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Recent advancements in measurement techniques have resulted in an increasing amount of data on neu-
ral activities recorded in parallel, revealing largely heterogeneous correlation patterns across neurons. Yet,
the mechanistic origin of this heterogeneity is largely unknown because existing theoretical approaches
linking structure and dynamics in neural circuits are restricted to population-averaged connectivity and
activity. Here we present a systematic inclusion of heterogeneity in network connectivity to derive quan-
titative predictions for neuron-resolved covariances and their statistics in spiking neural networks. Our
study shows that the heterogeneity in covariances is not a result of variability in single-neuron firing
statistics but stems from the ubiquitously observed sparsity and variability of connections in brain net-
works. Linear-response theory maps these features to the effective connectivity between neurons, which
in turn determines neuronal covariances. Beyond-mean-field tools reveal that synaptic heterogeneity mod-
ulates the variability of covariances and thus the complexity of neuronal coordination across many orders
of magnitude.
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I. INTRODUCTION

Neuronal networks in the brain display largely heteroge-
neous activity: common observables such as firing rates [1–3],
coefficients of variation (CVs) [4], and pairwise correlations
[5–8] are widely distributed across neurons. This has impor-
tant implications for coding and information processing in
the brain, as the coordinated activity across the enormous
number of units in neuronal circuits is thought to underlie
all complex functions [9–12]. The causes of heterogeneity
in neuronal dynamics are diverse: intrinsic neuronal prop-
erties, external inputs, and the network connectivity itself
are all sources of variability. While these structural and dy-
namic heterogeneities can be readily observed with modern
experimental techniques [13–15], understanding their mecha-
nistic relations requires theoretical tools that are currently still
lacking.

In this study, we focus on the effects of connectivity and
investigate the influence of heterogeneity in connections on
the activity of networks of identical neurons receiving homo-
geneous external input. Previous work [16] has shown that
a considerable fraction of the variance, in the distribution
of firing rates across neurons and in the CV of individual
neurons’ spike trains, in such networks can already be ex-
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plained by the distributed number of inputs the neurons in a
network receive. In this study, we go beyond single-neuron
activities and focus on the statistics of pairwise correlations
and the related covariances, which measure how strongly
the activities of pairs of neurons cofluctuate. Such coordi-
nation builds the basis for collective network activity and
function.

With the exception of small organisms such as Caenorhab-
ditis elegans [17], the microconnectome of most biological
neuronal networks is unknown. However, overall connectiv-
ity properties and statistics, like the connection probabilities
between different cortical areas [18,19] and cell types [15],
the distance dependence of connections [15,20], or the statis-
tics of synaptic strengths [15,21–26], are available nowadays.
Hence, rather than a one-to-one relation between microcon-
nectome and pairwise covariances [27–32], a relation between
connectivity and covariance on a statistical level would read-
ily allow the inclusion of this knowledge. To derive such a
relation, common population-level theories [27,33–38] cannot
be used because they can only describe population-averaged
observables and, in particular, do not capture heterogeneity
in covariances within populations. Here, we instead employ
mean-field theory on the single-neuron level [30], which we
systematically compare to network simulations, and we go
beyond mean-field theory by including nontrivial fluctuation
terms to obtain the statistics of covariances between individual
neuron pairs.

The main difficulty of a single-neuron-level approach is
that the predictions of the theory for individual neurons
strongly depend on the specific details of the connectivity.
To get a description on the level of connectivity statistics,
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FIG. 1. Simulation of excitatory-inhibitory (E-I) network of leaky integrate-and-fire (LIF) neurons. (a) Spike trains of a sample of 20
excitatory (E, blue) and 5 inhibitory (I, red) neurons. (b) Distributions of firing rates. (c) Distributions of coefficients of variation (CVs).
(d) Distributions of variances of spike counts measured in time bins of 1 s [cf. Eq. (7)]. (e) Distributions of spike-count covariances for
different pairings of neurons. (f) Distributions of spike-count correlation coefficients for different pairings of neurons. For model details and
simulation parameters see Appendix A for spectral radius r = 0.49.

we perform a disorder average, a technique originally de-
veloped for spin-glass systems [39,40] that allows retaining
information about the connectivity statistics while averaging
over the realization randomness. As our main results, we show
how to systematically calculate higher moments of neuronal
activity averaged over the disorder in the connectivity using
replica and beyond-mean-field theory, and we use this tech-
nique to derive a relation between the mean and variance of
covariances and the mean and variance of the network connec-
tivity. First results based on a similar but reduced theoretical
approach have already been successfully applied in the neu-
roscientific context to infer the dynamical regime of cortical
networks [7] and to explain spatial properties of coordination
structures [8] and dimensionality [41].

