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Animal behavior is shaped by a myriad of mechanisms acting on a wide range of scales, which hampers
quantitative reasoning and the identification of general principles. Here, we combine data analysis and theory
to investigate the relationship between behavioral plasticity and heavy-tailed statistics often observed in animal
behavior. Specifically, we first leverage high-resolution recordings of Caenorhabditis elegans locomotion to
show that stochastic transitions among long-lived behaviors exhibit heavy-tailed first-passage-time distributions
and correlation functions. Such heavy tails can be explained by slow adaptation of behavior over time. This
particular result motivates our second step of introducing a general model where we separate fast dynamics on
a quasistationary multiwell potential, from nonergodic, slowly varying modes. We then show that heavy tails
generically emerge in such a model, and we provide a theoretical derivation of the resulting functional form,
which can become a power law with exponents that depend on the strength of the fluctuations. Finally, we
provide direct support for the generality of our findings by testing them in a C. elegans mutant where adaptation
is suppressed and heavy tails thus disappear, and recordings of larval zebrafish swimming behavior where heavy
tails are again prevalent.
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I. INTRODUCTION

Animals continuously sense, process sensory informa-
tion, and respond appropriately to ensure survival. High-
dimensionality and multiple timescales of these far-from-
equilibrium systems challenge quantitative understanding.
Yet, recent advances in machine vision technologies (e.g.,
[1–3]) make it possible to record an animal’s pose in uncon-
strained environments with unprecedented resolution. Such
data now span several orders of magnitude [4], motivating
modeling approaches that can bridge from subsecond move-
ments to hours-long strategies.

Despite these technical advances, a complete microscopic
description is not available and, most likely, out of reach.
Indeed, that would require the current posture of the ani-
mal together with its physiological, sensory, and motor state:
the uncountable number of molecules involved makes it un-
realistic to track them all. Progress relies on the educated
hope that so many details are not needed, as selected sta-
tistical physics examples illustrate [5]. To wit, an effective
equation for the slowly varying concentration field is suffi-
cient to capture how odor molecules diffuse in the air [6].
Much of statistical mechanics relies on the identification of
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such slowly varying macroscopic modes, which, through a
timescale separation, depend only statistically on microscopic
details. Identifying macroscopic modes may not be a simple
task, though, and it requires intuition often not immediate for
far-from-equilibrium systems as encountered in biology. Here,
we leverage the notion of slowly varying collective variables
to motivate our introduction of reduced-order models directly
from imaging data of behaving animals.

Our starting point is the nematode Caenorhabditis ele-
gans, a pivotal model organism [7,8]. On a two-dimensional
agar plate, worms move by propagating dorsoventral waves
throughout their bodies and controlling their frequency, wave-
length, and direction to move forward, backward, or turn.
Long sequences of such short-lived movements exhibit sig-
natures of chaos [9,10]. Despite this inherent variability,
time-delay embedding [11–15] yields a high-fidelity Markov
model that predicts C. elegans foraging behavior [16]. The
resulting simulated worms are nearly indistinguishable from
real ones across a wide range of scales. This Markov model
also directly recovered long-lived metastable states that corre-
spond to transitions between relatively straight paths (“runs”)
and not-so-abrupt reorientations (“pirouettes”) [16,17] (akin
to the run-and-tumbling of bacteria [18]), thus providing an
effective coarse-grained description of the dynamics.

Empirical evidence for the emergence of stereotypy in
the dynamics of C. elegans reflects the timescale separation
between short-term movements in a given behavioral state
and long-term transitions between states. Here, we make this
evocative picture concrete by recasting it in terms of models of
particles hopping among wells in a potential landscape. In the
first section, we build an effective Langevin description for
the inferred “run-and-pirouette” dynamics. Notably, we find
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FIG. 1. Power-law distributions observed across species. (a) Distribution of step lengths � for an individual basking shark (Cetorhinus
maximus) (adapted from Ref. [19]). The inset shows the probability density f (�) in a log-log scale, and the power-law fit �−μ with μ = 2.3.
Assuming a constant speed, the time spent in a step would also be distributed as f (t ) ≈ t−μ. (b) Distribution of the time between decisions
in a choice task by Sprague Dawley rats (adapted from Ref. [20]). The inset shows the same curve in log-log scale, and the power-law fit t−μ

with μ = 1.97. (c) Distribution of the duration of clockwise (gray) and counterclockwise (black) rotations of a single Escherichia coli motor
(adapted from Ref. [21]). The inset shows the complementary cumulative distribution function (black) with a superposed power law t−1 (gray),
corresponding to a probability density ∼t−2.

long-range correlations and heavy-tailed distributions of resi-
dence times spent in the two states (instead of the exponential
expected for independent transition events). Our observation
adds to the body of evidence showing that times spent in a
given behavioral state are often heavy tailed. Indeed, power-
law distributions f (t ) = t−2 [where f (t ) is the probability
density of observing a residence time of duration t] are found
extensively across species (see Fig. 1). In the context of search
behavior, such observations have led to the hypothesis that
Lévy flights (with an exponent −2) result in efficient search
strategies and are then evolutionarily selected [22–26].

Our goal here is to combine data analysis and theory
to show that heavy-tailed distributions can emerge from a
slow adaptation of behavior over time. First, we infer time-
dependent model parameters from the worm data and show
that the observed heavy-tailed distributions can be explained
by slow adaptation. Then, we introduce a general model and
analyze it theoretically to account for the ubiquitous ob-
servation of heavy-tailed statistics in animal behavior. The
model features potential landscapes that slowly fluctuate in
time, and we demonstrate heavy-tailed first-passage times and
long-range correlations. The specific point that we bring here
is that we obtain an analytical expression for the exponents
of the power-law distributions as a function of the strength
of the fluctuations. The scaling t−2 mentioned above is re-
covered as a special limiting case. Finally, the generality of
our point that behavioral plasticity may be responsible for
heavy tails is strengthened by the analysis of experiments on
a C. elegans mutant and on larval zebrafish that confirm our
predictions.

II. DATA-DRIVEN ANALYSIS REVEALS HEAVY TAILS IN
C. ELEGANS BEHAVIOR: THE ROLE OF ADAPTATION

We leverage a previously analyzed dataset in which 12
laboratory-strain N2 worms are placed on an agar plate and
allowed to freely explore for Texpt = 35 min. [27]. Our pro-
cedure is illustrated in Fig. 2 and summarized hereafter, with
more details deferred to Appendix A.

From each video frame (sampled every δt = 1/16s), we
extract the worm’s centerline, measure tangent angles equally
spaced along the body, and subtract the overall rotation of
the worm to obtain the animal’s posture vector θt . Given a
time t , the future evolution of θ does not depend on θt only,
which reflects the effect of history and breaks Markovianity.
This problem was circumvented in Refs. [9,16] by including
past postures in the description of the system. In other words,
short-term memory is taken into account by expanding the
state space so that it admits an approximately Markovian de-
scription. The procedure detailed in Refs. [9,16] yields that a
sequence XK∗ (t ) = {θt−K∗δt , . . . , θt−δt , θt } of K∗ = 11 stacked
postures is sufficient to determine future statistics. The cor-
responding probability density ρt = ρ(XK∗ , t ) is advanced in
time by the so-called transfer operator L:

d

dt
ρt = Lρt , (1)

which does not need more specifics here.
While the θ variables are continuous, it is more efficient to

cluster the space of posture stacks XK∗ . Clustering yields a set
of discrete states that summarize information on the dynam-
ics. The operator L in Eq. (1) reduces then to a matrix with
diagonal and/or off-diagonal entries expressing the probability
to remain in the current discrete state or jump to another
one. The resulting Markov chain is embodied in the transition
matrix Pi j (τ ) = (eLτ )i j , which expresses the probability of
transitioning between discrete states si to s j in a time τ . The
procedure is detailed in Refs. [10,16] (see also Appendix A).

To conclude the description of our data analysis, we are left
to notice that eigenvalues �i and eigenvectors φi of the matrix
L and its exponential eLτ φi = e�iτ φi provide a hierarchy of
dynamical timescales [29–31]. For a mixing system, there is
a unique largest eigenvalue �1 = 0 that corresponds to the
steady-state φ1. The remaining eigenfunctions φi>1, ranked by
their decreasing real parts, correspond to collective variables
that relax on faster and faster timescales ∼|Re(�i>1)|−1.

