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Computational biology holds immense promise as a domain that can leverage quantum advantages due to its
involvement in a wide range of challenging computational tasks. Researchers have recently explored the appli-
cations of quantum computing in genome assembly implementation. However, the issue of repetitive sequences
remains unresolved. In this paper, we propose a hybrid assembly quantum algorithm using high-accuracy short
reads and error-prone long reads to deal with sequencing errors and repetitive sequences. The proposed algorithm
builds upon the variational quantum eigensolver and utilizes divide-and-conquer strategies to approximate the
ground state of larger Hamiltonian while conserving quantum resources. Using simulations of ten-qubit quantum
computers, we address problems as large as 140 qubits, yielding optimal assembly results. The convergence
speed is significantly improved via the problem-inspired Ansatz based on the known information about the
assembly problem. In addition, we qualitatively verify that entanglement within quantum circuits may accelerate
the assembly path optimization.
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I. INTRODUCTION

DNA sequencing technology has dramatically transformed
the fields of biology and medicine in the past few decades.
This revolutionary tool allows researchers to decode the ge-
netic blueprints of living organisms, leading to breakthroughs
such as early cancer diagnosis and detection of inherited
diseases. The throughput and speed of DNA sequencing
have increased exponentially over the years, surpassing even
Moore’s law that predicts the growth of computational power
[1]. The Sanger sequencing platform, back in 1987, was only
capable of sequencing approximately 1000 nucleotides per
day [1–3]. This limitation rendered the sequencing and assem-
bly of the complete human genome by the Human Genome
Project a 13-year endeavor. In contrast, present technologies
allow for the sequencing of an entire human genome within
mere hours. However, sequencing is just one facet of the
challenge. Genome reconstruction is an indispensable subse-
quent step to pave the way for comprehensive studies. With
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the rapid development of sequencing technology, there has
been a corresponding surge in data volume that amplifies
computational demands, prompting the evolution of diverse
assembly algorithms.

One of the early assembly algorithms is the overlap-
layout-consensus (OLC) algorithm [4–8]. The OLC algorithm
transforms the genome assembly problem into a graph prob-
lem where each vertex represents a read and edges represent
overlaps among all reads, aiming to find a Hamiltonian path
in the graph, which is equivalent to the traveling salesman
problem, a famous NP-hard combinatorial optimization prob-
lem [9]. The OLC approach has been widely used in various
genome assemblers for long DNA fragments. Another differ-
ent algorithm, based on de Bruijn graphs, has been applied in
a series of assemblers, called Eulerian assemblers [10], such
as SOAPdenovo [11], Spades [12], and ABySS [13]. In this
algorithm, vertices in the graph no longer represent reads,
but rather k-mers generated from the reads, and the assembly
process can be reformulated as an Eulerian path problem.
Unlike the intractable complexity of the OLC algorithm, the
de Bruijn graph assemblers are suitable for the assembly based
on next-generation sequencing data that produces a vast num-
ber of high-accuracy short reads.

The next-generation sequencing has been extensively used
due to its accuracy and low cost. Nevertheless, the limited
length of short reads makes it difficult to complete the as-
sembly of highly repetitive complex regions in genomes. The
advent of the third-generation sequencing platform such as
Oxford Nanopore Technology [14] and Pacific Biosciences
[15–17] has enabled the generation of long reads with a length
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of more than 10 kbp, which can span multiple genomic repeats
and improve the contiguity of assembly. However, these long
reads also have a high error rate and are not cost-friendly,
limiting their applicability for large-scale genome projects.

To overcome these challenges, hybrid assembly ap-
proaches combining short and long reads have been devel-
oped. These methods have been shown to present unique
benefits by complementing the strengths and weaknesses of
each read type. For example, Koren et al. [18] and Au et al.
[19] applied short reads to correct long reads and then assem-
bled the corrected long reads. These approaches require high
coverage and usually huge computing resources. Deshpande
et al. [20], Antipov et al. [21], and Wick et al. [22] used
another approach that assembled the short reads first to gener-
ate precise contigs and employed long reads for scaffolding.
The hybrid assembly provides an alternative cost-effective
way since it requires fewer long reads than long-read-only
methods. Some recent studies [23,24] have shown that hybrid
assembly is superior to long-read-only methods in terms of
correctness, contiguity, and completeness. Nevertheless, hy-
brid assembly is still computationally demanding, requiring
powerful computational resources and storage capacity, espe-
cially for large and complex genomes.

In contrast, concerns have been raised regarding the ability
of supercomputers to handle the explosive growth of se-
quencing data, particularly as classical computers are already
approaching their physical limits. Given these limitations of
classical computing, it is crucial to explore alternative com-
putational paradigms. Quantum computers promise a new
solution to this challenge, especially in terms of enhanced
computational efficiency and capability to handle complex op-
timization problems [25,26]. Numerous quantum algorithms
have been proposed and demonstrated, promising quantum
advantages. Some of them have been applied to various
bioinformatics problems, such as de novo assembly [27–29],
sequence alignment [30,31], protein folding [32–34], and phy-
logenetic tree inference [35], which inspired us to achieve
hybrid assembly using quantum computing.

