PRX LIFE 2, 023005 (2024)

Disentanglement of Evolutionary Constraints in Statistical Models of Proteins

Haobo Wang
FAS, Division of Science, Harvard University, Cambridge, Massachusetts 02138, USA

Shihao Feng
Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai 200240, China

Kotaro Tsuboyama"
Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA

Sirui Liu®
FAS, Division of Science, Harvard University, Cambridge, Massachusetts 02138, USA

Gabriel J. Rocklin*
Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA

Sergey Ovchinnikov ®%
JHDSF Program, Harvard University, Cambridge, Massachusetts 02138, USA

® (Received 21 November 2023; accepted 11 March 2024; published 18 April 2024)

The exponential growth of protein sequences in the post-genomic era has revolutionized the application of
generative sequence models for pivotal tasks such as contact prediction, protein design, alignment, and homology
search. Despite remarkable progress in these areas, the interpretability of the modeled pairwise parameters
remains limited due to complexities arising from coevolution, phylogeny, and entropy. While post-correction
methods for contact prediction have been developed to eliminate entropy-related contributions from predicted
contact maps, there is currently no direct approach to correct entropy in other applications reliant on raw
parameters. In this paper, we investigate the sources of entropy signal and propose a novel spectral regularizer,
LH (an abbreviation of Henri Lebesgue), to mitigate its impact during model fitting. By incorporating this
regularizer into the GREMLIN framework (utilizing a Markov random field or Potts model), we enable the
accurate inference of sparse contact maps while simultaneously improving interpretability and addressing
overfitting concerns critical for sequence evaluation and design. To validate the efficacy of our approach, we
design multiple protein sequences based on GREMLIN with both L2 and LH regularizers, and subsequently
experimentally measure their using cDNA display proteolysis. Our findings demonstrate that proteins designed

using the LH regularizer exhibit increased diversity and enhanced folding stability.
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I. INTRODUCTION

Billions of years of evolution of natural selection have pro-
duced an astronomical number of diverse protein sequences.
By comparing the sequences to each other, it has become
possible to model the evolutionary constraints important for
protein structure and function. Since it was shown that the co-
variance patterns observed in a multiple sequence alignment
(MSA) of homologous proteins are related to structure [1],
models have been developed to automate the extraction of
this coevolutionary signal for protein structure prediction and
design.

To investigate this issue, researchers from the fields of
mathematics, physics, bioinformatics, and computer science
have proposed numerous models, such as the inverse covari-
ance matrix, the Boltzmann machine, the Potts model, or the
Markov random field (MRF) to revolve around the analysis of
variable correlations. In our previous reports, we unified these
models within a framework for better understanding [56]. The
latest class of models were designed to disentangle direct from
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FIG. 1. In addressing the entropy issue, it is essential to clarify that here, entropy pertains to the single-site entropy within each column of
the multiple sequence alignment (MSA). The MSA is utilized as input for the Markov random field (MRF) model, aiming to reconstruct the
original sequences. The model comprises a tensor representing coevolution (L x K x Lx K) and a matrix capturing conservation and positional
entropy (LxK), where L is the length of the protein sequence, and K is the number of amino acids plus an aligned gap. Typically, the
four-dimensional tensor is condensed into an L x L matrix, followed by the application of average product correction (APC) to disentangle
contacts from the entropy signal. Traditionally, in applications like the critical assessment of structure prediction (CASP13), a prominent
blind protein structure prediction experiment, the reduced L x L matrix is favored over the full four-dimensional (4D) tensor as input for deep
learning. This coevolution model serves not only for structural predictions but also for predicting mutation effects and aligning sequences.
However, it is crucial to note that the entropy signal (highlighted in red) is exclusively separated through the APC method at the reduced
matrix level. At the 4D tensor level, the coevolution signal and entropy remain intertwined, posing potential challenges to various applications,
as illustrated by the dashed red lines. This entanglement at the 4D tensor level may impact the overall performance of related applications.

indirect coevolution [2]. The parameters of these models have
been inferred using a plethora of methods, such as GREMLIN
[3], plmDCA [4], bmDCA [5], PSICOV [6], and mfDCA [7].
This also includes the most recent low-rank reparametriza-
tions, such as restricted Boltzmann machines or a variational
autoencoder [8], and self-attention-based models that share
MREF parameters across protein families [9]. The parameters
from these models are used for protein structure prediction
[10-14], protein-protein interaction prediction [15-17], pro-
tein design [18-20], mutation effect prediction [21,22], and
protein sequences alignment and homology search [23-26].
The result of these models is typically two sets of pa-
rameters. One is one body, an LxK matrix modeling the
conservation and entropy, where L is the length of the
protein sequence and K is the number of amino acids plus
an aligned gap. The other is an LxK XL x K tensor modeling