For the measured C. elegans foraging dynamics, the eigen-
spectrum of L reveals a slow mode φ2 that is relatively well
separated from the rest of the eigenmodes and coarse-grains
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FIG. 2. A reduced-order model of C. elegans foraging dynamics. (a) From video imaging data, we measure local tangent angles along the
body to obtain the body posture vector θt as in Ref. [28]. A series of K∗ such vectors are then stacked to yield the variable XK∗ (t ) defined in the
text, which captures short-term memory. (b) A high-fidelity Markov model of the dynamics is obtained using methods in Refs. [10,16]. The first
nontrivial eigenvector φ2 of the inferred Markov chain captures the long-time dynamics of the system, as discussed in the body of the paper.
We represent the high-dimensional state space XK∗ through a two-dimensional (2D) UMAP embedding as in Ref. [16] (left), and color-code
each point by its projection along φ2. An example 10-min-long centroid trajectory color-coded by φ2 is shown on the right. The example
showcases how negative and positive values of φ2 correspond to forward “runs” and combinations of reversals, ventral and dorsal turns during
“pirouettes.” (c) Example time series of φ2 illustrating the stochastic hopping between runs and pirouettes. (d) Left: Distribution function of
observing a run or a pirouette with a duration longer than τbeh, 1 − P(τbeh � t ), estimated from the experimental data (black), simulations of
Eq. (2), i.e., the dynamics projected onto φ2 (blue), and simulations of Eq. (1), i.e., of the full unprojected model (gray). While simulations
capture the sum of exponential functions (gray dashed line) that approximates the bulk of the distribution, heavy tails observed in the data are
not well captured. Right: Connected autocorrelation function Cφ2 (τ ) for the data (black) and simulations of the projected (unprojected) model
[blue (gray)]. Simulations fail again in predicting the long-range correlations exhibited by the data. Note that the projected and the full model
yield similar results, illustrating the efficiency of our projection method. Error bars represent 95% confidence intervals bootstrapped across
worms.

the behavior into “runs” and “pirouettes” [16], as illustrated in
Fig. 2(b). Large positive and negative values of φ2 correspond
to pirouettes and runs, respectively. This property allows
us to define a slow reaction coordinate [32] that captures
the worm’s dynamics along a “run-and-pirouette” axis [see
Fig. 2(b)]. In particular, as the worm moves, it traces an orbit
in the XK∗ space that we project onto φ2. The bottom line is
that the fast dynamics of the body postures [9] is integrated out
and the projection onto φ2 highlights the effective stochastic
description for the hopping between runs and pirouettes. A
typical time series of φ2(t ) is shown in Fig. 2(c).

A. Inferring a stationary Langevin equation
for the “run-and-pirouette” dynamics

To infer an explicit model for stochastic hoppings along
φ2(t ), we sample the dynamics at the Markov-Einstein
timescale τ ∗ [33,34], i.e., long enough that effects of higher-
order eigenmodes φi (i � 3) have decayed. Thus, we can
obtain an effective overdamped Langevin description for

φ2(t ) [35]:

φ̇2 = F (φ2) +
√

2D(φ2)η(t ), (2)

where we effectively have 〈η(t )η(t ′)〉 � δ(t − t ′) due to the
coarse sampling every τ ∗. In practice, the choice τ ∗ = 0.75 s
ensures that a stochastic model inferred from the C. elegans
time series results in effectively delta-correlated fluctuations
(see Fig. S1(b) of the Supplemental Material [36]). To find
F (φ2) and D(φ2) we use a kernel-based approach [37] based
on the Kramers-Moyal expansion [38], rather than discretized
bins, to obtain a more robust estimate (see Appendix A).

To probe the relevance of the above model, we identify
“run” and “pirouette” states by maximizing the metastabil-
ity of both states (see Appendix A) [16], and estimate the
probability P(τbeh) of a residence time τbeh in one of the two
behaviors (see Fig. 2(d), left, and Fig. S2 [36]). Interestingly,
while the exponential bulk of P(τbeh) is captured by Eq. (2),
heavier tails are not. In addition, we estimated the connected
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FIG. 3. A time-varying potential landscape captures heavy tails in C. elegans behavior. (a) The time-dependent potential landscape for the
eigenmode φ2 discussed in the text. As time goes on (blue to yellow), the barrier remains close to φ2 = 0 (black dot on the φ2 axis) while
the “run” well becomes deeper over time. That witnesses adaptation towards increasingly performing runs. (b) The probability of observing
a run or a “pirouette” with a duration > τbeh, 1 − P(τbeh � t ) (left), and the connected autocorrelation function, Cφ2 (τ ) (right), as obtained
from data (black), simulations of the static model in Eq. (2) [blue, same as Fig. 1(d)], and simulations of the time-dependent model in Eq. (4)
(orange). Note that the last captures heavy tails and long-range correlations observed in the data. Error bars represent 95% confidence intervals
bootstrapped across worms.

autocorrelation function

Cφ2 (τ ) = 1

σ 2
φ2

〈(φ2(t ) − 〈φ2〉t )(φ2(t + τ ) − 〈φ2〉t )〉t , (3)

where σ 2
φ2

is the variance of φ2(t ) and 〈·〉t denotes tempo-
ral average. We observe again that the model captures short
timescales (≈10 s) but fails to predict long-range correlations
exhibited by the data [Fig. 2(d), right]. This discrepancy is not
due to the projection onto φ2 or the assumption of Langevin
dynamics since simulations of the full model [Eq. (1)] yield
similar predictions [see Fig. 2(d)].

B. Fluctuating potential landscapes underlie the emergence
of heavy tails in C. elegans foraging

A possible explanation for the inability of Langevin equa-
tion (2) [or the full model in Eq. (1)] to capture heavy tails
is the existence of subtle hidden fluctuations that evolve on
timescales comparable to the observation time Texpt. The idea
stems from observations that worms slowly adapt their search
strategy upon removal of food by lowering their rate of “pirou-
ettes” to explore wider areas in search for food [39–44]. A
time-evolving rate of pirouettes calls for a nonstationary ex-
tension of the model via time-dependent drift and diffusion
terms,

φ̇2 = F (φ2, t ) +
√

2D(φ2, t )η(t ), (4)

which reflect adaptation throughout Texpt.
Time-dependent drift and diffusion coefficients are inferred

as described in Appendix A. The resulting potential land-
scape evolves as shown in Fig. 3(a), validating the hypothesis
that worms slowly adapt by increasingly performing runs,
in agreement with Refs. [39–44]. Over time, the “run-and-
pirouette” random walk is indeed biased to explore farther
away. Notably, time dependency is sufficient to reproduce

heavy tails and long-range correlations exhibited by the
worms [Fig. 3(b)].

III. SLOWLY FLUCTUATING LANDSCAPES:
GENERALITY OF HEAVY TAILS

Our data-driven results show that the observed heavy tails
result from slow adaptation. Could similar mechanisms more
generally underlie the widespread observation of heavy tails
across behaving animals? Animals do modulate their behav-
ior, either due to environmental factors or through endogenous
internal states driven by neuromodulation, such as hunger or
stress [45–47]. Such a continuum of scales inevitably results
in nonstationarity since long-lived modes prevent relaxation
within a finite observation time Texpt. Our goal here is to
investigate theoretically the role of nonstationary fluctuations.

A. A fluctuating landscape picture of animal behavior

Given a set of observations of animal locomotion, we
decompose the dynamics into ergodic, x, and nonergodic, s,
components. The former are the variables that mix rapidly
and define the potential wells that correspond to the stereo-
typed behaviors; the latter evolve on timescales τs ∼ Texpt and
slowly modulate the potential landscape of x. Assuming an
appropriate timescale separation, we can describe the long-
term dynamics by the following phenomenological model:

dxt = −τ−1
x ∂xU (xt , st )dt +

√
2Txτ−1

x dW x
t , (5)

dst = −τ−1
s ∂sV (st )dt +

√
2Tsτ−1

s dW s
t . (6)

By rescaling time we can set τx = 1; dW x
t and dW s

t are in-
dependent increments of a Wiener process, Tx and Ts are the
levels of fluctuation in x and s, U is a potential landscape
with multiple wells corresponding to long-lived stereotyped
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behaviors, and V is uncoupled from the dynamics of x for
simplicity.

In the following sections, we show that the slow mod-
ulation of the dynamics introduced by the hidden modes s
generally give rise to heavy tails and nontrivial correlations,
analogously to the above case of the worm. In addition, we
determine the exponent of the tails and show that, in a limiting
case, it asymptotes to the value −2 observed across animal
species (see Fig. 1).

B. Heavy-tailed first-passage times in slowly driven
metastable dynamics

In the context of the Langevin dynamics in Eq. (5), the
distribution of times spent in a given behavioral state is given
by the time to escape from a potential well, the so-called first-
passage-time distribution (FPTD) [48], which is of interest
across biology, chemistry, finance, physics, and mathemat-
ics [49–52]. We provide a short pedagogical introduction to
first-passage times in Appendix B. Analytical expressions are
rare [53] and most results focus on the mean first-passage
time (MFPT) [54,55], more tractable but not representative of
the long-time behavior in the presence of multiple timescales
[56]. To investigate whether the nonergodic dynamics of
Eqs. (5) and (6) generally yield heavy tails, we derive here-
after the large-time asymptotics of its FPTD.

The observation time Texpt separates ergodic and noner-
godic modes and sets the slowest hopping rate ωmin ∼ T −1

expt.
The long-time behavior of the FPTD out of a static potential
well is given by (see Appendix B)

f (t, ω) = ωe−ωt , (7)

where the slowest ωmin normally dominates the asymptotic
behavior. Since the typical time of modulation, τs = O(Texpt ),
we can assume that transitions occur within a nearly static po-
tential; i.e., we use Eq. (7) even in the presence of adaptation.
However, ωmin will now vary as s fluctuates. The resulting
FPTD f (t ) is given by the expectation value of f (t, ω) over
the distribution p(ω) of ω weighted by the number of transi-
tions within Texpt, which is ∝ ω. In short:

f (t ) ∝
∫ ωmax

ωmin

p(ω) × ω × ωe−ωt dω. (8)

The tail of the distribution is dominated by instances where
the barrier height is the largest, motivating the use of
Kramers’s approximation [48,57]:

ω(s) = ω0 exp

{
−U (s)

Tx

}
, (9)

where U (s) is the height of the barrier to be overcome
and ω0 is a constant frequency (see Appendix B). Assuming
that each measurement starts from initial conditions sampled
according to a Boltzmann weight, the distribution of s is given
by [58]

p(s) ∝ exp

{
−V (s)

Ts

}
. (10)

When the barrier height fluctuations are large enough to yield
ω−1

min ∼ Texpt, we can combine Eqs. (8)–(10) to obtain the

large-t limit of the FPTD:

f (t ) ∼ t−2 exp

{
−V (U −1(Tx log(ω0t )))

Ts

}
. (11)

Here, U −1(·) represents the inverse function of U (s) and
we kept only the dominant order of the asymptotic approx-
imation (see Appendix C). Importantly, when Ts → ∞ we
obtain f (t ) ∼ t−2 under very general assumptions on the form
of V (s) and U (x, s). In addition, when V (s) and U (s) are
asymptotically equivalent, i.e., grow with the same power of
s at large s, the distribution f (t ) behaves as a power law
f (t ) ∼ t−2−c Tx

Ts with a correction to −2 proportional to Tx
Ts

.
In Fig. S3 [36] we confirm our theoretical predictions using
numerical simulations of a Poisson process with varying hop-
ping rates (see Appendix D). Equation (11) thus shows that
slow modulation, which may result from interactions with the
environment and/or slowly varying internal states [45,46], can
indeed generally yield heavy-tailed FPTD.