The previous studies [27–29] proposed several OLC-based
assembly quantum algorithms, including quantum annealing
and variational quantum algorithms, and provided a proof
of the application of quantum computing to the assembly
problem, with sequencing error also taken into account in
Ref. [29]. However, there are inevitable repeats in DNA se-
quences and they cannot be solved before assembly. The
classical assemblers solve the problem by indexing reads near
the repeats and seeking out the reads that contain the entire
repetitive region. However, it is worth mentioning that none of
the quantum algorithms have addressed the issue of repetitive
sequences.

In this paper, we propose a quantum algorithm for hybrid
de novo genome assembly using short and long reads. In our
algorithm, short reads and long reads are utilized to deal with
the assembly path conflicts caused by sequencing errors or
repetitive sequences. Concretely, we first map the hybrid de
novo assembly problem with repeats and sequencing errors
onto a combinatorial optimization problem. Then we utilize
the variational quantum eigensolver (VQE) framework and
introduce the divide-and-conquer strategy to obtain optimal
assembly sequences with fewer quantum resources in the

noisy intermediate-scale quantum (NISQ) era, characterized
by quantum devices that are susceptible to errors but can
still provide computational advantages [36]. Furthermore, a
problem-inspired Ansatz is proposed to significantly improve
the hybrid assembly quantum algorithm.

II. RESULTS

A. Hybrid assembly quantum algorithm

The workflow of the hybrid assembly quantum algorithm
is presented in Fig. 1. The sequencing data of short reads and
long reads are processed on quantum computers or quantum
simulators after an encoding step. This generates a state that
can be decoded to obtain the assembly sequences. The details
are shown below.

We first propose a mapping model of the hybrid de
novo assembly problem involving repetitive sequences and
sequencing errors. Due to the path conflicts introduced by
repetitive sequences and sequencing errors, it is not feasible
to directly determine an Eulerian path within the de Bruijn
graph [10] that faithfully reconstructs the original sequences.
To overcome this obstacle, we introduce long-read data of
third-generation sequencing and encode the information into
the weight of the cost function. Then we can construct the cost
function of the hybrid de novo assembly problem.

First, we need to encode the de Bruijn graph. Let bi-
nary variables xi,p ∈ {0, 1} be the occupation number of
every node at each position, where i ∈ {1, 2, . . . , n} repre-
sents the ith node and p ∈ {1, 2, . . . , pmax} represents the
position in the assembly path. Here xi,p = 1 means that the
ith node is chosen at position p in the path. The possible
assembly path can be expressed as a quantum state |�〉 =
|x1,1 x2,1 · · · xi,p · · · xn,pmax〉. Note that for a graph with n nodes,
the maximum of p must be larger than n if there are repeats
in DNA sequences. Conservatively, we can take pmax = 2n.
Then the cost function of the hybrid de novo assembly prob-
lem is formulated as

minimize
∑
�

∑
p

∑
i, j

ω�,i, jxi,px j,p+�

subject to
∑

i

xi,1 = 1,

∑
i

xi,p � 1 ∀ p

if
∑

i

xi,p−1 = 0 :
∑

i

xi,p = 0 ∀ p,

xi,p ∈ {0, 1}, (1)

where ω�,i, j is the weight of k-mers i and j separated by an
internucleotide distance �. For the weight of two adjacent
nodes, we set ω1,i, j = −α to indicate that two k-mers are cor-
rectly sequenced and ω1,i, j = −β if the frequency of k-mers
is less than 10% (considered as sequencing errors), where
0 < β � α. For nodes that are not connected, a large positive
weight γ is given as a penalty. Additionally, by introducing
the long-read data from third-generation sequencing as shown
in Fig. 1, we can determine whether any two nodes are sepa-
rated by a distance � The long-range links between the nodes
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FIG. 1. Schematic overview of the quantum algorithm for hybrid
de novo genome assembly. The short reads are used to construct the
de Bruijn graphs, while the long reads are used to provide long-range
linking between nodes. Here the nodes represent k-mers and the
red ones mean low-frequency k-mers from sequencing errors. Con-
nections between nodes are based on the common k − 1 suffix and
prefix. Inevitable path conflicts are caused by sequencing errors or
repetitive sequences. The short-read and long-read data are encoded
together into a optimization model solvable on a quantum device.
The results are then decoded to obtain the assembly sequences.

depend on the length of long-read sequences that generally
exceed 10 kbp. If two nodes are identified with a distance of
� in the long read, we assign the corresponding term with a
negative weight ω�,i, j = −η to contribute to the cost function.
Otherwise we set it equal to zero. In order to solve the problem
of repetitive sequences, the distance � must be greater than
the sum of the lengths of the repeats, and the absolute value
of ω�,i, j should be as large as possible compared to the total
weight of the cyclic paths caused by repetitive sequences.