To summarize, we investigate the origin of neuronal coor-
dination structures, as experimentally observed across various
species and cortical areas, by analyzing covariances in a pro-
totypical network model of cortical dynamics [42], namely,
sparsely connected excitatory and inhibitory neurons that op-
erate in the balanced state [34]. In this model, all neurons have
identical parameters and receive homogeneous, uncorrelated
external input. As in biological cortical networks, the sparsity
in the connectivity between neurons [15] as well as the wide
distribution in synaptic amplitudes [15,21–26] constitute the
source of variability in connections and thereby the dynam-
ics: Rates, CVs, variances, covariances, and hence correlation
coefficients are all described by distributions with sizable
variance (see Fig. 1).

The following sections investigate the sources of the vari-
ance in these quantities. Section II introduces mean-field

theory on the single-neuron level. In Sec. III, we derive the
main results on how to compute disorder-averaged moments
of neuronal activity, and we calculate explicit expressions for
the mean and variance of covariances. In Sec. IV, we discuss
our findings and their limitations in the context of the existing
literature.

II. BACKGROUND: LINEAR-RESPONSE THEORY
OF SPIKING NEURONAL NETWORKS

ON A SINGLE-NEURON LEVEL

To understand the origin of the distribution of covariances,
we start with analyzing a simulated network on a single-
neuron level. The example network throughout this study
comprises 8000 excitatory (E) and 2000 inhibitory (I) leaky
integrate-and-fire (LIF) neurons that make connections ac-
cording to distinct population-specific statistics. We mimic
two abundant features of heterogeneity in connectivity of
brain circuits, that are sparse connections and distributed
synaptic weights. To do so we consider random sparse con-
nectivity J, with connection probability 10%, giving rise to
an excitatory indegree KE = 800 and an inhibitory indegree
KI = 200. To compensate for the imbalance in excitatory
and inhibitory neuron count, we follow the work by Brunel
[42] and scale the strengths of existing inhibitory connections
with respect to excitatory ones by a factor g = −6 to obtain
an asynchronous irregular dynamic regime. In addition, we
distribute synaptic weights of existing connections according
to population-specific normal distributions jE ∝ N ( j, 0.2 j)
and jI ∝ N (gj, 0.2 j), such that the overall heterogeneity in
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network connectivity is comprised of the random sparseness
of connections and the variable strength of connections. For
more details of the model, see Appendix A.

Working point. Given the parameters of the simulated
network of leaky integrate-and-fire neurons, especially the
specific realization of the connectivity matrix J, we determine
the stationary working point, comprising the input statistics
(μ, σ ) and the firing rates ν, as done by Brunel and Hakim
[43] and Brunel [42]. To this end, we first neglect correlations
between the neurons and approximate the neurons’ inputs as
independent Gaussian white noise processes. In this diffusion
approximation, the mean input μi and input variance σ 2

i of
neuron i are given by

μi = τm

⎛⎝∑
j

Ji jν j + jνext,E + gjνext,I + Iext

C

⎞⎠, (1)

σ 2
i = τm

⎛⎝∑
j

J2
i jν j + j2νext,E + g2 j2νext,I

⎞⎠, (2)

with membrane time constant τm, membrane capacitance C,
constant input current Iext, and excitatory and inhibitory exter-
nal Poisson noise with rates νext,E and νext,I which are fed into
the system via weights j and gj, respectively. The firing rates
are given by the Siegert function [44]

νi =
{

τr + τm
√

π

∫ yth,i

yr,i

ds f (s)

}−1

,

f (s) = es2
[1 + erf (s)], (3)

with refractory period τr , and rescaled reset and threshold
voltages

yr,i = Vr − μi

σi
, yth,i = Vth − μi

σi
.