Slowly driven double-well potential

As a further illustration of our result in Eq. (11), we
consider a double-well potential whose barrier height is
slowly modulated according to an Ornstein-Uhlenbeck pro-
cess [Fig. 4(a)]. The dynamics of x and s are given by

dxt = −4s2
t xt

(
x2

t − 1
)
dt +

√
2TxdW x

t ,

dst = −τ−1
s (st − μs)dt +

√
2Tsτ−1

s dW s
t , (12)

where Tx = 10−3, μs = √
Tx, and τs = 103Texpt (see Ap-

pendix A for details). Since the tail of f (t ) is dominated
by large s values, we can take V (s) ∼ s2/2, and thus
V (U −1(x)) ∼ x/2. Equation (11) predicts then

f (t ) ∼ t−2− Tx
2Ts . (13)

To test this result we performed direct numerical simulations
of Eq. (12) while varying Ts and τs. Results in Figs. 4(b)
and 4(c) (see also Fig. S4 [36]) quantitatively confirm the
dependence of the power-law exponent on the ratio Tx/Ts,
and its approaching t−2 as Ts → ∞. These results support our
theoretical predictions, and provide further intuition for how
heavy-tailed distributions depend on the behavioral variability
Tx, the strength of adaptation, Ts, and the timescale of behav-
ioral adaptation, τs.

C. Long-range correlations and finite-size corrections
in slowly driven metastable dynamics

This section complements the previous one by showing
that slow modulation also induces heavy tails and long-range
anticorrelations in the correlation function, as observed for the
worm data in Fig. 3(b) (right).

1. Heavy tails

The connected correlation function of x in Eq. (5) is

Cx(τ ) = 〈x(t )x(t + τ )〉 − 〈x〉2

〈x2〉 − 〈x〉2
, (14)
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FIG. 4. Emergence of heavy tails in the first-passage-time distribution of a slowly driven double-well potential. (a) Schematic of the
variation of the double-well potential with s (colored from blue to red; the black line represents s = μs). (b) Probability density function (PDF)
of times spent in a potential well (or equivalently, first passage time distribution) from numerical simulations of Eq. (12) for different values
of τs and Ts = Tx/2 (see Appendix A). When τs → 0, the potential landscape relaxes to its mean value faster than the time to escape the well,
resulting in an exponential with a hopping rate corresponding to μs (black line). As τs approaches Texp, we observe a transition from exponential
to power law, and in the limit of large τs we obtain the power law Eq. (13) (black dashed line). (c) PDF of times spent in a potential well from
numerical simulations of Eq. (12) for large τs = 103Texpt and different values of Ts (see Appendix A). As predicted, the tail of the distribution

behaves as f (t ) ∼ t−2− Tx
2Ts (colored lines) with an exponent that approaches −2 as Ts → ∞ (black dashed line).

where 〈·〉 represents the ensemble average over the invariant
density. In a static landscape, the long-time behavior of Cx

is dominated by the first nontrivial eigenvalue of the Fokker-
Planck operator �2, which is proportional to the slowest
hopping rate �2 ∝ ωmin [38,59], i.e., Cx(τ ) ∼ e−�2τ . As in the
previous section, when the landscape is slowly modulated, �2

and ωmin fluctuate, and Cx is given by a weighted average over
p(ω):

Cx(τ ) ∼
∫ ωmax

ωmin

p(ω) × e−ωτ dω. (15)

Notice that, compared to Eq. (8), the integrand is divided by
ω2: one ω is dropped since Cx(t ) ≈ f (t, ω)/ω and the other
ω is the number of hoppings, which ought to be counted for
f (t ) but not for Cx. Following the same steps as for f (t ) (see
Appendix E), we predict

Cx(τ ) ∼ exp

{
−V (U −1(Tx log(ω0τ )))

Ts

}
, (16)

to the dominant order for large τ ′s. As for the FPTD,
when V (s) and U (s) are asymptotically equivalent, Cx(τ ) ∼

FIG. 5. Power-law correlations and finite-size corrections in a slowly driven double-well potential. (a) Estimated nonconnected correlation
function C̃x (τ ) = 〈x(t )x(t + τ )〉 (see Appendix A) for the position x of a particle in a double-well potential driven on a timescale τs = 102Texpt.

Our prediction Cx (τ ) ∼ τ− Tx
2Ts is validated (solid lines). Error bars represent 95% confidence intervals across 50 000 simulations. (b) Connected

autocorrelation function, Cx (τ ), directly estimated through time averages (see Appendix A), for a double-well potential driven on a timescale
τs = 102Texpt. Due to the existence of timescales ∼Texpt, finite-size corrections Cc are present and generate long-range anticorrelations in
Cx (τ ), as predicted in Appendix F (solid lines). For both Cx (τ ) and Cc(τ ) we normalize the correlation functions by dividing by their value at
τ = 1 lag = 5×10−4Texpt. Error bars represent 95% confidence intervals across 50 000 simulations. (c) Finite-size correction Cc(τ ) vs Ts (see
Appendix F). As we increase Ts, the range of observed ω grows, and so do finite-size corrections, which result in stronger anticorrelations
(blue). Conversely, for small Ts finite-size effects are negligible as the longest sampled ω−1  Texpt.
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FIG. 6. Testing our theoretical predictions: loss-of-function mutation in the npr-1 gene of C. elegans ablates heavy-tailed statistics, and
larval zebrafish exhibit heavy tails in their long-lived behavior. (a) Probability of observing “run” and “pirouette” states as a function of
time for npr-1 mutants. Unlike wild-type N2 worms, the distribution of these states is constant over time. We estimate the fraction of time
spent either performing a run or a pirouette in 3-min-long windows, and obtained bootstrapped averages across all seven worms. (b) Left:
Complementary cumulative distribution function of observing a run or a pirouette with a duration > τbeh, 1 − P(τbeh � t ) [same as Fig. 2(d),
left]. The distribution is well approximated by a sum of exponential functions: a longer one that corresponds to the runs and a shorter one that
corresponds to the pirouettes. Unlike N2 worms, the first-passage-time distribution in npr-1 mutants is not heavy tailed. Right: Autocorrelation
function Cφ2 of the slow mode φ2 inferred from the npr-1 mutant data. Unlike wild-type N2 worms, nontrivial long-range correlations are
absent and instead correlations decay within a minute. (c) We collected data from Ref. [63] in which larval zebrafish are exposed to a chasing
dot stimulus for 5 s every 2 min for at least 1 hour. We proceed as for C. elegans (see Appendix A) and find that the longest-lived dynamics φ2

corresponds to a “wandering-cruising” axis, in which the fish either engages in bout sequences with large orientation changes (“wandering”),
or performs sequences of smoother forward bouts (“cruising”), Fig. S7(b) [36]. Over time, we observe that the probability of the “cruising”
state slowly increases over time, becoming more prevalent than the “wandering” state. We estimate the probability of being in the cruising and
wandering states in 5-min windows, and show the average probability bootstrapped across the 11 fish. (d) Left: Complementary cumulative
distribution function of observing cruising or wandering with a duration > τbeh, 1 − P(τbeh � t ) [same as Fig. 2(d), left]. We plot the data
in black, as well as the distribution obtained from simulations with a stationary model (V (φ2), blue) and a time-dependent model (V (φ2, t ),
orange) (see Appendix A for details). As for C. elegans N2 worms foraging, we find that time-dependent parameters are required to accurately
predict the tail of the distribution. Right: Autocorrelation function Cφ2 of the slow mode dynamics obtained from the larval zebrafish data
(black) as well as simulations from the stationary model (blue) and the time-dependent model (orange). Notably, we find that larval zebrafish
exhibit heavy-tailed statistics due to the explicit time dependency of the behavioral dynamics.

τ−c Tx
Ts , with the same constant c. In this case, f (t ) ∼ tβ and

Cx(τ ) ∼ τ γ with exponents related by γ = β + 2.
To illustrate these results, we return to the double-well

potential in Eq. (12). The expectation would be Cx(τ ) ∼
τ− Tx

2Ts and 〈x〉 = 0 (since the potential is symmetric). In-
deed, if we measure the nonconnected correlation function
from numerical simulations of Eq. (12) (without subtract-
ing the mean; see Appendix A), we recover the theo-
retical expectation of power-law correlations for large τs,
Fig. 5(a).