the coevolution. For contact prediction, the four-dimensional
coevolution tensor is reduced to an L x L matrix by taking the
norm of each K xK matrix (Fig. 1), followed by a low-rank
correction procedure. The matrix represents the strength of
the residue-residue interactions within the protein. The low-
rank signal was shown to be highly correlated with entropy
[27], indicating an entanglement of entropy and coevolution
signal. Methods to correct for this include average product
correction (APC) [28], low-rank and sparse decomposition
(LRS) [29], and balanced network deconvolution (BND) [30].
Among them, the APC is widely used to boost contact ac-
curacy in almost all of the coevolution models. For instance,
in bmDCA, a model designed to recapitulate all the pairwise
frequencies observed in the natural MSA, and most recently
transformer-based models designed to share parameters
across models, still rely on the APC to get better contact
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prediction [9,31]. Though the models and loss functions are
becoming more complex, they are still unable to disentangle
the signal in the raw parameters of the model.

For applications besides contact prediction, the full coevo-
lution tensor, without entropy correction, is used as input to
deep learning methods such as the direct structure predic-
tion protocol Alphafold [14], protein design [19,20], mutant
ranking [21,22], sequence alignment, and remote homology
detection [23-26] (Fig. 1). Given that the current correction
methods, such as the APC, only work for the LxL matrix,
it remains unclear whether the entropic “noise” also affects
these applications. Similar to how the entropy correction on
the L x L matrix improves the interpretability and the accuracy
of contact prediction, we reason that a correction or regular-
ization at the coevolution tensor level should also improve
its downstream application. Understanding the biophysical
meaning of the APC and how to apply the correction within
the model rather than postcorrection remains a fundamental
question in the coevolution field.

In this paper, we extend previous findings by exploring
additional correlations of the approximated low-rank signal
removed by the APC. Specifically, we investigate its re-
lationship not only with the residue’s information entropy
[27,28,32], as demonstrated in prior studies, but also with
the dominant eigenvector of the two-dimensional (2D) contact
matrix [32].

Based on these observations, we modify GREMLIN’s
pseudo-likelihood objective to include a spectral regularizer
over the pairwise coevolution parameters. The parameters of
this model are tested on both the task of contact prediction and
sequence design tasks. For unsupervised contact prediction,
using the norm of the coevolution tensor, the result shows
that it can achieve almost the same accuracy compared with
the APC. For supervised contact prediction, contact accuracy
improves when the coevolution tensor is used as input to a
logistic regression model. For sequence design, we find that
the regularization improves model interpretability, revealing
more biophysical details of each amino acid pair, potentially
allowing for rational sequence design. Furthermore, we find
that the resulting Hamiltonian (the entire system’s energy,
referred to as the Hamiltonian, encompasses the consideration
of the induced local field, and others are not considered) better
correlates with protein stability. Finally, we design protein
sequences based on the GREMLIN model with LH (which
stands for Henri Lebesgue) and L2 regularizers, respectively.
Experimental data show that sequences designed by LH pos-
sess higher sequence diversity and better folding stability.

II. RESULTS
A. Markov random field

The characters of each string in the multiple sequence
alignment are one-hot encoded, meaning that each character
is represented as a binary vector where only one element
is “hot” or set to 1, indicating the specific position of that
character in the alphabet, while all other elements are set
to 0. The data matrix X € RV*E*K has N sequences, each
sequence is of length L, and each position in the sequence
can have K different types of amino acids. In the MRF

model, a one-body term, B € RE*X | and a two-body term,
W e REXKEXLXK are used, and the Hamiltonian term is writ-
ten as H, = By, + Zle Zle X sWysik. In addition, the
pseudo-likelihood method is used to approximate the partition
function of each residue,
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B. APC is approximately equivalent to removing the first
eigenmode of the L x L matrix

The contact matrix M € REXL is derived from the Frobe-

nius norm of W,
M= [} Wi @
ab

We use p to denote the sum of M per column/row, that
is,p 1= Zj M;; = IM € R"L. The background signal can be
written as p’p/ Y, p; (noted as the AP term). The corrected
matrix is denoted as C, thus we have

C=M-p'p/) pi 3)

The Perron-Frobenius theorem [33,34] says that for a
non-negative real square matrix, there exists a non-negative
dominant eigenvalue. This means that for the matrix M there
exists a dominant eigenvalue that can be approximated by
the power iteration method. We demonstrate that the APC
approximates the first eigencomponent by initializing a 1 vec-
tor (mathematical proofs can be found in the Supplemental
Material [35]). Thus, the APC can also be written as

C=M— A vlvy, 4)

where A and v; are the dominant eigenvalue and eigenvector
of M.