These equations can be solved iteratively in a self-consistent
manner. Given the working point, we can determine the co-
efficients of variation using (see Appendix A.1 of Ref. [42];
note that they use different units)

CV2
i = 2π (τmνi )

2
∫ yth,i

yr,i

dx ex2
∫ x

−∞
dz ez2

[1 + erf (z)]2. (4)

Linearization. The full dynamics of LIF neurons are
nonlinear. However, as covariances measure cofluctuations
of neurons around their working points, we can study co-
variances by analyzing linearized dynamics as long as the
fluctuations are sufficiently small. Grytskyy et al. (see Sec. 5
of Ref. [31]) show that a network of LIF neurons can be
mapped to a linear rate model with output noise

xi(t ) =
∫ t

−∞
h(t − t ′)

∑
j

Wi j[x j (t
′ − d ) + ξ j (t

′ − d )] dt ′,

(5)

with neuronal activity xi(t ), normalized linear-response kernel
h(t ), synaptic delay d , and uncorrelated Gaussian white noise
ξi(t ), 〈ξi〉 = 0, 〈ξi(s)ξ j (t )〉 = Di jδ(s − t ), with diagonal noise
strength matrix Di j = δi jDii. The matrix W , referred to as
effective connectivity, combines the connectivity matrix J with

the sensitivity of neurons to small fluctuations in their input. It
is formally given by the derivative of the stationary firing rate
of neuron i [Eq. (3)] with respect to the firing rate of neuron j
evaluated at the stationary working point (see Appendix A of
Ref. [45])

Wi j = ∂νi

∂ν j
= αiJi j + βiJ

2
i j, (6)

with

αi = √
π (τmνi )

2 1

σi
[ f (yth,i ) − f (yr,i )],

βi = √
π (τmνi )

2 1

2σ 2
i

[ f (yth,i )yth,i − f (yr,i )yr,i].

Spike-count covariances. In this study we are interested in
spike-count covariances in spiking networks,

Ci j = 1

T
(〈nin j〉 − 〈ni〉〈n j〉), (7)

with spike counts ni occurring within bins of size T , where
the average, indicated by the brackets 〈·〉, is taken across all
bins that can be viewed as trials with different realizations
of the external input. As shown in Methods and Materi-
als of Ref. [7], for stationary processes and large bin sizes
spike-count covariances Ci j can be mapped to the time-lag
integrated covariances ci j (τ ) between spike trains of neurons
i and j (see also Refs. [46,47]; for more details on definitions
of covariances see Appendix B):

Ci j
T →∞→

∫ ∞

−∞
ci j (τ )dτ.

In the following the term covariance always refers to Ci j . Mak-
ing use of the Wiener-Khinchin theorem (Appendix C) allows
expressing the time-lag integrated covariances in terms of the
neuronal activities’ Fourier components Xi(ω) at frequency
zero,

Ci j = 〈Xi(0)Xj (0)〉, (8)

which can be evaluated by Fourier transforming Eq. (5), yield-
ing

C = (1 − W )−1D(1 − W )−T. (9)

For calculating the covariances, we therefore only need the
effective connectivity W and the noise strength D. The corre-
lation coefficients follow as

κi j = Ci j√
CiiCj j

.

To estimate the noise strength D, we assume that the spike
trains are described sufficiently well as renewal processes for
which the variances are given by [48]

Cii = CV2
i νi. (10)

Using that D is by definition diagonal (see Appendix D for
limitations on exactly matching simulated spike-count covari-
ances with a linear rate model with uncorrelated white noise
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FIG. 2. Simulation results and theoretical estimates for E-I network of LIF neurons. Here ρ denotes the Pearson correlation coefficient.
(a) Firing rates ν. (b) Covariances C. (c) Correlation coefficients κ. For model details and simulation parameters see Appendix A for spectral
radius r = 0.49.

input), we can solve Eq. (9) for D, which results in

Dii =
∑

j

(B−1)i jCV2
jν j, (11)

with

Bi j = [(1 − W )−1]2
i j . (12)