2. Finite-size effects and anticorrelations

In the previous double-well example, we used symmetry
of the potential to avoid estimating the means. In general,
we have to resort to empirical estimations via averaging in
time (see Appendix A). In the presence of slow timescales,
we expect that temporal averages μ̂x = 1

Texpt

∫ Texpt

0 x(t )dt will
deviate from ensemble averages, resulting in finite-size effects
[60]. In particular, we expect that on average x(t ) − μ̂x will
change sign as time progresses. This transient behavior results
in apparent long-range anticorrelations, since x(t ) − μ̂x and
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x(t + τ ) − μ̂x will tend to have different signs for large τ

[61]. Therefore, we expect that Eq. (16) will deviate from
empirical estimations when slow timescales are present. In-
deed, when we estimate Cx through temporal averages (see
Appendix A), we do observe long-range anticorrelations [see
Fig. 5(b)]. Importantly, using our analytical derivation of the
nonconnected correlation Ĉx(τ ) and results in Ref. [62], we
derive an expression for the finite-size correction Cc(τ ) (see
Appendix F) that captures the empirical estimate of Cx(τ ), as
shown in Fig. 5(b).

Our predicted dependence of finite-size effects on Ts is well
confirmed by results in Fig. 5. Furthermore, small τs yields the
expected exponential tails for the nonconnected correlation
function, which become a power law when τs ∼ Texpt (see
Fig. S5(a), left [36]). Note that finite-size corrections are ap-
parent even in the exponential regime as long as its timescale
is ∼Texpt (see Figs. S5(a), right, and Fig. S5(b) [36]). This
corresponds to barriers sufficiently high to produce hopping
rates comparable to Texpt.

To conclude, note that our predictions recapitulate and
rationalize the phenomenology of the correlations that we
presented in Fig. 3(b-right) for foraging worms.

IV. TESTING OUR THEORETICAL PREDICTIONS

Our predictions in the previous section were motivated
by the particular example of the wild-type nematode C. el-
egans but they emerged to be quite general. To challenge
this predicted generality, we decided to consider different
animal examples: a genetic mutant of C. elegans and the
larval zebrafish. Both turn out to agree with our predictions
and validate the idea that behavioral plasticity is a minimal
yet necessary ingredient for the emergence of heavy tails in
animal behavior.

A. A mutation in the C. elegans npr-1 gene suppresses
heavy tails observed in wild type animals

The NPR-1 neuropeptide receptor is known to impact sev-
eral C. elegans behaviors, viz., aerotaxis and food response
[45]. We collected a public data set where worms of the npr-
1 loss-of-function strain npr-1(ad609) are allowed to freely
explore an agar plate with a uniform food patch (see Ap-
pendix A) and used the same method as in Fig. 2 for wild-type
worms. The upshot is that the short-time behavior of npr-1
mutants on food is similar to wild-type N2 worms off food.
The structure of the behavioral landscape is similar to the one
found in wild type [16], with the dominating kinetics being
the transitions between “runs” and “pirouettes” (see Fig. S7(a)
[36]). However, mutants and wild types crucially differ at long
timescales as mutants do not exhibit heavy tails [see Fig. 6(b)].
Instead, the tail of the first-passage time is close to an expo-
nential, and correlations decay to zero within a minute. This
is due to the mutants’ inability to adapt their pirouette rates
over time [Fig. 6(a)], contrary to the modulation highlighted
in Fig. 3(a) for the wild type.

B. Heavy tails in the behavior of larval zebrafish
results from slow habituation

Zebrafish larvae move in discrete tail bursts, interspersed
by periods of immobility. We leverage a data set previously

analyzed in Refs. [63,64], where larvae are exposed to a
“chasing dot” stimulus for 5 s every 2 mins for at least 1
hour (see Appendix A for details). The data set consists of
a sequence of bouts, in which the curvature of the tail of
the fish is tracked at a high spatiotemporal resolution yield-
ing a time series of cumulative tail angles for each bout
(see Fig. S7(b) [36]).

From these bout sequences, we proceed as for the postures
of C. elegans, and find that K∗ = 5 bouts and τ ∗ = 3 bouts
yield an accurate description of the long-lived dynamics (see
Appendix A for details). Using these parameters, we find
that the dominating long-lived mode φ2 captures transitions
between sequences of smooth forward bouts (“cruising”) and
sequences of sharp orientation changes (“wandering”), as
shown in Fig. S7(b) [36]. Projecting the full dynamics onto
φ2 yields a time series along this “cruising-wandering” axis
that fluctuates over time.

Over long timescales, we observe that fish modulate time
spent in the cruising state [Fig. 6(c)], likely due to the ha-
bituation to the stimulus condition. That is confirmed by the
observation that, as in C. elegans, the inferred potential land-
scape is slowly varying in time, and this slow modulation is
essential to accurately predict the heavy-tailed FPTD and the
nontrivial long-range correlations shown in Fig. 6(d).

V. DISCUSSION

The combination of theory, numerics, and experimen-
tal data analysis we used here provided evidence that the
multiplicity of timescales inherent to animal behavior is suf-
ficient to give rise to heavy-tailed first-passage times and
long-range correlations. The phenomenon is demonstrated in
Fig. 2(d), which shows first-passage-time distributions and
correlation functions for the C. elegans nematode. We started
from this example as high-resolution measurements of the
animal pose are available, bridging from ∼0.1 s chaotic pos-
ture dynamics to ∼10 s stochastic hopping among “runs” and
“pirouettes”.

To capture long-term effects, we combined ideas from
reduced-order modeling [32,65–67] and stochastic model in-
ference [34,37,68]. The resulting one-dimensional stochastic
differential equation yields an overdamped description of a
partially observed system with metastable dynamics. Our con-
tribution here is mostly methodological: rather than assuming
structure a priori, we aim for a coarse-grained simplified
description and let data drive the process of building it. While
already effective, each step in our analysis can likely be en-
hanced by modern tools from machine learning (see, e.g.,
Ref. [69]), an issue that we leave for future work.

The static version of our coarse-grained description is
unable to capture heavy tails and long-range correlations dis-
played by experimental data. This failure is not the result of
our approximation, as a full, yet still autonomous, model of
the dynamics is also missing these effects. Both are useful
to capture short-term properties, but some new ingredient
is needed to capture long times. The idea that we pursued
here is that nonergodic modulations, varying over timescales
comparable to the observation time Texpt, are the key. In prac-
tice, this amounts to having an effective potential landscape
slowly changing in time. Figure 3 demonstrated that long-term
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modulation allows us to capture the missing effects exhibited
by the worm. In addition, we find that the slow modulation
reflects the adaptation of the worm’s foraging strategy to
searching for food farther away. In this way, we go beyond
classical approaches to reduced-order modeling, recognizing
the existence of nonergodic fluctuations and introducing a
nonstationary model to encode them.

Our analysis makes strong predictions that can be tested
experimentally. In particular, perturbing the neural mecha-
nisms responsible for the adaptation of “pirouette” rates, such
as dopaminergic and glutamatergic signaling [39], should alter
the long-term features of behavior. We predict that, in the
absence of adaptation, shorter timescale movements remain
unaffected while the dwell times in the “run” and “pirouette”
states would become exponentially distributed, rather than
heavy tailed, and that the correlation function would simply
decay exponentially to zero on fast timescales. Mutants of the
NPR-1 neuropeptide receptor that we analyzed in Sec. IV are
our first promising and positive step in that direction. New
mutants and data would be important to further confirm our
predictions. It would also be interesting to check whether wild
strains of C. elegans exhibit a similar pattern as the one found
here for the laboratory strain N2. Indeed, laboratory strains
of C. elegans were grown in relatively poor conditions for
multiple generations, when compared to much richer natu-
ral environments encountered by wild strains [70–72]. This
has led to an evolutionary divergence between the laboratory
strain N2 and wild strains, with N2 worms fixing several mu-
tations that affect a variety of phenotypes [73–76]. Whether
the observed heavy tails are also observed in wild strains, and
how they are modulated depending on the natural habitat of
different worm species, would provide further insight into the
ecological and evolutionary significance of heavy tails. We
expect that richer environments yield behavioral modulations
on a wider range of timescales and the exponent of the heavy
tails will reflect the natural habitat of different species [77].
The explicit formulas (11) and (16) that we derived here
should enlighten the contributions stemming from variations
in the potential landscape (encoded in Ts), fluctuations in each
behavior (encoded in Tx), and timescale of adaptation (en-
coded in τs). As for our predictions on long-range correlations,
recent work provided evidence for power-law correlations in
fruit flies [78]. Their observations are consistent with our
theoretical predictions, and we argue that they might stem
from nonergodic internal states. Indeed, we expect there to
be slow modes that evolve on timescales comparable to the
1-hour recordings used in Ref. [78] (see Refs. [79,80]). Future
work will be needed to shed light on this issue.

Heavy-tailed distributions in the duration t of behav-
iors with an exponent f (t ) ≈ t−2 are found across multiple
species, from bacteria [21], termites [81], and rats [20] to
marine animals [19,82], humans [83], and even fossil records
[84] (see Fig. 1). Such observations have led researchers to
hypothesize that Lévy flights yield optimal search strategies
when the power-law exponent is −2 [22–26], although this
view has been met with some controversy [85,86]. Here, we
provided evidence in two distant model organisms, C. elegans
and zebrafish, that such fat tails may simply emerge from
modulation over time and thus be a by-product of the evolu-
tionarily favorable ability to perform adaptive behavior [87].