Next we construct the Hamiltonian of the hybrid de novo
assembly problem according to the cost function in Eq. (2).

The objective term can be directly written as

H1 =
∑
�

∑
p

∑
i, j

ω�,i, jxi,px j,p+�. (2)

Then we consider the constraints of the cost function. The
first constraint term of Eq. (2) ensures that the first position
(p = 1) of the assembly path must be one and only one node.
Thus, the Hamiltonian of this constraint term can be formu-
lated as

H2 = A

(
1 −

∑
i

xi,1

)2

, (3)

where the coefficient A is the penalty parameter. The
second and third constraint terms ensure the contiguity
of the assembly sequence, that is, the assembly path is
unique and continuous. Mathematically, for all p, the term∑

i xi,p
∑

j x j,p+1(
∑

k xk,p+1 − 1) = 0 ensures an unforked
path and the term (1 − ∑

i xi,p)
∑

j x j,p+1 = 0 prevents the
path from being discontinuous. Thus, the Hamiltonian of the
second and third constraint terms can be combined as

H3 = B
∑

p

⎛
⎝∑

i

xi,p

∑
j

x j,p+1

∑
k

xk,p+1

− 2
∑
i, j

xi,px j,p+1 +
∑

j

x j,p+1

⎞
⎠. (4)

Here the parameters must satisfy 0 < B < A to ensure that the
contribution of all penalty terms is not less than zero. Finally,
the whole Hamiltonian of the hybrid de novo assembly prob-
lem is expressed as

HC = H1 + H2 + H3. (5)

Thus, the optimal assembly path with a cycle caused by re-
peats in the de Bruijn graph can be effectively represented as a
continuous and unforked path. According to this Hamiltonian,
parametrized quantum circuits are constructed and applied
in the VQE approach to calculate the minimum eigenvalue
and the corresponding eigenvector of HC that exactly matches
the optimal assembly path (Sec. IV). Eventually, a decoding
process is added to yield the desired assembly sequence as
shown in Fig. 1.

B. Numerical simulations

The proposed hybrid assembly quantum algorithm is im-
plemented in SpinQit with Torch simulator. We analyze the
convergence properties of various quantum circuits, including
two distinct types of hardware-efficient Ansätze (HEA) as well
as a problem-inspired Ansatz based on the known information
about the assembly problem. The experiments are conducted
on Dell equipped with 2.90 GHz Intel Core i7-10700 and
16.0 GB memory and operated under the Windows 11 operat-
ing system.

1. Toy model

We illustrate the hybrid assembly quantum algorithm for
the toy model as shown in Fig. 2. The nodes in the toy model
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FIG. 2. Schematic diagram of the toy model. Both short-read and long-read sequencing data are used, where the red characters represent
sequencing errors. To optimize qubit utilization and streamline the model, a strategy is implemented where three consecutive k-mers are
consolidated into a single node. The nodes in the red dotted circle are low-frequency k-mers from sequencing errors. The connection of the
nodes is established based on the shared k − 1 suffix and prefix. The nodes n2 and n3 represent repeat regions and the node n5 represents
sequencing errors. The toy model is input into a quantum computer for simulation, resulting in the generation of the final quantum state of the
binary string |�〉. The optimal assembly sequence is then obtained through the process of decoding the binary string.

represent k-mers or a group of k-mers generated by splitting
short reads. Note that we treat three consecutive k-mers as
a single node in the de Bruijn graph to further simplify the
model. Long-read data are introduced as weights ω�,i, j to aid
assembly.

In this toy model, we assume that the correct assembly
path is n1 → n2 → n3 → n4 → n2 → n3 → n6. Here we set
pmax = 10 to allow more wrong assembly solutions to verify
the reliability of our approach. Moreover, we utilize the long-
range linking information to ensure that the loop n2 → n3 →
n4 → n2 does not occur twice by setting α = 2, β = 1, γ =
20, and η = 10. Considering the quantum resources required
are quadratic to the problem size, a divide-and-conquer strat-
egy is designed in the VQE framework (Sec. IV). Thus, the
VQE algorithm is used to obtain an optimal assembly result by
simulations of six-qubit quantum computers. In this case, the
exact loss value is −27 and it is verified that the corresponding
assembly sequence AAGGATTGCACCGATTGCACTCT is
correctly extracted.