The above expressions can be combined to compute theo-
retical estimates of the quantities measured in the simulation.
To solve the self-consistency equations for the firing rates
and to compute the covariances, we make use of the Python
package NNMT [49], which includes optimized implemen-
tations of the equations introduced above. A comparison of
theoretical and simulation results is shown in Fig. 2. For the
chosen parameters, simulation and theory correlate strongly,
and the theory appears to capture the primary sources of
heterogeneity in the rates, covariances, and correlation co-
efficients. Note that such a good match between theory and
simulation cannot be observed in all parameter regimes of the
spiking network; the validity of the assumptions made and the
resulting theoretical estimates depend on the network state
(see Appendix D for further discussion on valid parameter
regimes). Figure 2 also reveals some unexplained variance,
particularly pronounced in the covariances and correlations.
This variance is the result of the finite simulation time and
the associated uncertainty in the estimated covariances. As
we show in Appendix K, the covariance estimate bias can
be significant and it can only be corrected for on a statisti-
cal level rather than for individual covariances. Focusing on
the statistics of covariances, however, has further advantages:
For realistic network sizes, Eq. (9) is a high-dimensional
equation that depends on each and every connection in the
network. Understanding general mechanisms relating network
structure and dynamics is therefore difficult. The covariance
statistics instead summarize the most important aspects of
covariances and, for large neuron populations, can be assumed
to be self-averaging [40,50,51], which makes them less depen-
dent on connectivity details. Second, Eq. (9) cannot be used
for inference based on experimentally measured parameters
because as of yet it is not possible to determine the effective
connectivity or covariances of all neurons in a network. And

last, as stated above, we demonstrate that covariance statistics
are more robust measures than single-neuron covariances,
both with respect to finite measurements as well as to the
assumptions made in the derivation above.

III. STATISTICAL DESCRIPTION OF COVARIANCES

Expression (9) reveals that the statistics of the covariances
C, in particular their heterogeneity, is determined by the statis-
tics and heterogeneity of the effective connectivity matrix W
and the external noise strength D. Our aim here is to derive
a description of the cross-covariance statistics in terms of
the statistics of W and D. To this end, we derive analytical
expressions for the mean and the variance of the time-lag
integrated cross-covariances averaged over the heterogeneities
of the system.

To do this, simply averaging Eq. (9) is not feasible due to
W appearing in the inverse matrix (1 − W )−1. Performing an
average over a random connectivity is, however, a well-known
problem in the theory of disordered systems [40,50,52,53],
where it is handled on the level of generating functions. To
proceed analogously, we start with Eq. (8), which expresses
the covariances in terms of the moments of the dynamic vari-
ables’ Fourier components at frequency zero. This allows us
to write the covariances in terms of the moment-generating
function Z (J) of the zero-frequency Fourier components Xi of
the dynamical equation (5) (see Appendix E for more details):

Ci j = 〈XiXj〉 = ∂

∂Ji

∂

∂Jj
Z (J)

∣∣∣∣
J=0

,

with

Z (J) = Z̃ (J)

Z̃ (0)

= |det (1 − W )|
∫

DX
∫

DX̃

× exp

[
X̃

T
(1 − W )X + 1

2
X̃

T
DX̃ + JTX

]
, (13)

and Z̃ (0) = | det(1 − W )|−1 the nontrivial normalization of
the unnormalized moment-generating function Z̃ (J). Here,
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X̃ are auxiliary variables that can be used to calculate the
response function 〈XiX̃j〉 of neuron i to a perturbation of
neuron j by introducing additional sources J̃ in the moment-
generating function (see Appendix E). Equation (13) shows
that calculating the disorder average of the covariances boils
down to calculating the disorder average of the moment-
generating function. In the following two sections, we use
this approach to calculate the mean of the cross-covariances
〈C〉W ,D and subsequently the variance of the cross-covariances
〈δC2〉W ,D, where 〈·〉W ,D refers to the average over the random-
ness in W and D.