C. Spectral regularization

To introduce the APC during the training process, we pro-
pose to remove the first eigenmode of the M at the gradient
level. This indicates that the regularizer can be written as the
integral of the first eigenmode. So during training, the first
eigenmode will be down-weighted in each step,

dr, 913
Mavivi = — = 21
VIVI=25M T oM

Combined with the hyperparameter, we define the final
regularizer LH as LH = %ykz, where y is the hyperparameter.
We can approximate A; by the APC since the eigenvalue is
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dominant and large in this system (details are in the Supple-
mental Material [35]),
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A multiple sequence alignment (MSA) is a collection of
evolutionary-related sequences. The relationship between po-
sitions (or columns) of the MSA is due to structure constraints,
and the relationship between sequences (rows) is the phylo-
genetic signal. These two signals can be entangled [36,37],
especially when the sample size is low. Positions with high
entropy just by the change may appear to be “coevolving.”
This is evident by looking at the normalized p vector from the
coevolution matrix M (averaged column/row). The p vector
has been reported to be linearly correlated with the square root
of entropy [27]. Even with this observation, it remains unclear
how to disentangle them within the model.

An obvious solution is to use a sparse regularizer, such as
Block L1 (LB) [3], but this was surprisingly found to result
in less accurate contact prediction compared to L2 with the
APC. To better understand this phenomenon, we reexam-
ine the correlation between p and entropy for the depth of
MSA for a protein family (DNA binding response regulator,
PDB: 3CNB, chain: A) with at least 20 K sequences. With
few sequences in MSA, the correlation between p and the
square root of entropy is almost linear. When the number of
sequences increases, the Pearson correlation between these
two vectors starts decreasing (see Fig. S1A in the Supple-
mental Material [35]). To evaluate the overfitting issue, we
randomly split the MSA into training sets and test tests.
Then, we checked the distribution of loss in these two sets,
and we quantified the overfitting in the MRF model using
the Kullback-Leibler divergence (see Fig. SIB in the Sup-
plemental Material [35]). The KL divergence shows that the
model tends to be overfitting when it does not have enough
sequences, consistent with previous reports [38]. We also see
the fraction of variance explained by the first or dominant
eigenmode of M to decrease with more sequences. Yet even
at 20 000 sequences, 90% of M (see Fig. S1C in the Supple-
mental Material [35]) is dominated by the largest eigenmode,
whose APC approximates via first power iteration (see details
in the Supplemental Material [35]). The sparse structure in-
formation only explains less than 10% of M. Based on this
observation, we reasoned that suppressing the first eigenmode
in M can be a first step in strengthening the sparse structure
information.

Inspired by the APC method, we introduce a spectral regu-
larizer named LH (derived from Henri Lebesgue) to target the
suppression of the first eigenmode in the pairwise parameters
of the Markov random field (MRF) during training, particu-
larly at the gradient level. Figure 2 provides a visualization
of the gradient analysis for three distinct regularizers—L2,
LH, and LB. Unlike a direct display of the gradient for the
W matrix, the visualization focuses on the gradient based on
the M matrix.

The analysis highlights key distinctions among the regu-
larizers. The L2 method primarily involves matrix rescaling

without a significant impact on entropy removal or sparsity
promotion. LB exhibits a constant gradient across all ele-
ments. Notably, for LH, the gradient captures the P term,
indicating effective suppression of entropy in the two-body
term throughout the training process.

Furthermore, as illustrated in Fig. 2, LH regularized pa-
rameters exhibit unique characteristics. Unlike L2 or LB
regularized parameters, LH-regulated parameters no longer
display the low-rank signal (manifested as vertical and hor-
izontal lines). This absence is significant, particularly in the
context of the APC’s role in unsupervised contact predic-
tion tasks. Additionally, LH regularized parameters show no
signs of overfitting, as evidenced by consistent results across
multiple protein families with varying depths, as depicted in
Fig. S2. This consistency underscores the effectiveness of LH
regularization in mitigating overfitting issues across diverse
protein data sets.

To evaluate robustness, we compute the reference Hamilto-
nian using a protein family (DNA binding response regulator,
PDB: 3CNB, chain: A) with over 20 K sequences, employing
parameters from three regularization schemes. Subsequently,
we subsample the MSA to different depths, refit parameters,
and we calculate Spearman correlation with the recomputed
Hamiltonian. In Figs. S3 and S4, LH regularization exhibits
a more robust correlation with the reference Hamiltonian
compared to L2 and LB. The latter two show a rapid de-
cline in correlation with reduced sequences, indicating a more
pronounced overfitting issue. This highlights the superior ro-
bustness of LH regularization across varying data-set sizes.