2. Entangling capability

In practice, the final results of the hybrid assembly sig-
nificantly rely on the expressibility and entangling capability
of Ansätze. Hardware-efficient Ansätze [37] are one of the
widely used parametrized quantum circuits in the VQE algo-
rithm, as they are designed based on several factors of the
near-term quantum devices, such as qubit connectivity and
restricted gate sets. Normally, they are constructed by single-
qubit gates with parameters that can be optimized, including
Rx, Ry, and Rz gates as well as two-qubit entangling gates,
such as controlled-NOT (CNOT), controlled-Z (CZ), and iSWAP

gates.
In this work, we simulate the Hamiltonian of the toy model

by the VQE approach with two different hardware-efficient
Ansätze. Our goal is to examine the performance of optimiza-
tion convergence with and without quantum entanglement.
In Figs. 3(a) and 3(b), the former, called HEA1, consists of
the Ry gate, Rz gate, and CZ gate; the latter, called HEA2, is

constructed with single-qubit rotations Ry and Rz only. In the
experiment, we set the depth of quantum circuit De to be 2 and
randomly generate 100 sets of initial parameters for HEA1
and HEA2. As illustrated in Figs. 4(a) and 4(b), our findings
indicate a significant correlation between the initial param-
eters and the convergence speed of various Ansätze. More
importantly, we show that the average convergence speed of
HEA1 is faster than that of HEA2. In Fig. 4(c), the average
iteration number for the convergence of HEA1 is 348, while it
is 393 for HEA2. This indicates that the entangling capability
of Ansätze may have a positive impact on the convergence of
the hybrid de novo assembly quantum algorithm using short
and long reads.

FIG. 3. Variational Ansätze for the VQE algorithm. (a) HEA1
implemented by Ry, Rz, and CZ gates. (b) HEA2 implemented by
Ry and Rz gates. The quantum circuits in the dashed boxes repeat De

times. (c) Problem-inspired Ansatz based on the assembly problem
(Sec. IV).
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FIG. 4. Simulation results of HEA. Convergence of (a) HEA1
and (b) HEA2 is shown with 100 sets of random initial parameters.
(c) Comparison of the average convergence between HEA1 and
HEA2.

3. Problem-inspired Ansatz

Unlike HEA, the problem-inspired Ansatz is designed with
unique attributes of assembly problems. In the divide-and-
conquer quantum algorithm, because there is at most one
variable of 1 in the binary string |x1,p · · · xi,p · · · xn,p〉, the trial
wave function of n qubits can be restricted to |ψ〉 = ∑

k λk|k〉,
k ∈ {0, 20, 21, . . . , 2n−1}, where n is the number of nodes in
de Bruijn graphs. The problem-inspired Ansatz is constructed
to prepare the candidate n-qubit trial wave function |ψ〉 [more
details can be found in Fig. 3(c) and Sec. IV].

As in the case of HEA, we also randomly generate 100
sets of initial parameters for the proposed problem-inspired
Ansatz. As shown in Fig. 5(a), we show that the convergence
speed of the problem-inspired Ansatz is significantly faster

FIG. 5. Simulation results of the problem-inspired Ansatz.
(a) Evaluation value for 100 groups of random initial parameters
with the problem-inspired Ansatz. (b) Comparison of the average
convergence of HEA1, HEA2, and the problem-inspired Ansatz.

than that of HEA. Furthermore, the average iteration number
required for the convergence of the problem-inspired Ansatz is
168 in Fig. 5(b). The results verify that the problem-inspired
Ansatz can accelerate the convergence speed of the hybrid as-
sembly quantum algorithm due to a reduced search space and
fewer optimization parameters. Table I presents the quantum
resources required for the three quantum circuits. In contrast
to HEA, the problem-inspired Ansatz employs a fixed cir-
cuit depth, yielding a streamlined computational process and
fewer quantum gate requirements.

TABLE I. Cost estimates for the problem-inspired Ansatz and
HEA. Note that N = pmaxn, where n denotes the number of qubits,
i.e., the number of nodes in the de Bruijn graphs. The depth of
the problem-inspired Ansatz is fixed, but the blocks of variational
quantum circuits in HEA are repeated De times.

Number of Single-qubit Entangling
Ansatz parameters gates gates

Problem-inspired N 2N − pmax 2N − 2pmax

HEA1 2DeN 2DeN De(N − pmax)
HEA2 2DeN 2DeN 0
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FIG. 6. The de Bruijn graphs for five different sizes of assembly
problems, from six nodes to ten nodes, calculated by the problem-
inspired Ansatz.

4. Problem sizes of hundreds of qubits

Further, we evaluate the performance of the problem-
inspired Ansatz for larger problems. Five different sizes of
assembly problems, ranging from six nodes to ten nodes, are
illustrated in Fig. 6 with the numbers of qubits required for
the corresponding Hamiltonians being 60, 77, 96, 117, and
140, respectively. Note that a divide-and-conquer strategy is
employed in the VQE framework in order to calculate on
quantum simulators. This approach enables more efficient
calculations on quantum simulators by breaking down larger
problems into more manageable subproblems. In addition, we
restrict the initial parameters of the problem-inspired Ansatz
to the range [0.3π, 0.5π ], as opposed to the more common
range of [0, π ]. This restriction leads to a significant improve-
ment in both the convergence speed and success rate of the
optimization process. As evidenced by Fig. 7(a), the ground-
state energy of each Hamiltonian and the assembly path for
each problem size are correctly optimized, serving as a vali-
dation of the problem-inspired Ansatz for larger problems.