Power laws are observed beyond behavior, from solar flares
[88,89] to the brain [90], and the idea of variable barrier
heights has appeared in different contexts (for a review, see,
e.g., Ref. [91]). In disordered systems, averaging over an
exponential distribution of barrier heights can give rise to a
broad distribution of waiting times [92,93]. Note that, while
this mechanism is qualitatively analogous to the one presented
here, ours relies on the temporal (rather than spatial) variation
of barrier heights. That results in distinct emergent behavior
that depends directly on the measurement timescale Texpt (that
sets the lowest hopping rate ωmin) and the magnitude of the
nonergodic fluctuations. Time-dependent energy barriers have
also been used in bacterial chemotaxis [94]. The analysis
of Ref. [94] concerns a particular limit of our derivation, in
which Ts → ∞ and the distribution of hopping rates becomes
uniform. Our derivation considered a more general dynamics,
and predicted corrections to the power laws that go beyond
the limits in Ref. [94]. Another proposal is the presence of
multiplicative noise terms in the dynamics [95,96], and this
notion has recently been used to explain the emergence of
Lévy flights in the collective behavior of midge swarms [97].
Our Eqs. (5) and (6) do give rise to an effectively colored
multiplicative noise term for the quasistationary behavioral
dynamics but we go beyond by determining the dependency
on the relationship between the correlation time of the colored
noise, τs, and the measurement time Texpt, and between the
additive and multiplicative noise terms. Finally, some of the
arguments we have put forward have appeared in discus-
sions of “criticality” [98–100]. That is the apparent tendency
of some systems to sit between two qualitatively different
“phases” (see, e.g., Refs. [101]), which makes them akin to
critical systems in statistical mechanics [102,103]. Our deriva-
tions here apply to a wider range of model classes, using
the framework of out-of-equilibrium statistical mechanics to
explicitly connect the long-timescale emergent behavior with
the underlying effective fluctuations. In addition, unlike other
approaches [99,104], our framework does not require explicit
external drives, but simply collective modes that evolve in a
weakly nonergodic fashion.

On the theoretical side, to derive the analytical expressions
(11) and (16) of correlation function and FPTD, we exploited
a separation between microscopic dynamics and long-time
behavior. Further work will be required when such separa-
tion and the quasiadiabatic approximation do not hold. For
example, we find numerically that for intermediate values of
1  τs  Texpt and finite Ts, the FPTD behaves as a truncated
power law with an exponent > −2. In this regime, the bar-
rier heights fluctuate significantly before the particle hops.
Intuitively, we expect that if barrier-crossing events become
uncorrelated, the ω factor in the FPTD that accounts for the
number of hopping events drops out, resulting in an expo-
nent −1 rather than −2 [105]. In the opposite limit, when
τs � Texpt, it is the distribution of initial conditions (which we
took to be Boltzmann) that determines the emergent behavior.
This assumption holds if we consider that behavioral “indi-
viduality” is equivalent to having a very slow mode τs � Texpt.
This would mean that different animals in a population of con-
specifics will exhibit a degree of “individuality” that matches
the steady-state distribution of such long-lived modes. Intrigu-
ingly, such a relationship between interindividual variability
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and long-lived behavioral variability is observed in flies [106].
In this sense, when τs � Texpt, our results are equivalent to
explaining the emergence of heavy tails through interindi-
vidual variability [107]. If such variability differs from the
Boltzmann assumption, heavy tails need to be corrected ac-
cordingly, following the steps of our derivation but with a
modified p(s).

In conclusion, we have used a physics approach to shed
light on animal behavior, leveraging statistical mechanics as
a framework for thinking about the effect of slowly varying
modulation, either environmental or by internal states. Con-
currently, observations from animal behavior inspired new
physical results regarding the emergence of heavy tails in
slowly driven potential landscapes, which are generally rele-
vant to a wide range of fields in chemistry, biology, or finance
(see, e.g., Refs. [49–52,55,108,109] and references therein).

Code for reproducing our results is publicly available
[110]. Data can be found in Ref. [111].
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APPENDIX A: METHODS

1. C. elegans foraging data set

We used a previously analyzed data set [28], in which
young-adult N2-strain C. elegans were tracked at f = 16 Hz
[27]. Worms were grown at 20◦C under standard conditions
[112]. Before imaging, worms were removed from bacteria-
strewn agar plates using a platinum worm pick, and rinsed
from E. coli by letting them swim for 1 min in Nematode
Growth Medium buffer. They were then transferred to an
assay plate (9-cm Petri dish) that contained a copper ring
(5.1 cm inner diameter) pressed into the agar surface, prevent-
ing the worm from reaching the side of the plate. Recording
started approximately 6 min after the transfer and lasted for
Texpt = 35 min.

2. Data-driven reduced-order model of C. elegans
foraging dynamics

Building upon previous work [9,10,16], we extract a slow
reaction coordinate that captures transitions between “runs”
and “pirouettes” from the posture dynamics of C. elegans.
As in Ref. [27], we extract the centerline of the animal at
every δt = 1/16 s, estimate 100 tangent angles along the body,
θt , and project these angles onto an eigenworm represen-
tation [28] to obtain a five-dimensional 35-min-long time

series, θt → �at ∈ R5, t ∈ {δt, 2 δt, . . . , 33600 δt}, that accu-
rately captures the changing postures of each of the 12 animals
(a combined total of 403 200 frames). From such measure-
ments, we perform a time-delay embedding [9,16] to include
short-term memory into an expanded maximally predictive
state XK∗ (t ) = �at−K∗:t , where �at−K∗:t = {�at−K∗ , . . . , �at−1}. The
amount of time delays K∗ used to reconstruct the state space
is chosen so as to maximize predictive information [10,16].
In this way, all the dynamics that mix on a sufficiently fast
timescale (compared to the measurement time Texpt) should be
included in the state. We note that, as evidenced throughout
the paper, slow modes that evolve of timescales comparable
to the measurement time do not provide enough independent
samples to be directly inferred. Such nonstationary dynamics
cannot be accounted for by a stationary model, and are thus
not recoverable with a delay embedding due to their statistical
insignificance. As in Ref. [16], we choose K∗ = 11 frames =
0.6875 s to maximize predictive information within the limits
of the data. We then partition the state space into a large
number of discrete symbols through k-means clustering, and
choose the number of partitions, N∗ = 1000, so as to preserve
as much information as possible in the discretization, while
avoiding finite-size effects (as in Ref. [16]). The outcome of
the partitioning is a symbolic sequence, where each symbol
si corresponds to a small region of the state space (a collec-
tion of similar posture sequences). We then build a Markov
chain by counting transitions among state-space partitions
separated by a timescale τ , Pi j (τ ) = P(s j (t + τ )|si(t )) ≈ eLτ

[10,16], effectively approximating the action of the Perron-
Frobenius operator (see, e.g., Ref. [113]). The transition time
τ ∗ = 0.75 s was chosen so as to self-consistently capture
the long-lived dynamics [10,16]. The eigenfunctions of the
Perron-Frobenius operator, and its adjoint, the Koopman op-
erator, capture global patterns of the dynamics that relax to
the steady-state distribution on different timescales. In par-
ticular, the slowest eigenfunctions of these operators offer
optimal reaction coordinates that capture the slow dynam-
ics of the system [66,67,114]. The slowest left eigenvector
of the reversibilized transition matrix φ2 captures transi-
tions among “runs” and “pirouettes” that C. elegans uses to
forage [16]. We find the transition point φc

2 between runs
and pirouettes by maximizing the overall coherence of the
metastable states [10,16], and recenter and rescale φ2 to have
φc

2 = 0 at the transition point and to have equally spaced
values within [−2, φc

2 = 0] and [φc
2 = 0, 2] [32]. Finally, each

symbol si assumes a particular value of φ2, and so we can
translate the symbolic sequence into a stochastic time series
φ2(t ) that captures transitions between runs and pirouettes
[see Figs. 2(a)–2(c)].

3. npr-1 data set

We used a publicly available data set collected by the
Schafer laboratory [115], in which young adults from the C.
elegans npr-1(ad609) mutant strain were imaged for 15 min
in food-rich plates. Worms were grown at 22◦C under stan-
dard conditions, and adult worms were transferred to a
3.5-cm-diam plate with a nearly circular bacterial food lawn
consisting of 20 µL of OP50 (see Ref. [115] for experimental
details). After waiting 30 min for habituation, worms are then
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imaged for a total of 15 min. We analyzed the videos using
WORMPOSE [3] to resolve ambiguous poses when the worm
is coiled and obtained a continuous time series of postures.
From the full set of 12 worms analyzed with WORMPOSE, we
kept only those that were successfully tracked for at least
80% of the frames and for which we could unambiguously
assign a dorsal-ventral axis (through the bias of the a3 dis-
tribution as in Ref. [3]). This resulted in a subset of seven
worms that are fully tracked at 20 Hz for a combined total
of 126 000 frames (18 000 per worm). We analyzed these
data in the same way as the N2 wild-type worms: we project
the posture onto an “eigenworm” space obtaining �at ∈ R5, t ∈
{δt, 2δt, . . . , 18000δt}, and extract the long-lived dynamics
φ2 using K∗ = 0.4 s, N∗ = int(102.75) = 562 partitions and
τ ∗ = 0.5 s. These parameters are chosen using the same cri-
teria as for wild-type N2 worms: the full analysis pipeline can
be found in Ref. [116]. We made the time series of eigenworm
coefficients for the npr-1 worms publicly available [111].