Furthermore, to demonstrate the disentanglement of co-
evolution and entropy (as measured by conservation), we use
the parameters of the L2 and LH models to sample new
sequences. Specifically, we sample sequences based on one-
body parameters, two-body parameters, or a combination of
both. If disentangled properly, the sampling procedure should
require both terms for the PSSM (position-specific scoring
matrix) of the sampled sequences to match the PSSM of the
natural sequences. To test this, we sample sequences for a
set of 553 proteins using CCMGEN [27] (see the Methods
section). As shown in Fig. 3, when using both one-body and
two-body parameters (wb), the PSSMs of both LH and LB
regularized models match. When using just the two-body
parameter (w) for sampling, the PSSMs match for L2 but
not for LH. The opposite is observed when using just the
one-body term (b) for sampling, i.e., the PSSMs do not match
for L2, indicating the entanglement of the entropy and coevo-
lution signal in the two-body parameters, with the one-body
term playing little role. For LH regularized models, the best
correlation is achieved when both the one- and two-body
parameters are used, indicating the disentanglement of coevo-
lution and entropy.

Guided by these results, we tested this method with more
protein-related applications, such as contact prediction and
sequence design, to see if disentangling entropy inherently
helps enhance their performances.

D. Unsupervised and supervised contact prediction

As illustrated in Fig. 4(a), an increase in the weight of
LH regularization results in the convergence of performance
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FIG. 2. The effects of regularization type (L2, LH, and LB) on the sparsity of contact maps, gradient, and overfitting. The first row [(a)—(c)]
shows the M, with L2, LH, and LB regularization, respectively. The second row [(d)—(f)] shows the gradient of these three regularizers.
Gradients are consistently recorded throughout the entirety of the training process, and the depicted gradients correspond to those obtained
from the final training step as it approaches convergence. The third row [(g)—(i)] shows the distributions of reconstruction losses for the natural
MSA training set (blue), the test set (yellow), MSA sampled from a PSSM of the natural MSA (green), and MSA sampled from a random
distribution MSA (red). Even though the loss distribution of the training set is well separated from the PSSM and randomly sampled sequences,
for the L2 and LB regularized models the test set distribution does not overlap with the training set loss, indicating an overfitting issue. For the
LH regularized model, the training and test set loss distributions have a good overlap.

between the “raw” and “APC” matrices, approaching the pre-
cision of the L2 regularized “APC” matrix. Notably, with
lower regularization weight, the “APC” matrix of the LH
regularized model surpasses the original Markov random field
(MRF) model with L2 regularization in contact precision.
Figure 4(c) demonstrates LH outperforming L2 without the
APC. As a point of comparison, Block L1 (LB) is explored,
and while increased weight enhances “raw” performance, it
falls short of matching the performance of L2 with “APC.”
Although both LH and LB regularizers enhance performance
over L2 when considering “raw” matrices [Figs. 4(b) and
4(d)], only the LH “raw” matrix approaches that of the L2
“APC.” In summary, the LH regularizer eliminates the need

for APC while maintaining the contact precision of the MRF
model.

For the contact prediction task, the assessment of contact
precision involves a data set comprising 383 proteins (refer
to methods). Two distinct matrices are under evaluation: the
Frobenius norm of W, referred to as the “raw” matrix, and the
average product corrected matrix denoted as “APC” following
Eq. (3). As illustrated in Fig. 4(a), an increase in the weight
of LH regularization results in the convergence of perfor-
mance between the “raw” and “APC” matrices, approaching
the precision of the L2 regularized “APC” matrix. Notably,
with lower regularization weight, the “APC” matrix of the LH
regularized model surpasses the original MRF model with L2
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regularization in contact precision. Figure 4(c) demonstrates
LH outperforming L2 without the APC. As a point of compar-
ison, Block L1 (LB) is explored, and while increased weight
enhances “raw” performance, it falls short of matching the
performance of L2 with “APC.” Although both LH and LB
regularizers enhance performance over L2 when considering
“raw” matrices [Figs. 4(b) and 4(d)], only the LH “raw” ma-
trix approaches that of the L2 “APC.” In summary, the LH
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FIG. 4. For unsupervised protein contact prediction, the average
product correction (APC) is no longer required under the LH regu-
larizer. (a) The accuracy of the L.2-based method is set as a baseline
with two solid lines. The blue one is the performance without the
APC, and the orange one is the accuracy with the APC. The x-axis is
the hyperparameter for LH, and the red dots showed the raw accuracy
of LH and blue dots with APC correction. (b) The accuracy of Block
L1 is shown with different hyperparameter scanning. (c) The best
raw performance from LH compared with the L2-based method.
Each point corresponds to a protein MSA, the axes indicate the
accuracy of each method, defined as the average precision of the top
L-ranked contacts, and L is the length of the protein. (d) Performance
comparison between L2 and LB.

post processing method

FIG. 5. For protein contact prediction, three different ways of
contact extraction are applied to all three methods, L2 (green), LH
(red), and LB (yellow). Besides the raw and APC method, we treated
the W matrices as inputs of a simple regression model. The top L
precision is used to curve the performance, and L is the length of the
protein.

regularizer eliminates the need for the APC while maintaining
the contact precision of the MRF model.