Finally, we measure the impact of problem sizes on com-
putational cost by evaluating the average iteration number for
convergence and R99 [27] of the five different sizes. Here the
parameter R99 represents the number of experiments required
to find the optimal assembly sequence (ground state) with a
probability of 99%. The algebraic expression of R99 is defined
as

R99 = log(1 − 0.99)

log(1 − P)
, (6)

where P is the estimated success probability of each sim-
ulation. As shown in Fig. 7(b), both the average iteration
number for convergence and R99 increase linearly with the
size of the problem. The computational cost is directly pro-
portional to the number of qubits involved in the hybrid
de novo assembly problem. This suggests that the proposed
problem-inspired Ansatz scales reasonably well for larger
problem sizes, which is optimistic for the large-scale practical
applications of genome assembly using quantum comput-
ing. Therefore, the rapid advancement in quantum computing
hardware and further improved divide-and-conquer quantum
algorithms can facilitate the demonstration of quantum utility
on the genome assembly problem.

FIG. 7. Simulation results of the problem-inspired Ansatz for
five different problem sizes. (a) Average convergence of different
problem sizes. (b) Iteration number for convergence and the number
of experiments required to find the optimal assembly results with a
probability of 99%, called R99.

III. DISCUSSION

In this work, we propose a divide-and-conquer quantum
algorithm for hybrid de novo genome assembly of short and
long reads. We demonstrate that the optimized assembly se-
quences can be obtained by decoding quantum computing
results for the ground states based on the VQE framework.
Furthermore, we adopt divide-and-conquer strategies to ex-
tract the optimal assembly results with problem sizes up to
hundreds of qubits, by employing simulations on few-qubit
quantum computers.

The hybrid assembly quantum algorithm offers several ad-
vantages. First, it integrates short reads from next-generation
sequencing technology and long reads from third-generation
sequencing technology to address assembly path conflicts.
This hybrid sequencing strategy can leverage the comple-
mentary strengths of both sequencing platforms to improve
the correctness and completeness of genome assembly and
annotation. Second, it has the potential to significantly reduce
the computational expense of simulating intricate quantum
systems, which could enable practical applications of quan-
tum computing in life sciences during the NISQ era. The
de novo genome assembly problem is solved by mapping
the DNA sequences into graph models. However, encoding a
binary variable with multidimensional information requires a
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number of qubits that scales as O(n2), where n denotes the
number of nodes in de Bruijn graphs. This presents a ma-
jor challenge in optimizing assembly sequences when using
the original VQE without any preprocessing, especially on
NISQ devices. Consequently, in light of quantum resources,
the proposed algorithm utilizes a divide-and-conquer strat-
egy to alleviate the requirements of logical qubits, that is,
to scale as O(n). Third, our research findings indicate that
quantum entanglement plays a constructive role in optimiz-
ing the genome assembly problem. Finally, our proposed
problem-inspired Ansatz significantly accelerates the opti-
mization of assembly paths in the hybrid assembly quantum
algorithm.

However, some issues may emerge in practical applica-
tions of the hybrid assembly quantum algorithm and deserve
further investigation. Above all, a considerable number of
qubits is required in practical assembly tasks even with divide-
and-conquer strategies, which poses a huge challenge for
near-term quantum devices. In theory, the count of k-mers ob-
tained through sequencing, disregarding repeats, aligns with
the formula L − k + 1, where L represents the total genome
size. This results in a substantial number, exemplified by
the approximately 3 × 109 base pairs in the human genome.
Traditional assemblers are incapable of concurrently assem-
bling such extensive sequences. Typically, these assemblers
compile k-mers into shorter contigs, which are then linked
to generate longer scaffolds. Presently, the longest contig
achievable through next-generation sequencing reaches ap-
proximately the order of 106 [24]. Hence, for our algorithm
to match the performance of classical assemblers, it would
necessitate approximately 106 qubits, which is a challenging
feat in the near term. Nonetheless, addressing this challenge
is not overly arduous; here we propose two distinct solutions.
First, we can partition the task into multiple subtasks, assem-
bling them into short contigs before merging them into longer
contigs. An intuitive approach involves amalgamating N con-
secutive k-mers into a single node, with the implementation
necessitating consideration for cases where the number of k-
mers is not divisible by N . Second, an alternate methodology
frequently employed involves leveraging quantum superposi-
tion states for information encoding, consequently reducing
the requisite quantum bit resources, representing the focus
of our forthcoming endeavors. Furthermore, given that our
algorithm adeptly handles repeat sequences during assem-
bly, we anticipate it will demonstrate enhanced performance
in assembling duplicate genes located in highly repetitive
regions.