4. Zebrafish (Danio rerio) data set

We use a data set that was previously analyzed in Ref. [64].
See Refs. [63,64] for the experimental details. In these data,
wild-type Tübingen fish (6–7 days postfertilization) are ex-
posed to a “chasing dot” stimulus for 5 s every 2 min for
at least 1 hour. The chasing dot stimulus consists of a dark
spot with 1-mm radius that starts 2 cm away from the fish
and approaches it from one of four directions (left, right,
forward, or back). Video tracking was performed using cus-
tom methods (see Ref. [63]) that extract kinematic parameters
from each burst of tail motion (bout). In our data set, each
bout is represented by eight cumulative tail angles (measured
along nine points from the swim bladder to the tip of the
tail) over time for 250 ms, which corresponds to 175 frames
sampled at 700 Hz. We project each bout, which is effec-
tively a point in a 175 frames ×8 tail angles dimensional
space, to a 20-dimensional space using principal component
analysis, preserving virtually all the significant information
in the bout space (when compared to a shuffle). To gather
enough long-timescale data, we selected recordings with at
least 7500 bouts, yielding a total of 11 fish recordings and
a combined total of 107 260 bouts. We have made the time
series of bouts publicly available [111], and the analysis
pipeline can be found in Ref. [116]. To extract the slow
mode dynamics, we proceeded as we did with the C. elegans
data: we reconstruct the long-lived dynamics φ2 using K∗ =
5 bouts, τ ∗ = 3 bouts, and N∗ = int(102.75) = 562 partitions,
determining the parameters using the same approach as for the
other data sets [10,16].

5. Two-dimensional UMAP embedding
of the reconstructed state space

We use the UMAP embedding [117] as a tool to visualize
the maximally predictive states XK∗ of C. elegans posture
dynamics [16]. In a nutshell, the UMAP algorithm searches
for a low-dimensional representation of the data that preserves
its topological structure. We use a publicly available imple-
mentation of the algorithm [118], using Chebyshev distances.
For wild-type N2 worms we use n_neighbors = 50 nearest

neighbors and min_dist = 0.05 as the minimum distance,
while for the npr-1 mutant data we use n_neighbors = 15
and min_dist = 0.05, reflecting the smaller data set size.

6. Stochastic model inference

The Kramers-Moyal expansion transforms the master
equation for the dynamics of Eq. (2) into a Fokker-Planck
equation,

∂tρ = Lρ = ∂φ2 J (ρ, φ2)

= −∂φ2 [F (φ2)ρ] + ∂2
φ2

[D(φ2)ρ], (A1)

where J (ρ, φ2) is the current, and

F (x) = lim
τ→0

1

τ
〈φ2(t + τ ) − φ2(t )|φ2(t ) = x〉,

D(x) = lim
τ→0

1

2τ
〈(φ2(t + τ ) − φ2(t ))2|φ2(t ) = x〉.

We use this expansion to estimate F (φ2) and D(φ2). In prac-
tice, given a time series Yt , we estimate the averages in the
Kramers-Moyal expansion using a kernel approach [37],

F (y)τ,h = 1

τ

〈
Kh(y − Yt )

〈Kh(y − Yt ′ )〉t ′
(Yt+τ − Yt )

〉
t

,

D(y)τ,h = 1

2τ

〈
Kh(y − Yt )

〈Kh(y − Yt ′ )〉t ′
(Yt+τ − Yt )

2

〉
t

,

where Kh(z) = h−1κ (z/h) and κ is the Epanechnikov kernel
[119,120],

κ (y) =
{

3
4
√

5

(
1 − y2

5

)
if y2 < 5

0 if y2 > 5.

Importantly, the estimator has an explicit dependence on the
time delay τ and the bandwidth h. First, as discussed in the
main text, we choose τ long enough such that most of the
temporal correlations in the noise have decayed to zero. For C.
elegans N2 worms crawling off food, it has been shown that
τ ∗ = 0.75 s gives an accurate first-order Markov model of the
worm dynamics [16], and accordingly we find that a stochastic
model inferred with τ ∗ = 0.75 s yields nearly delta-correlated
noise (Fig. S1(b) [36]). For the zebrafish data set, we use
the same criterion to choose τ ∗ = 3 bouts. Given this time
delay τ ∗, we choose the bandwidth through the  algorithm
introduced in Ref. [37]. In essence, for each bandwidth h we
estimate Fτ ∗,h and Dτ ∗,h and generate simulations with the
estimated Fτ ∗,h and Dτ ∗,h. From such simulations, we then
re-infer the drift and diffusion from the simulated time series,
obtaining F̂τ ∗,h and D̂τ ∗,h. Finally, we compare the re-inferred
drift and diffusion to the ones estimated directly from the time
series,

ξ (h) =
∫ | fτ ∗,h − f̂τ ∗,h|

√
π (y)π̂ (y)dy∫ √

π (y)π̂ (y)dy
, (A2)

where f can be either F or D, π (y) is the steady-state dis-
tribution obtained from Fτ ∗,h and Dτ ∗,h, and π̂ (y) is the one
obtained from F̂τ ∗,h and D̂τ ∗,h. We choose h∗ as the first mini-
mum of ξ (h) [37], locally minimizing the difference between
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original and reconstructed drift and diffusion coefficients and
avoiding the trivial minimum that corresponds to h → ∞
(which yields constant F and D). For the C. elegans wild-type
data of Fig. 3, we estimated the change in ξ (h) as a function
of h [Fig. S1(a)], which reaches zero at around h∗ ≈ 0.1.
We choose h∗ = 0.08 to infer the time series of φ2(t ). For
the zebrafish data set, we use the same criterion to choose
h∗ = 0.05.

7. Nonstationary stochastic model inference

We proceed as before, but now infer Fw
τ ∗,h∗ and Dw

τ ∗,h∗ in
overlapping windows. For the C. elegans wild-type data set
we choose windows of length 5 min sampled every 30 s, while
for zebrafish the overlapping windows were defined using
1000 bouts sampled every 100 bouts. The window length was
chosen long enough to allow for equilibration of the long-lived
dynamics, but also short enough such that the steady-state
distribution remains approximately constant.

8. Reconstructing an effective potential landscape

From the Fokker-Planck equation, Eq. (A1), with natural
boundary conditions, J (ρ, φ2) = 0, we can obtain the steady-
state solution ρ = π , satisfying ∂tπ = 0, as

π (φ2) = exp

[∫
F (φ2) − ∂φ2 D(φ2)

D(φ2)
dφ2

]
.

Writing the steady-state distribution as a Boltzmann
factor [121],

π (φ2) ∝ e−βV (φ2 ),

with β = 1, we can identify an effective potential landscape
V (φ2),

V (φ2) = −
∫

F (φ2) − ∂φ2 D(φ2)

D(φ2)
dφ2.

The same approach applies to the time-dependent stochastic
model, where each window has its own local steady state, and
the effective potential landscape is time dependent:

V (φ2, t ) = −
∫

F (φ2, t ) − ∂φ2 D(φ2, t )

D(φ2, t )
dφ2.

9. Stochastic model simulations of φ2

We simulate the dynamics using an Euler scheme with the
same sampling time as the data δt = 1/16 s or δt = 1 bout for
the C. elegans N2 worms and zebrafish data sets, respectively.
For the nonautonomous model, we take Fw

τ ∗,h∗ and Dw
τ ∗,h∗ of

the window with a center closest to the sampled time point.

10. Fine-scale Markov model simulations

As in Ref. [16], we simulate symbolic sequences by sam-
pling the next state according to the condition probability
distribution P(s j (t + τ ∗)|si(t )), which is simply the ith row
of Pi j (τ ∗). From this symbolic sequence, we can then obtain a
simulated time series of φ2(t ) sampled on a timescale τ ∗.

11. Estimating the first-passage-time distributions

We estimate the time spent either performing either state
(“runs” and “pirouettes” for C. elegans and “cruising” and
“wandering” for zebrafish) by identifying segments where
φ2(t ) < 0 (runs or cruising) or φ2(t ) > 0 (pirouettes or wan-
dering). To remove short-time fluctuations we subsample the
data and the simulated time series by τ ∗/2.

12. Empirical estimate of the connected autocorrelation function

We estimate the connected autocorrelation function from
M time traces at each lag τ = lδt as

Ĉx(lδt ) = 1

M

M∑
α=1

1
N−l

∑N
i=1 xα,ixα,i+l − (

1
N

∑N
i=1 xα,i

)2

1
N

∑N
i=1 x2

α,i − (
1
N

∑N
i=1 xα,i

)2 ,

(A3)

where xα,i is the ith frame of the α trace with length N =
Texpt/δt .

13. Estimating the first-passage-time distribution
of a Poisson process with varying hopping rates

We sample s according to the Boltzmann distribution
p(s) ∝ exp(− (s−μs )2

2Ts
), and convert it to a hopping rate ω(s) by

numerically integrating the backward Kolmogorov equation,
Eq. (B2). We then sample first-passage-time events according
to Eq. (7), until reaching the measurement timescale Texpt. We
repeat this process 50 000 times, and collect the statistics of
waiting times to build a normalized histogram of first-passage
times with logarithmic bins, which we show in Fig. S3 [36].

14. Estimating the first-passage-time distribution
in the slowly driven double-well potential

We generate 10 000 simulations of Langevin dynamics of
Eq. (12), through an Euler scheme with a sampling time of
δt = 10−3 s for Texpt = 107 s. We then vary τs in the range
[10−4Texpt, 104Texpt] and Ts in the range [Tx/4, 2Tx], where
Tx = 10−3 and μs = √

Tx. The initial conditions x(0) are sam-
pled randomly either as x(0) = 1 and x(0) = −1 with equal
probability and s(0) ∼ N (μs,

√
Ts) is sampled according to

the Boltzmann distribution. From the simulations of x(t ), we
then estimate the first-passage-time distribution by first iden-
tifying all the segments, [t0, t f ], in which t0 corresponds to the
first time x returns to x0 = ±1 after reaching x f = 0, and t f

is the time first to reach x f = 0 after t0. Finally, we build a
normalized histogram of first-passage times with logarithmic
bins, which we show in Figs. 4 and S4 [36].