Given that all residue-residue interactions within a pro-
tein adhere to the same fundamental physical potentials, it
is anticipated that pairs of interacting residues share a finite
number of K xK matrices. To assess the efficacy of LH reg-
ularized parameters in capturing these shared features, we
employ principal component analysis (PCA) on the W matrix.
PCA, being a decomposition method, allows for the distilla-
tion of crucial common or shared features. In our approach,
we transpose the W matrix, treating the K xK dimension
as features and LxL as the number of samples. The KxK
dimension, which encapsulates the biophysical meaning of
amino acid interactions, is expected to be unveiled through
principal components. Figure S5 illustrates that the LH regu-
larizer necessitates fewer principal components to explain the
same amount of data compared to L2 and LB regularizers.
Given that contemporary machine learning models commonly
utilize the W matrix as input for predicting protein contact
maps or distance matrices in future structure prediction tasks
[12—-14], we posit that the distilled features may prove more
valuable as inputs to machine learning algorithms. To test
this hypothesis, we trained a simple logistic regression neural
network (referred to as “NN”), akin to the one described in
[9], to learn a weighted sum of the K x K matrix for contact
prediction. This exploration aims to evaluate the LH reg-
ularizer’s effectiveness in generating features conducive to
enhancing supervised machine learning methods for protein
contact prediction.

We assess the performance of nine methods and present the
precision for the top L contacts in Fig. 5. Contact definition
employs ConFind [39] with a contact degree cutoff of 0.01
and a sequence separation of 6 or greater. The nine methods
encompass pairwise combinations of regularizers (L2, LH,
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FIG. 6. Reanalysis of Spearman correlation between the Hamil-
tonian of GA/GB and published folding temperature [19]. The L2
and LH regularizers are applied to curve the Hamiltonian. The x-axis
is the Hamiltonian, and the y-axis is the reported Tm. Each point is a
designed protein sequence.

and LB) and three postprocessing methods (raw, APC, and
NN). The results reveal that LH-based inputs exhibit greater
robustness and higher precision, indicating the effectiveness
of denoised or distilled features. Based on these findings, we
anticipate that features extracted within the context of LH
regularization will enhance results in more advanced deep
neural networks.

E. Sequence design

Evolution-inspired sequence design is already imple-
mented in some generative models such as the Markov
random field model [19], bmDCA [20], or the energy mix-
ture model [40]. These models allow the calculation of the
Hamiltonian as statistical energy (as described in the Methods
section; see Markov random field) describing the protein ther-
mal stability or fitness landscape. Using Monte Carlo to search
sequence space and get the lower Hamiltonian is a current
strategy to design sequences. Unfortunately, in these models,
coevolution, entropy, and phylogeny signals are entangled
under the L2 regularizer. Since protein stability is thought to
be due to structural constraints, we hypothesize that a sparse
model that only models the coevolution signal may be more
predictive of protein stability.

To test if sparse models are more predictive of stability, we
explored the stability of a series of reported designed sequence
variants with labeled experimental data. We evaluated the
performance using Spearman’s rank correlation coefficient p
between Hamiltonian and the melting temperature (denoted
as “Tm”). As shown in Fig. 6, we can see for the GA and GB
binding domains of streptococcal protein G that the Hamil-
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FIG. 7. The histogram of AG difference between LH and L2
with different optimization protocols. The white line represents a
scaling adjustment for the illustration. The red line corresponds to
the natural protein folding rate and serves as a designed baseline for
comparison. It shows that, no matter which optimization protocol
is adopted, AG of proteins designed by LH are larger than those
designed by L2, in most of the cases.

tonian from the sparse LH model is well correlated with the
Tm. In Protein GA, the LH achieved a performance of 0.76,
slightly better than the L2 model of 0.73. In Protein GB, the
LH has a stable performance of 0.86, but the L2 drops down
to 0.47. These two analyses demonstrated that the LH-based
method might help design more stable proteins.

Then, cDNA display proteolysis, as outlined in the work
by Tsuboyama et al. [41], is employed to assess folding sta-
bility by subjecting the redesigned proteins to challenges with
chymotrypsin and trypsin. The rationale behind this method
lies in the principle that more stable proteins exhibit greater
resistance to proteolysis. During the enzymatic proteolysis,
stable proteins resist unfolding and remain intact, while less
stable proteins are more susceptible to enzymatic cleavage.

Subsequently, the remaining protein fragments with cDNA
signals can be detected through next-generation sequencing
(NGS). The detection of cDNA signals indicates the per-
sistence of intact protein fragments post-proteolysis. This
approach allows for the identification and quantification of
proteins that withstand the proteolytic challenges, providing
a direct measure of folding stability. The derived AG values,
based on the extent of proteolysis and subsequent signal de-
tection, serve as quantitative indicators of the relative stability
of proteins designed using L2 and LH models.