Another issue that can be considered is that, as the prob-
lem size increases, the parameter optimization of variational
quantum algorithms becomes unpredictable and intractable.
Fortunately, we find that narrowing the range of initial pa-
rameters can significantly improve the parameter optimization
and the probability of obtaining the optimal assembly results.
This also provides insights into solving other combinato-
rial optimization problems that are prone to local minima
or barren plateaus as the number of qubits increases. In
the near future, improving variational quantum algorithms
and exploring quantum advantages will be primary goals in
the field of quantum computing applications, especially in
bioinformatics.

FIG. 8. Scheme of the VQE method. The VQE is a hybrid
quantum-classical algorithm, where quantum processing units are
used to prepare the trial wave function by parametrized quantum
circuits and measure the corresponding expectation value of the
Hamiltonian and classical processing units are used to update the
parameters.

IV. METHODS

A. Variational quantum eigensolver

The VQE is a hybrid quantum-classical algorithm for solv-
ing approximate minimum eigenvalues and eigenvectors of
the Hamiltonian. It relies on the Rayleigh-Ritz variational
principle as follows:

E = 〈ψ (�θ )|H |ψ (�θ )〉 � E0 = 〈�|H |�〉. (7)

Here |ψ (�θ )〉 is the trial wave function prepared to extract the
optimal assembly result by applying a parametrized quantum
circuit to the initial state |ψ0〉, E is the expectation value of
the Hamiltonian with |ψ (�θ )〉, and E0 and |�〉 are the exact
minimum eigenvalue and the corresponding eigenvector of the
Hamiltonian H , respectively.

As shown in Fig. 8, the procedure of the VQE is
implemented with two devices, quantum and classical com-
puters. Typically, quantum computers are used to implement
parametrized quantum circuits constructed of a set of quantum
gates with adjustable parameters in order to prepare the trial
wave function and measure the corresponding expectation
value of the Hamiltonian. Meanwhile, the classical computer
optimizes the parameters of quantum gates and transmits them
to the quantum computer to initiate the next iteration. This
iterative process continues until a predefined convergence cri-
terion is satisfied. Explicitly, we introduce the key components
of the VQE algorithm below.

1. Hamiltonian construction

For the VQE, the first step is to construct the Hamiltonian
for describing the various attributes of the systems, which are
in general chemical molecules [38], combinatorial optimiza-
tion problems [39], many-body physics [40], and so on. Since
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quantum computers only measure observables that can be ex-
pressed as linear combinations of Pauli operators {I, X,Y, Z},
the Hamiltonian needs to be transformed to the corresponding
terms.

2. Parametrized quantum circuits

The parametrized quantum circuit, also known as an
Ansatz, is designed to prepare the trial wave function |ψ (�θ )〉.
Undeniably, since the VQE was first proposed by Peruzzo
et al. [41], the research on constructing a good Ansatz for
specific problems has attracted considerable interest. Now,
various forms of parametrized quantum circuits have been
proposed, such as hardware-efficient Ansätze [37], problem-
inspired Ansätze [38,39,42–47], and variable-structure An-
sätze [48,49]. Generally speaking, a good Ansatz includes the
following two attributes: (i) Sufficient expressibility ensures
that the trial wave function contains the ground-state wave
function and (ii) the parameter search space is reduced as
much as possible to speed up the convergence of the VQE
algorithm. In our work, we design a problem-inspired Ansatz
to reduce the search space and boost the converging process
for hybrid de novo genome assembly.

3. Parameter optimization

After transforming the Hamiltonian and preparing the trial
wave function, the expectation value of the Hamiltonian can
be measured by a quantum computer. The measurement re-
sults are subsequently transmitted to the classical computer
to update the parameters in the quantum circuits for the next
iteration. Parameter optimization is necessary for any vari-
ational algorithms to obtain an approximate solution. The
parameters of quantum circuits will be updated iteratively
with some efficient optimization strategies, such as gradient
descent methods [50,51], as well as gradient-free methods
[52,53], until convergence.

B. Implementation

As mentioned above, the value of the binary variable
xi,p indicates whether or not to choose the node i at the
position p in the assembly path. In addition, the possible
assembly path can be expressed as a quantum state |�〉 =
|x1,1 x2,1 · · · xi,p · · · xn,pmax〉.

1. Qubit mapping

To construct the qubit Hamiltonian of the hybrid de novo
assembly problem from Eq. (5), the common approach is to
map the binary variable xi,p to the Pauli Z and identity matrix
I as

xi,p → I − Zi,p

2
, (8)

where Zi,p is a Pauli Z acting on the [p(n − 1) + i]th qubit.
Correspondingly, Eq. (5) can be rewritten as

Hq = H1q + H2q + H3q. (9)

It is apparent that the dimension of the Hamiltonian system
represented by Hq is 2N , where N = npmax denotes the re-
quired number of qubits.