A. Mean of cross-covariances

Disorder average. We begin with the mean cross-
covariances, focusing first on the average over the ensemble
of connectivities, indicated in the following by 〈·〉W . In the
moment-generating function [Eq. (13)], W occurs linearly in
the exponent of Z̃ (J), which is advantageous for performing
the disorder average. However, the averaging procedure is
complicated by two aspects: (1) W contributes to the noise
strength D through the variance-rescaling matrix B−1, and (2)
the normalization Z̃ (0) depends on W . However, as illustrated
in Fig. 3, in practice the first point does not appear to be a
problem: Fig. 3(a) indicates that the specifics of D are largely
determined by the details of the variances CV2ν, because a
different realization of W essentially yields a similar D, and
Fig. 3(b) suggests that the effect of the disorder average on
D is minimal. For these reasons, we treat D as though it was
independent of the explicit realization of W . To address the
second point, an alternative approach based on the moment-
generating functional for the full time-dependent dynamics
(see Appendix E) could be utilized. This moment-generating
functional has a unit determinant normalization independent
of W [54]. The disorder average of its frequency space com-
plement, however, introduces cross-frequency couplings that
complicate the further analysis. Here, instead, we follow Dah-
men et al. [7], and separate the averages over Z̃ (J) and Z̃ (0),

〈Z (J)〉W =
〈

Z̃ (J)

Z̃ (0)

〉
W

≈ 〈Z̃ (J)〉W

〈Z̃ (0)〉W
, (14)

as we find that this factorization approach does yield accurate
results. This leaves us with the task of calculating 〈Z̃ (J)〉W .1

The disorder average only affects the coupling term and
can be expressed using the moment-generating functions φi j

of Wi j , 〈
exp

(−X̃
T
W X

)〉
W =

〈∏
i, j

exp
(−Wi jX̃iXj

)〉
W

=
∏
i, j

φi j
(−X̃iXj

)
,

1Note that a systematic approach to this factorization approxima-
tion would be to employ the replica trick Z̃ (0)−1 = limn→0 Z̃ (0)n−1

and jointly average 〈Z̃ (J)Z̃ (0)n−1〉W in the limit n → 0, or to average
the joint moment-generating functional for all time points or frequen-
cies that by construction has a trivial normalization Z̃ (0) = 1 (see
Appendix E).

FIG. 3. Effect of averaging noise strength over disorder in W
and effect of applying B−1 on variances. (a) Noise strength com-
puted using the procedure described above (noise strength in the
following) vs noise strength computed using a new realization of W
(dark gray), and noise strength vs variances (light gray). (b) Noise
strength vs noise strength computed using an average over 100 real-
izations of W (dark gray) and noise strength vs variances (light gray).
Same excitatory-inhibitory network model as in previous figures. For
model details and simulation parameters see Appendix A for spectral
radius r = 0.49.

for independently drawn connections Wi j ∼ pi j (Wi j ). The
moment-generating function can be written in terms of a
cumulant expansion φi j (X ) = exp(

∑∞
k=1 κk,i jX k/k!), with kth
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cumulants κk,i j . For fixed connection probability, the number
of inputs to a neuron scales with the network size N . To
keep the input and its fluctuations finite when increasing the
network size, we require synaptic weights to scale with 1/

√
N

[34,55], such that the cumulant expansion is an expansion in
1/

√
N . A truncation at the second cumulant (∝ N−1) maps

W to a Gaussian connectivity with distribution N (M,�/N ),
such that〈

Z̃ (J)
〉
W =

∫
DX

∫
DX̃

× exp
[
S0(X , X̃ ) + JTX

]
(15)

× exp

⎡⎣ 1

2N

∑
i, j

�i j X̃iX̃iXjXj

⎤⎦, (16)

with

S0(X , X̃ ) = X̃
T

(1 − M)X + 1
2 X̃

T
DX̃ ,

and mean connection weights Mi j = O(1/
√

N ) as well as
variances �i j = O(1). The higher-order cumulants are sup-
pressed by the large network size and therefore do not
significantly affect the dynamics of the network. As we
show below, our theory with the Gaussian approximation of
the connectivity therefore faithfully recovers the correlation
statistics in the sparse excitatory-inhibitory spiking network
with population-specific connection statistics.

Auxiliary field formulation. To deal with the four-point
coupling term in Eq. (15), we define auxiliary variables Qi :=
1
N

∑
j �i jXjXj , which we formally introduce by inserting an

identity in the form of a Fourier-transformed delta distribu-
tion:

1 =
∏

i

∫
dQi δ

⎛⎝ 1

N

∑
j

�i jXjXj − Qi

⎞⎠
=

∏
i

N
∫ ∞

−∞
dQi

∫ i∞

−i∞

dQ̃i

2π i

× exp

⎡⎣Q̃i

⎛⎝∑
j

�i jXjXj − NQi

⎞⎠⎤⎦.