For all 259 proteins, we computed the AG difference be-
tween LH and L2, presenting the results in the histogram
depicted in Fig. 7. The white line serves as a reference for
no difference in AG. The histogram reveals that, in the ma-
jority of cases, the AG’s of proteins designed using the LH
model are higher than those designed with the L2 model. This
observation demonstrates that proteins designed based on the
LH model exhibit greater stability compared to those designed
using the L2 model.
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Sequence identity

FIG. 8. The association between AAG and sequence identity is examined across proteins designed using various models and optimization
protocols. The analysis reveals that proteins designed with the LH model exhibit greater sequence diversity and stability compared to those
designed with the L2 model. Instances where AAG values surpass the dashed lines signify that the designed proteins are more stable than

naturally occurring proteins.

Furthermore, we calculated the AG difference between the
designed sequence and the wild-type sequence (AAG) for
each protein. The distribution of sequence identity and AAG
for the designed proteins is illustrated in Fig. 8. The LH model
yields more diverse sequences when employing order and
greedy optimization protocols. Even with the application of
the more intricate Gurobi protocol, both LH and L2 models
achieve diverse sequences. However, sequences designed by
the LH model exhibit higher stability. These findings under-
score the effectiveness of the LH model in producing diverse
yet stable protein sequences under different optimization pro-
tocols.

F. The effects of spectral regularization on phylogenetics

Beyond the entropy signal, there is also the phylogenetic
signal, which is thought to be entangled in the coevolution
matrix. When the MSA is projected onto the residue space, the
expectation is for sequence clusters to emerge. This structure
aligns more closely with phylogenetic principles, giving rise
to the formation of subfamilies.

To test this, we use the chorismate mutases data set
from [20] to fit three generative models and sample new
sequences. Unless the sequences are explicitly sampled along
a phylogeny [27], we would expect independently sampled
sequences to be devoid of low-rank signals representing rela-
tionships or clusters of sequences. Sequences sampled from
L2 regularized models bmDCA and GREMLIN fully and
partially preserve, respectively, the low-rank structure when
projected onto the two largest principal components of the
natural MSA. For LH sampled sequences, the signal is gone,

indicating that the phylogenetic bias is now suppressed as
shown in Fig. 9. Though this is theoretically a good result,
it can be problematic for sampling of functional sequences if
the low-rank signal represents functional clusters as expected
for an MSA that is a mixture of paralogs and orthologs. The
low-rank signal may be useful for discriminating between
functional and nonfunctional sequences if different clusters

(a) nature_msa (b) msa_L2
4 - 1.0 4 - 550
§ 27 .o 05 g § 2 500 5
- S g 450 £
o T = Q pra, 3 S
S 0 S e a5 E S 7 Lo v X a0 E
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FIG. 9. PCA analysis of MSAs to check about the sequence
relations. All sequences are projected into PC1 and PC2; the first
plot is colored by norm r.e. (fitness), and the rest are colored by a
negative Hamiltonian. Blue couples with positive fitness.
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FIG. 10. Structural reanalysis [42] of thermal stability from (a) ANCI1 to ANC4, (b) ANCI to B. marinas, and (c) ANCI to B. subtilis
using published crystal structures [42,44,45]. The right panel showed the difference in the coevolutionary coupling strength of two different
proteins. The more unstable the right pairwise interaction is, the more blue the pattern appears. The solid red lines represent high thermal
stability, and the dashed-dotted line weakened the interactions for the right protein.

represent different functions. To test that the LH regularized
model is still able to discriminate between working and not
working designs, we retrain the models using a subset of nat-
ural sequences experimentally determined to have the desired
activity (denoted as “norm r.e.”). As shown in Fig. 9, for
all three models, we find that the designed sequences from
[20] can be easily separated into working and nonworking
by their computed Hamiltonian. To confirm that the sparse
coevolution signal is present, we compute the mutual in-
formation (MI) contact maps of the L2, LH, and bmDCA
(denoted “L2BM”) sampled sequences. Analyzing the contact
maps qualitatively, we see low-rank signals (vertical and hor-
izontal lines) in the MI matrix for L2 and bmDCA sampled
sequences, yet a little signal in the LH sampled sequences.
To confirm that the entropy signal is preserved, we compared
the marginal entropy of the sampled sequences to those of
the natural MSA, and we saw a strong correlation (Pearson
r = 0.95), suggesting the entropy is still captured by the
LH regularized model but disentangled from the pairwise
term.

These findings propose a promising direction for ad-
vancing a unified model capable of incorporating both
coevolutionary and phylogenetic influences. LH could prove
valuable in unraveling the covariance arising from phylogeny

as opposed to coevolution within a model that effectively
parametrizes these two signals.