In the NISQ era, it is challenging to employ the original
VQE algorithm to simulate and estimate the approximate
minimum eigenvalue of the Hamiltonian Hq without any
preprocessing. Consequently, in light of the original VQE
algorithm, we propose a divide-and-conquer strategy to alle-
viate the requirements of logical qubits. To be specific, we
leverage Hamiltonian decomposition and state decomposition
to estimate the approximate ground-state energy of an N-qubit
Hamiltonian on pmax quantum processing units with n qubits.

2. Hamiltonian decomposition

Once qubit mapping is performed, the Hamiltonian Hq can
be expressed in the form

Hq =
∑

t

ct Ht , (10)

where Ht denotes a component of the Hamiltonian Hq. Here
Ht can be constructed using tensor products of the Pauli Z
operator and the identity operator I . Its dimension is 2N .
We further decompose Ht into pmax Hamiltonians denoted by
Ĥt

(ω)
,

Ht =
pmax⊗
ω=1

Ĥt
(ω)

, (11)

where the dimension of each Hamiltonian H (ω)
t is 2n. There-

fore, the Hamiltonian Hq can be rewritten as

Hq =
∑

t

ct

pmax⊗
ω=1

Ĥt
(ω)

. (12)

3. State decomposition

The quantum state of the assembly path can be expressed
using the tensor product notation

|�〉 =
pmax⊗
ω=1

|x1,ω · · · xi,ω · · · xn,ω〉. (13)

In the VQE, each quantum state |x1,ω · · · xi,ω · · · xn,ω〉 can be
obtained from a trial wave function |ψ (ω)(θ )〉,

|ψ (ω)(θ )〉 =
2n−1∑
k=0

λ
(ω)
k (θ )|k〉, (14)

where |k〉 are the n-qubit computational bases of |ψ (ω)(θ )〉
and the parameters λ

(ω)
k (θ ) satisfy

∑2n−1
k=0 [λ(ω)

k (θ )]2 = 1. In
general, the optimal assembly path corresponds to a nonsuper-
posed quantum state. Therefore, the trial wave function can be
reformulated as follows:

|ψ (�θ )〉 =
pmax⊗
ω=1

2n−1∑
k=0

λ
(ω)
k (�θ )|k〉. (15)

4. Ground-state calculation

By decomposing the Hamiltonian and state, leveraging the
VQE algorithm, we can obtain an approximate ground state
and its corresponding eigenvector of the large quantum sys-
tem. From Eq. (7), we aim to minimize the expectation value
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FIG. 9. Schematic diagram of the toy model with four nodes.

with the parameter �θ ,

min
�θ

E (�θ ) = min
�θ

〈ψ (�θ )|Hq|ψ (�θ )〉

= min
�θ

∑
t

ct

pmax∏
ω=1

2n−1∑
k=0

[
λ

(ω)
k (�θ )

]2〈k|Ĥ (ω)
t |k〉. (16)

By utilizing the proposed approach, we can produce N-qubit
quantum states, where there is at most one qubit at state
|1〉, and estimate the approximate ground-state energy of a
2N -dimensional Hamiltonian using pmax n-qubit quantum pro-
cessing units.

5. Benchmarking of divide-and-conquer strategy

Here we conduct simulations in the model with four nodes
as illustrated in Fig. 9 and benchmark the performance of two
algorithms: the VQE without the divide-and-conquer strategy
and the distributed VQE (DVQE) with the divide-and-conquer
strategy. The metrics evaluated include the average running
time per iteration, the average iteration number, and the total
time for convergence. As depicted in Table II, the disparity
in the average iteration number for convergence between the
VQE and DVQE is marginal, with the DVQE exhibiting a
slightly superior performance. However, the DVQE demon-
strates a significant advantage over the VQE in terms of
iteration time. This outcome aligns with expectations given
the DVQE’s strategy of employing fewer qubits.

C. Problem-inspired Ansatz

The constraints of the optimization problem offer an idea to
exclude some infeasible answers and narrow the search spaces
significantly, as well as speed up the convergence of the VQE
algorithm for the hybrid de novo assembly problem.

Considering a specific value of p, the binary variable xi,p

of the Hamiltonian Hq can be encoded by the state |ψ (p)〉 =
|x1,p · · · xi,p · · · xn,p〉. Because at most one node can be chosen
for a position in the assembly path, one of the binary variables

TABLE II. Performance of both the DVQE and VQE, utilizing a
hardware-efficient Ansatz.

Average iteration
Average time number for Total time for

Algorithm per iteration (s) convergence convergence (s)

VQE 115.83 157 18185.31
DVQE 0.35 147 51.45

xi,p is limited to 1 or 0 while the remaining variables must
be set to 0. After eliminating the incorrect solutions from
the entire 2n-dimensional Hilbert space, the feasible answers
are restricted to a set S of the n + 1 elements. The feasible
answers are similar to a W state, except for an extra |0〉⊗n

state. Hence, it suffices to construct the trial wave function

|ψ (p)(�θ )〉 = α0|00 · · · 0〉 + α1|10 · · · 0〉
+ α2|01 · · · 0〉 + · · · + αn|00 · · · 1〉, (17)

where
∑n

k=0 |αk|2 = 1.