15. Estimating the autocorrelation functions
in the slowly driven double-well potential

We generate 50 000 simulations of Langevin dynamics
of Eq. (12), through an Euler scheme with an initial sam-
pling time of dt = 0.2 s that is downsampled to δt = 100 s
for Texpt = 108 s, with Tx = 10−2, μx = √

Tx, τs sampled in
the range [10−2Texpt, 102Texpt], and Ts sampled in the range
[1.25Tx, 10Tx]. We then estimate the connected autocorre-
lation function from the simulations using Eq. (A3). The

023001-12



FLUCTUATING LANDSCAPES AND HEAVY TAILS … PRX LIFE 2, 023001 (2024)

nonconnected correlation function is estimated as

ˆ̃Cx(lδt ) = 1

M

M∑
α=1

1

N − l

N∑
i=1

xα,ixα,i+l ,

and then normalized by dividing by ˆ̃Cx(l = 1). The finite-
size corrections to the correlation function are detailed in
Appendix F.

APPENDIX B: A PRIMER ON FIRST-PASSAGE TIMES

We here give a brief introduction to the concept of
first-passage times, following Refs. [48,122–124]. Broadly
speaking, the first-passage-time probability is the probability
that a random walker first reaches a particular site at a spec-
ified time. This concept is broadly relevant in biology: from
the kinetics of on and off states in membrane receptors, to the
binding and unbinding of transcription factors to DNA, to the
dynamics of conformation changes in proteins, to the firing of
neurons, and so on.

We here focus on the particular case of escape from a
metastable state, which corresponds to first-passage time to
reach the transition point. These are rare events: there is a
timescale separation between the relaxation dynamics within
a metastable state and the time it takes to cross the transition
point. The average rate of escape from a metastable state (or
the mean first-passage time to reach the transition point x f )
is given by a constant ω. The distribution of the first-passage
times then corresponds to the probability of not escaping at
each infinitesimal time step until time t , multiplied by the
probability of escaping at time t . The probability to not jump
until time t is given by (1 − ωδt )t/δt , since at each δt the
probability of not transitioning is 1 − ωδt . Taking the limit
of infinitesimal time steps gives limδt→0(1 − ωδt )t/δt = e−ωt .
Multiplying this by the probability of escaping at time t , the
first-passage-time distribution in this simple case is given by
f (t, ω) = ωe−ωt .

To determine ω, we use the backwards Kolmogorov equa-
tion to find the mean first-passage time, or mean exit time,
which is defined as the expectation value of the first time
x(t ) leaves a domain D, conditioned on x(t ) = x0 ∈ D. Let
ρ(y, t |x0) represent the probability distribution of an ensemble
of particles not leaving the domain D at time t . It satisfies the
Fokker-Planck equation with absorbing boundary conditions,

dρ

dt
= Lρ, ρ(y, 0|x0) = δ(y − x0), ρ|∂D = 0, (B1)

where L is the Fokker-Planck operator of the forward Kol-
mogorov equation. The total survival probability of still being
inside the domain D at time t is obtained by integrating over
the domain D,

S(x0, t ) =
∫

D
ρ(y, t |x0)dy.

Given the absorbing boundary conditions at the domain
boundaries, this probability is a decreasing function of time,

∂S

∂t
= − f (x0, t ),

where f (x0, t ) is the first-passage-time distribution. The mean
first-passage time is the first moment of this distribution,

τ (x0) =
∫ ∞

0
f (x0, t ) t dt =

∫ ∞

0
S(x0, t )dt

=
∫ ∞

0

∫
D

ρ(y, t |x0)dy dt .

Writing the solution to Eq. (B1) as ρ(y, t |x0) = eLtδ(y − x0),
we get

τ (x0) =
∫ ∞

0

∫
D

eLtδ(y − x0)dy dt

=
∫ ∞

0
(eL

∗t 1)(x0)dt .

Applying the adjoint operator L∗ to the above equation, we
obtain

L∗τ (x0) =
∫ ∞

0
(L∗eL

∗t 1)dt =
∫ ∞

0

d

dt
(eL

∗t 1)dt

L∗τ (x0) = −1.

For a simple concrete example, consider the dynamics of
Eq. (5) with st = s ∈ R constant. In this case, we can use the
corresponding Fokker-Planck operator [see Eqs. (A1), (2), and
(5)] to obtain

L∗τ (x0) = −τ−1
x ∂xU (x)∂xτ (x0) + Txτ

−1
x ∂2

x τ (x0) = −1,

∂x(e−U (x)/Tx ∂xτ ) = −e−U (x)/Tx

τxTx
.

Let us consider that the particle starts at a minimum of the
potential well x0 = a and escapes when reaching the barrier
situated at x f = b. Assuming reflective boundary conditions
at x0 = a and an absorbing boundary at x f = b (where the
escape events occurs), we have

τ (x0) = 1

τxTx

∫ b

x
eU (y)/Tx dy

∫ y

a
e−βU (z)/Tx dz.

Once the particle has reached x = b, there is a 50% chance
that it manages to escape, yielding an escape rate

ω−1 = 2

τxTx

∫ b

x
eU (y)/Tx dy

∫ y

a
e−βU (z)/Tx dz. (B2)

When the barrier height is large when compared to the level
of fluctuations, U = U (x = b) − U (x = a) � Tx, we can
solve these integrals asymptotically to find

ω = ωaωb

2π
e−U/Tx = ω0e−U/Tx ,

where ωa and ωb correspond to the absolute value of the
second derivative of the potential at x = a and x = b and stem
from a Taylor expansion around the minimum and the max-
imum of the potential, respectively. We have thus recovered
Kramers’s approximation [48,57], Eq. (9).

APPENDIX C: FIRST-PASSAGE-TIME DISTRIBUTION IN
SLOWLY FLUCTUATING POTENTIAL LANDSCAPES

We here derive the expression for the first-passage-time
distribution (FPTD) in a fluctuating potential landscape. As
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discussed in the main text, we consider the adiabatic limit in
which the FPTD can be approximated by

f (t ) ∝
∫ ωmax

ωmin

p(ω)ω2e−ωt dω,

where ω=ω0 exp{−U (s)/Tx} ⇒ s(ω)=U −1(−Tx log(ω/

ω0)), and ω0 is a typical (fast) frequency of the hopping dy-
namics [125]. The distribution p(ω) obeys p(ω)dω = p(s)ds,
where p(s) ∝ exp{−V (s)/Ts}, and is thus given by

p(ω) ∝ exp

{
−V (s(ω))

Ts

}
Tx/ω

∂sU (s)
.

Plugging this into Eq. (8), we get

f (t ) ∝
∫ ωmax

ωmin

exp

{
−V (s(ω))

Ts

}
Tx

∂sU (s)
ωe−ωt dω. (C1)

The exponential factor e−ωt restricts the contributions to ω ∼
1/t , which motivates the change of variable ω = θ

t . The above
integral is then recast in the form

f (t ) ∝ t−2
∫ θmax(t )

θmin(t )

exp
{ − θ − V (s(θ ))

Ts
+ log (θ )

}
∂sU (s(θ ))

dθ, (C2)

where s(θ ) = U −1(−Tx log( θ
ω0t )), θmin(t ) = ωmint , and

θmax(t ) = ωmaxt .
To grasp the structure of the integral, it is convenient to

consider first the special case where V and U can be written
as a power-series expansion V (s) ∼ asn and U (s) ∼ bsn,
a, b ∈ R, with an equal dominant (at large values of the ar-
gument, see below) exponent n. The integral reduces then to
the form

f (t ) ∝ t−2− aTx
bTs

∫ θmax

θmin

θ1+ aTx
bTs e−θ( − log
(

θ
ωot

))1− 1
n

dθ.

It remains to verify that the time dependencies at the denomi-
nator of the integrand and the limits of integration do not spoil
the behavior at large times. This is verified by noting that the
numerator of the integrand has the structure of an Euler �

function of order 2 + aTx
bTs

. The numerator of the integrand has

its maximum at θ∗ = 1 + aTx
bTs

, decays over a range of values

of order unity (we consider aTx
bTs

to be small or of order unity),
and vanishes at the origin. In that range, the argument of
the power at the denominator log(ω0t ) − log(θ ) � log(ω0t ),
which yields the final scaling with subdominant logarithmic
corrections,

f (t ) ∼ t−2− aTx
bTs × log(ω0t )

1
n −1. (C3)

To complete the argument, we note that the time dependency
of θmin is not an issue as long as values θ ∼ O(1) are in the
integration range. In practice, this means that the minimum
hopping rate ωmin should be comparable to (or larger than) the
measurement time, ω−1

min ∼ O(Texpt).
Before moving to the general case, two remarks are in

order. First, for ω0t � 1 the functions V and ∂sU that appear
in Eq. (C2) have their argument s � 1. The dominant behav-
ior of the two functions should then be understood for large
values of their arguments. Second, the denominator ∂sU
could a priori be included in the exponential at the numerator

but this does not modify our conclusion. It is indeed easy to
verify that the maximum θ∗ and the decay range would not
be shifted at the dominant order (and this holds also for the
general case considered hereafter).

We can now consider the general case with different dom-
inant exponents V (s) ∼ asn and U (s) ∼ bsk , a, b ∈ R. The
argument of the exponential in Eq. (C2),

L(θ ) = −θ − V (s(θ ))

Ts
+ log (θ ), (C4)

has its maximum at θ∗, defined by the implicit equation

θ∗ = 1 + Tx

Ts

∂sV (s(θ∗))

∂sU (s(θ∗))
= 1 + Tx

Ts

an

bk
sn−k,

where we have used

∂θV (s) = ∂sV (s) × ds(θ )

dθ
,

ds(θ )

dθ
= − Tx/θ

∂sU (s)
.