G. Interpretability

LH enhances the interpretability of single sequence con-
tacts within coevolutionary models. While MRF models’
parameters for a given sequence are anticipated to reflect the
physical potentials of interacting residues, an examination
of L2 or LB regularized parameters for the same sequence
reveals patterns of indirect correlations manifested as ver-
tical and horizontal lines. For LH regularized parameters,
the signal is sparse (Fig. S7), and it reveals attractive or
repulsive interactions, unlike the L2 norm used to represent
the average signal across a protein family. As a case study,
we analyze adenylate kinase [42]. From Fig. 10 we can see
that ANC1 is the most ancient sequence and has a melting
temperature of 89 °C, with ANC4 only 75 °C. From the de-
tailed single sequence contact analysis, we see that ANC4
forms two strong negative or repulsive contacts compared to
ANCI. The residue pairs between 23 and 209 are changed
to a repulsive lysine(K)-lysine(K) interaction in ANC4, while
they are a stable lysine(K)-glutamic acid(E) salt bridge in
ANCI.
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In Fig. 10, it can be observed that for the residue pair 19
and 202, the salt bridge is disrupted by replacing aspartic
acid (D) with asparagine (N). Additionally, from ANI to B.
marinas, apart from breaking the 19-202 salt bridge, a 7-
cation interaction between phenylalanine (F) and lysine (K)
is disrupted by mutating a neighboring interaction of F with
glutamine (Q). This mutation decreases the interactive energy
and weakens the stability of Adk from B. marinas. From
ANCI to B. subtilis, besides breaking the cation interaction
of R-Y to R-S, the well-structured zinc-binding sites Cys-
teine(C)CCC are mutated to CCCD, which not only shows a
series of negative signals in the metal-binding region, but also
might have an important effect to decrease the stability. This
effect has not been reported in the published paper [42], and
the zinc-binding sites were reported to be highly correlated
with stability recently [43].

This qualitative analysis demonstrates the power of LH
regularization in increasing the interpretability of the coevo-
lution of interacting residues, and it may help biologists to
rationally analyze the effects of mutation for sequence design.

III. DISCUSSION

Motivated by a mathematical reinterpretation of the aver-
age product correction (APC), we have introduced a spectral
regularizer in our study. This regularizer penalizes the largest
eigenmode of the pairwise parameters in the Markov ran-
dom field (MRF) during the training process. Our findings
indicate that this approach greatly diminishes the necessity
for low-rank postcorrection. Specifically, in the context of
unsupervised contact prediction, we have observed that the
extracted contact map no longer necessitates the use of the
APC. Furthermore, the performance achieved by our method
closely matches that of L2 regularized models with the
APC.

In our proposed LH model, the enforcement of a pseudo-
likelihood (or self-supervised objective) is achieved by
altering the diagonal elements of the M matrix to zero. This
constraint ensures that the sum of eigenvalues equals the
sum of diagonals, which results in a sum of zero. How-
ever, suppressing the largest eigenvalues may inadvertently
distort the remaining eigenvalues. This distortion, in the
case of APC, removes only the largest eigen-mode while
leaving the rest unaffected. This may explain why some
degree of overfitting persists, preventing our model’s perfor-
mance from surpassing that of L2 regularized models with
APC.

Further refinements are crucial to effectively confine the
regularization to only impact the largest eigenmode. By
concentrating the regularization on this specific aspect, we
anticipate addressing the current limitations and enhancing
the overall performance of our approach. Moreover, we have
observed that these parameters are less prone to overfitting
in sequence reconstruction tasks, indicating their potential to
generalize well in unknown spaces.

In particular, the LH-based W matrix proves to be a more
suitable input for supervised learning, possibly benefiting
the prediction of protein contacts in more complex super-
vised models. Additionally, we have successfully applied the

LH-based MRF model to analyze designed sequences across
various examples, all of which exhibit significant correlations
between experimental stability/fitness data and the Hamil-
tonian derived from our method. Furthermore, our approach
uncovers previously unseen evolutionary patterns and greatly
enhances the interpretability of the model. Considering the
aforementioned factors, the LH-based model, guided by struc-
tural principles, holds great potential for further exploration in
structural-related applications.

The exclusion of entropy and the low-rank signal associ-
ated with phylogeny from the two-body term facilitates the
utilization of shared parameters and explicit modeling of phy-
logenetics. We hypothesize that the two-body term can be
effectively described by a limited set of 20 by 20 matrices
that capture biophysical characteristics, and these matrices
can be shared across protein families. Previous attempts to im-
prove contact prediction by sharing parameters across protein
families [31] or explicitly modeling phylogeny on real data
[46,47] have encountered challenges due to entanglement.
With the introduction of LH regularization, it may be valuable
to reexamine these problems and approaches in order to garner
new insights.