Here we construct the problem-inspired Ansatz with Rx, Ry,
and CZ gates, shown in Fig. 10, and apply it to the initial state
|0〉⊗n to generate a trial wave function |ψ (p)(�θ )〉. To provide
a more comprehensive understanding of the function of the
quantum circuit, we decompose the process of preparing the
trial wave function into two parts.

The first part involves the preparation of a pseudotarget
state |ψn〉, which satisfies that the number of bases is equal
to n + 1. In this part, our first step will be to initialize the state
|ψ0〉 = |0〉⊗n. Then an Rx(θ0) gate is applied on the first qubit,
thus giving us

|ψ1〉 = (α0|0〉 + β0|1〉) ⊗ |0〉⊗(n−1), (18)

where α0 = cos(θ0/2) and β0 = −i sin(θ0/2).
Next we apply a series of Ucq,tq(θ j ) gates in the next step,

where j ∈ [1, n − 1]. As Fig. 10(b) shows, the Ucq,tq(θ j ) is
implemented with Ry(θ j ), CZcq,tq, and Ry(θ j + π ) gates. Here
we set the cqth qubit as a control qubit and the tqth as a target
qubit. When the state of the target qubit is |0〉, the functions
of Ucq,tq(θ j ) are as follows:

|00〉 Ucq,tq (θ j )−−−−→ |0〉 ⊗ [− sin(θ j )|0〉 + cos(θ j )|1〉],

|10〉 Ucq,tq (θ j )−−−−→ |11〉. (19)

Thus, after a sets of Ucq,tq(θ j ) gates applied on |ψ1〉, we
obtain

|ψn〉 = α0α1 · · ·αn−1|0〉⊗n

+ α0α1 · · · αn−2βn−1|0〉⊗(n−1) ⊗ |1〉 + · · ·
+ α0β1|0〉 ⊗ |1〉⊗(n−1) + β0|1〉⊗n, (20)

where α j = − sin(θ j ) and β j = cos(θ j ).
The second part involves a set of CNOT gates applied on

the pseudotarget state |ψn〉 to flip partial bases and prepare
the trial wave function |ψ (p)(�θ )〉 ≡ |ψn+1〉. In order to better
understand how a set of CNOT gates work, we consider a case
with three qubits; the quantum circuit is shown in Fig. 10(c).
The input state |ψ0〉 = |000〉 is sent through Rx(θ0), U01(θ1),
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FIG. 10. Schematic of the problem-inspired Ansatz for preparing the n-qubit wave function |ψ (p)(�θ )〉. (a) Problem-inspired Ansatz imple-
mented by Rx (θ0), Ucq,tq(θ j ), and CNOT gates. (b) Implementation of the Ucq,tq(θ j ) gate using Ry(θ j ), CZ, and Ry(θ j + π ) gates. (c) Quantum
circuit for the three-qubit wave function.

and U12(θ2) gates to give

|ψ3〉 = cos(θ0/2) sin(θ1) sin(θ2)|000〉
− cos(θ0/2) sin(θ1) cos(θ2)|001〉
+ cos(θ0/2) cos(θ1)|011〉
− i sin(θ0/2)|111〉. (21)

Compared to the wave function |ψ4〉, we need to flip the
bases |011〉 and |111〉 in the pseudotarget state |ψ3〉 to |010〉
and |100〉 while keep other bases unchanged. Specifically,

|000〉 CNOT1,2−−−→ |000〉 CNOT0,1−−−→ |000〉,
|001〉 CNOT1,2−−−→ |001〉 CNOT0,1−−−→ |001〉,

(22)
|011〉 CNOT1,2−−−→ |010〉 CNOT0,1−−−→ |010〉,
|111〉 CNOT1,2−−−→ |110〉 CNOT0,1−−−→ |100〉,

and

|ψ4〉 = cos(θ0/2) sin(θ1) sin(θ2)|000〉
− cos(θ0/2) sin(θ1) cos(θ2)|001〉
+ cos(θ0/2) cos(θ1)|010〉
− i sin(θ0/2)|100〉. (23)

As shown in the example of three qubits, we can prepare
|ψ (p)(�θ )〉 of any qubits by this problem-inspired Ansatz.

Here we give the matrix forms of the gates used in this
Ansatz. The Rx(θ j ) and Ry(θ j ) are rotation gates acting on the

jth qubit. The CZcq,tq and CNOTcq,tq gates are the CZ and CNOT

gates, respectively. The unitary matrices of each gate are

Rx(θ ) ≡
(

cos θ
2 −i sin θ

2

−i sin θ
2 cos θ

2

)
, (24)

Ry(θ ) ≡
(

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

)
, (25)

CZ ≡

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠, (26)

CNOT ≡

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠. (27)

The data that support the findings of this study are available
from the authors upon reasonable request. The code that sup-
ports the findings of this study is available from the authors
upon reasonable request.
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