,

(B3)

where the calcium equilibrium across the membrane is given
by the rate equation

dx14

dt
= x14,∞ − x14

τ11
− JCa

4w
, (B4)

driven by the calcium ion current JCa. The w is the thickness of
the surface area across which Ca2+ fluxes are calculated (w =
1 µm). We modeled the dynamics of calcium gate variables x8

and x9 with Eqs. (A3) and (A4) with the appropriate calcium
gate parameters.

The inactivation dynamics of the BK current has a long
time constant τ11. The rate equation

dx11

dt
= x11,∞ − x11

τ11
(B5)

also follows, where

x11,∞ =0.5

[
1+tanh

(
x1 − V11 + 130

1 + tanh x14
0.2 − 250

δV11

)]
.

(B6)

The activation dynamics of the SK current is fast (x12 ≡
x12,∞), and similar to the BK channel, the activation of the SK
channel is described by

x12,∞ = 0.5

(
1 + tanh

x14 − xt,12

δxτ,12

)
. (B7)

Gate variables x2 (NaP channel) and x6 and x7 (A channel)
follow the first-order response in Eqs. (A3) and (A4) with the
appropriate NaP and A channel parameters.

APPENDIX C: RPDA CODE

The cost function in Eq. (1) and linear constraints in
Eqs. (2) and (3) were differentiated symbolically using
our custom-built PYTHON library PYDSI to generate the
C++ code of the optimization problem. This code in-
puts four text files specifying the dynamical system of
Eqs. (2) and (3), dys_syn.txt; the bounds of Eqs. (4)
and (5), bounds.txt; the problem size N , the starting
point in the data file, and the option of using an adap-
tive step size [65], problem_info.txt; and the initial size
of the piecewise interval M0 and the M0 increment value,
recursive_info.txt. This code was then inserted in the
open-source IPOPT software [79] implementing the MA97
linear solver [80]. The optimizations were run on a 16-core
(3.20-GHz) Linux workstation with 64 GB of RAM and
a University of Bath minicomputer with 64 processors and
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320 GB of RAM. Model equations (2) and (3) were lin-
earized according to Simpson’s rule and Hermite interpolation
[Eq. (6)].

Experiments on rodents were performed under Schedule 1
in accordance with the United Kingdom Scientific procedures
act of 1986.
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