For n < k, the maximum θ∗ � 1 (as s � 1) and the inte-
grand decays in a range of order unity. Indeed, the dominant
order of the derivatives ∂ pL (p � 2) at θ = θ∗ coincides with
those of log(θ ). It follows that L(θ ) − L(θ∗) � log(θ/θ∗) −
(θ − θ∗). The resulting integral over θ is an Euler � function
of order 2, which indeed forms at values O(1). In that range,
s ∼ ( Tx

b log(ω0t ))1/k and the integral is then approximated by
exp{L(θ∗)}, so f (t ) becomes

f (t ) ∼ t−2 exp

{
−a

( Tx
b log(ω0t )

)n/k

Ts

}
.

The factor at the denominator in Eq. (C2) is O[exp{(1/k −
1) log[log(ω0t )]}] and thus of the same order as terms that we
have discarded in our approximation so we neglect it as well.
Since the integral over θ forms for values O(1), the constraint
on the minimum hopping rate is the same as for the n = k
case, i.e., ω−1

min ∼ O(Texpt ).
For n > k, the maximum θ∗ ∼ (log ω0t )n/k−1, which is

now large. The dominant order of the derivatives ∂ pL (p �
2) at θ = θ∗ is given by (−1)p−1(p − 1)!(θ∗)−(p−1); that is,
they coincide with those of θ∗ log(θ ). It follows that L(θ ) −
L(θ∗) � θ∗[log(θ/θ∗) − (θ − θ∗)/θ∗]. The resulting integral
over θ is an Euler � function of (large) argument θ∗ + 1: its
value is approximated by the Stirling formula, which yields∫

(θ/θ∗)θ
∗
e−(θ−θ∗ ) dθ � √

θ∗. The
√

θ∗ reflects the fact that
the integral forms around the maximum at θ∗ of the inte-
grand over a range

√
θ∗, which implies that the approximation

− log( θ
ω0t ) � log(ωot ) still holds, as in the previous cases

n � k. The
√

θ∗, as well as the log(ω0t )1/k−1 coming from
the denominator in Eq. (C2), are subdominant with respect to
terms that we have neglected in the expansion of L. We there-
fore discard them from our final approximation for n > k:

f (t ) ∼ t−2 exp

{
−a

( Tx
b log(ω0t )

)n/k

Ts

}
.

Since the integral over θ forms for values
O((log ω0t )n/k−1) � 1, the condition ω−1

min ∼ O(Texpt ) ensures
a fortiori that the finite value of ωmin does not affect the above
result.
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Discarding subdominant terms, in all three cases we thus
get the general expression we present in the main text,

f (t ) ∼ t−2 exp

{
−a

( Tx
b log(ω0t )

)n/k

Ts

}
. (C5)

To verify the validity of the above arguments, we show in
Fig. S6 [36] how, to the dominant order, asymptotic predic-
tions agree with a detailed numerical integration of Eq. (C1)
for U (s) = sk and V (s) = sn.

APPENDIX D: FIRST-PASSAGE TIME FOR A POISSON
PROCESS WITH VARYING HOPPING RATES

To probe our theoretical predictions, we first assume that
hopping events are well captured by a Poisson process and
that the modulation of the potential landscape is infinitely
slow such that the adiabatic approximation of Eq. (8) holds
exactly. In practice, we sample s according to the Boltzmann
distribution, Eq. (10), and, in order to relax from the Kramers
approximation, we obtain ω(s) directly through numerically
integrating the backward Kolmogorov equation, Eq. (B2)
(with τx = 1) [57].

We then sample events according to the distribution of first-
passage times f (t, ω), Eq. (7), until reaching the measurement
time Texpt [see Fig. S3(a) [36] for a schematic of the sampling
procedure]. We take U (x, s) = s2(x2 − 1)2 to be a symmetric
double-well potential and sample s according to a Boltzmann
distribution with p(s) ∝ exp{− (s−μs )2

2Ts
}, corresponding to an

Ornstein-Uhlenbeck process. Since the first-passage-time dis-
tribution is dominated by the large energy barriers, s � μs,
we take V (U −1(x)) ∼ x/2. From the derivation of Eq. (11),
we expect that the final distribution of first-passage times will
be given by

f (t ) ∼ t−2− Tx
2Ts . (D1)

Indeed, this is what we find through numerical simulations,
Fig. S3(b) [36].

APPENDIX E: CORRELATION FUNCTIONS IN SLOWLY
FLUCTUATING POTENTIAL LANDSCAPES

We here derive the expression for the correlation function
in a fluctuating potential landscape. In general, the autocor-
relation function can be expressed as a sum over exponential
functions [38,59],

Cx(τ ) = 〈x(t )x(t + τ )〉 − 〈x〉2

〈x2〉 − 〈x〉2
=

∑
i

cie
−�iτ ,

where �i (�1 < �2 < · · · ) are the eigenvalues of the Fokker-
Planck operator and

∑
i ci = 1. Since we are interested in the

long-term behavior of systems with energy barriers that can
fluctuate over time, we assume that the large-τ behavior of
the correlation function asymptotes to

Cx(τ ) ∼ e−�1τ ,

where �1 is the first nontrivial eigenvalue, which captures the
longest-lived dynamics in the system. In addition, we assume
that there is always a deeper well, with an escape rate ω, that

dominates the long-lived dynamics. In this case, �1 ∝ ω and
we have

Cx(τ ) ∼ e−ωτ .

As previously discussed, we take the adiabatic approximation
to derive the asymptotic behavior of the correlation function
in the presence of slow nonergodic modulation of the potential
landscape. In particular, we obtain a weighted average of
the correlation function over multiple realizations of ω(s),
yielding

Cx(τ ) ∼
∫ ωmax

ωmin

p(ω)e−ωτ dω. (E1)

Note that, in comparison with Eq. (8), besides dropping an
ω factor due to the difference between f (t, ω), Eq. (7), and
Cx(τ ), we also do not need to take into account the extra
factor of ω coming from the finite observation time, which
in the case of the estimation of first-passage times biases the
probability density in a manner that is proportional to ω. In the
case of the correlation function, the dynamics of x is exposed
to modulations in s, regardless of ω(s). Following the same
steps as before, we consider that V and U can be written
as a series expansion with dominant terms V (s) ∼ asn and
U (s) ∼ bsk , a, b ∈ R. In this case, we find that to dominant
order

Cx(τ ) ∼ exp

{
−a

( Tx
b log(ω0τ )

)n/k

Ts

}
. (E2)

Notably, when n = k, we obtain power-law correlations with
an exponent that depends on the ratio of temperatures,

Cx(τ ) ∼ τ− aTx
bTs × log(ω0τ )

1
n −1, (E3)

where we have included subdominant corrections. In par-
ticular, we find that when n = k both the first-passage-time
distribution f (t ) ∼ tβ and the correlation function Cx(τ ) ∼
τ γ have power-law behavior at large times, and that the ex-
ponents are related by γ = β + 2. In addition, when Ts → ∞
correlations decay slowly as Cx(τ ) ∼ log(ω0τ )1/n−1.

APPENDIX F: FINITE-SIZE CORRECTION TO THE
CORRELATION FUNCTION

When estimating the correlation function from a collection
of M finite time traces sampled at δt and with length N =
Texpt/δt , we compute

Ĉx(τ = lδt ) = 1

M

M∑
α=1

1
N−l

∑N
i=1 xα,ixα,i+l − (

1
N

∑N
i=1 xα,i

)2

1
N

∑N
i=1 x2

α,i − (
1
N

∑N
i=1 xα,i

)2 ,

where xα,i is the ith frame of the α trace. Assuming that the
finite-size corrections to the correlation function are domi-
nated by corrections to the mean value (and not the variance),
we can leverage the derivation of Desponds et al. [62] to
obtain an expression for the finite-size corrections to the cor-
relation function from the nonconnected correlation function
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C̃x = 〈x(t )x(t + τ )〉,

Cc(τ ) ∼ C̃(l ) + 1

N

(
1

N
− 2

N − l

)(
NC̃(0) +

N−1∑
k=1

2(N − k)C̃(k)

)

+ 2

N (N − l )

(
lC̃(0) +

l−1∑
k=1

2(l − k)C̃(k) +
N−1∑
m=1

C̃(m)(min(m + l, N ) − max(l, m))

)
. (F1)

As detailed in the main text, as a case study we take the
overdamped dynamics for the position x of a particle in a
symmetric double-well potential, for which the barrier height
can fluctuate according to a slow parameter s, Eq. (12). The
timescale separation between the hopping events and the re-
laxation to the well means that the correlation function is
dominated by the first nontrivial eigenvalue, Cx(τ ) ∼ e−�1τ =
e−2ωτ , where we take � = 2ω due to the fact that the poten-
tial wells have the same depth [38]. Taking V (s) ∼ s2/2 and
U (s) = s2 we obtain that, in the asymptotic large-τ limit,
Cx(τ ) ∼ τ− Tx

2Ts log(ω0τ )−1/2, Fig. 5(a).
To obtain an accurate estimate of the correlation function

for all τ , we go beyond the asymptotic approximation and

numerically integrate

C̃x(τ ) ∼
∫ ∞

−∞
e−V (s)/Ts e−2ω(s)τ ds, (F2)

where ω(s) can be estimated directly by integrating the
Kolmogorov backward equation. At large τ , the numerical
integration of C̃x(τ ) matches the asymptotic behavior τ− Tx

2Ts .
Plugging Eq. (F2) into Eq. (F1), we obtain the correction to
the autocorrelation function Cc(τ ) presented in Figs. 5(b) and
5(c).
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