Recent deep-learning methods like VAEs [48,49], BERT
[50,51], MSA transformer [52], RoseTTAFold [53], and Al-
phaFold2 [54], while not explicitly parametrizing MRFs, are
thought to learn them via the hidden parameters. These mod-
els optimize an approximation of the pseudo-likelihood func-
tion called self-supervision or masked-language-modeling
[31]. We suspect that the Jacobian of these models can be
computed [8] and regularized with LH to promote sparsity in
the hidden representations.

IV. METHODS
A. Data set

A data set of proteins from the PDB database, along with
their multiple sequence alignment (MSA) were collected from
Ref. [55]. This study utilized three data sets from the Pro-
tein Data Bank: an x-ray set of 9846 nonredundant protein
chains, a varied-resolution x-ray set, and a solution NMR set
containing 222 proteins with both NMR and crystallographic
structures. To make the data set consistent, a diverse subset
of 383 proteins was selected that contained at least 1 K se-
quences and subsampled to 1 K sequences, as described in
[56].

For the DNA-binding response regulator protein (PDB
code: 3CNB), a data set comprising 25,947 sequences was
randomly split into an 80:20 ratio, with 80% used as the
training set and 20% as the test set.

For protein design, the data set includes protein thermal
stability data from GA and GB binding domains of streptococ-
cal protein G [19] and the fitness measurements of chorismate
mutases [20] and the Adenylate kinase sequences [42]. The
latter sequences were generated using an ancient sequence
reconstruction approach.

The cDNA display-designed proteins were chosen based
on DNA synthesis limitations, restricting their length between
20 and 80 proteins. MSA with a depth of over 100 sequences
against the BFD data set was conducted. Additionally,
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proteins containing cysteine were systematically excluded
from the selection. A total of 259 proteins successfully entered
the final analysis.

For the disentanglement of entropy and coevolution ex-
periment, 553 short proteins with at least 100 sequences in
the MSA were collected from the PDB database. Consider-
ing the sampling efficiency of CCMGEN, the data set was
restricted to a maximum length of 80 amino acids. For the
553 proteins, we ran TrRosetta’s HHblits protocol to gen-
erate the multiple sequence alignment. To summarize, the
protocol starts with a search against the Uniclust30 sequence
database. If fewer than 128 sequences are found at an e-
value of 1x 1073, the MSA is further enriched using the BFD
database. Once the parameters are fit using GREMLIN, CCM-
GEN (starting with a random sequence with a burn-in of 1000)
is used to sample 2000 new sequences. The data sets are in
Ref. [57].

B. Regularization and hyperparameter

L2 and Block L1(LB) regularizers can be presented as
follows:

L2W) = "w},,

iajb

= m ™
ij
LBW)=Y" > w2,

ij ab
= Z ni;. (8)
ij

In the previous GREMLIN study, the hyperparameter of
LH was identified as a function correlated with three factors:
the number of states, the inverse of the square root of effective
sequences, and the length of the protein. Subsequently, it was
determined that the tunable hyperparameter was set at 0.1 in
this work, and it is more appropriately adjusted to a range
between 0.05 and 1 for optimal performance.

C. Supervised learning

To convert the two-body term in the MRF model into the
two-dimensional contact map, we make use of three conver-
sion methods, which are denoted as “raw,” “APC,” and “LR.”
The “raw” is M from Eq. (2), and “APC” is C from Eq. (3).
The “LR” is the output following logistic regression fitting
described in Ref. [9]. We train the logistic regression on the
curated data set [56] using fivefold cross-validation, which
contains 383 proteins. The data set is first split into five equal
parts. Five separate models were trained, and for each model,

1/5th of the data was selected as the test set and the remaining
as the training set. In this way, the logistic regression model
can be trained and evaluated on all 383 proteins. The logis-
tic regression model is L2 regularized with a coefficient of
1x1075. The learning rate is set to 5x 107> and the Adam
optimizer [58] is employed to optimize the loss function.

The performance of nine methods (pairwise combination
of three regularization methods: L2, LH, and LB and three
contact extract methods: raw, APC, and LR) is evaluated on
the 383 proteins with contact precision of the top L predic-
tions, Fig. 5.

D. Sequence design

To design protein sequences based on LH and L2 models,
we propose three optimization protocols, i.e., order, greedy,
and Gurobi. Order means that starting from the wild protein
sequence, each position is mutated to the amino acid with
the lowest Hamiltonian, from left to right. Greedy is similar
to order, except that the mutation order is determined by the
probability, i.e., the softmax(H) term in Eq. (1). Specifically,
for all the unmutated positions, we choose the one with the
highest probability. After the mutation, H is recalculated.
To further explore the sequence design space, we employ
Gurobi, the state-of-the-art solver for mathematical program-
ming, to make the optimization. Gurobi is asked to minimize
the Hamiltonian of the designed sequence while keeping the
sequence in one-hot format.
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