The auxiliary variables Q̃i are introduced to express the delta
distribution as an integral. This leads to

〈Z̃ (J)〉W =
∫

DQ
∫

DQ̃ exp
(−NQT Q̃

)
×

∫
DX

∫
DX̃ exp

[
SQ,Q̃(X , X̃ ) + JTX

]
︸ ︷︷ ︸

=:Z̃Q,Q̃(J)

, (17)

SQ,Q̃

(
X , X̃

) = X̃
T

(1 − M)X + 1

2
X̃

T
[D + diag(Q)]X̃

+ X Tdiag
(
Q̃

T
�
)
X . (18)

Here diag(Q)i j refers to a diagonal matrix with diagonal ele-
ments Qi. As the action SQ,Q̃(X , X̃ ) at fixed auxiliary variables
describes an auxiliary free theory, Eq. (17) describes the activ-
ity of linear rate neurons in a network with disorder-averaged

connectivity M that interact with fluctuating external variables
Q and Q̃. Inserting Eq. (17) into Eq. (14) yields

〈Z (J)〉W =
∫

DQ
∫

DQ̃
Z̃Q,Q̃(J)

Z̃Q,Q̃(0)

× exp
( − NQT Q̃

)
Z̃Q,Q̃(0)∫

DP
∫
DP̃ exp

( − NPT P̃
)
Z̃P,̃P(0)

=:
∫

DQ
∫

DQ̃ p
(
Q, Q̃

)
ZQ,Q̃(J),

with joint probability distribution

p(Q, Q̃) = exp
(−S(Q, Q̃)

)∫
DP

∫
DP̃ exp

( − S(P, P̃)
) ,

S
(
Q, Q̃

) = NQT Q̃ − ln
[
Z̃Q,Q̃(0)

]
, (19)

and properly normalized moment-generating function
ZQ,Q̃(J) = Z̃Q,Q̃(J)/Z̃Q,Q̃(0). These equations imply that
the disorder average of arbitrary moments 〈Xi1 · · · Xik 〉 can
be calculated by determining the corresponding moments
〈Xi1 · · · Xik 〉Q,Q̃ with respect to the auxiliary free theory and
averaging them over the auxiliary variables:

〈〈Xi1 · · · Xik 〉〉W =
∫

DQ
∫

DQ̃

× p
(
Q, Q̃

)〈Xi1 · · · Xik 〉Q,Q̃,

〈Xi1 · · · Xik 〉Q,Q̃ = ∂

∂Ji1

· · · ∂

∂Jik

ZQ,Q̃(J)

∣∣∣∣
J=0

. (20)

Saddle-point approximation. Due to the prefactor N in
Eq. (19) and the scalar products in Z̃Q,Q̃(0) with N contribu-

tions, we expect p(Q, Q̃) to peak sharply for N → ∞, such
that we can perform a saddle-point approximation. To lowest
order, we expect p(Q, Q̃) ≈ δ(Q − Q∗)δ(Q̃ − Q̃

∗
), with the

saddle-point Q∗, Q̃
∗

determined by

∂

∂Q̃i
S(Q, Q̃)

∣∣∣∣
Q∗,Q̃∗

= 0,
∂

∂Qi
S(Q, Q̃)

∣∣∣∣
Q∗,Q̃∗

= 0,

which yields

Q∗
i = 1

N

∑
j

�i j〈XjXj〉Q∗,Q̃∗ ,

Q̃∗
i = 1

2N
〈X̃iX̃i〉Q∗,Q̃∗ , (21)

with second moments evaluated at the saddle point. The mo-
ments can be calculated explicitly by solving the Gaussian
integrals (see Appendix F). Using the shorthand R := (1 −
M)−1, we find 〈XiXj〉Q∗,Q̃∗ = {R[D + diag(Q∗)]RT}i j and

〈X̃iX̃i〉Q∗,Q̃∗ = 0, and solving for the saddle point yields

Q∗
i = 1

N

∑
j,k,l,m

(
1 − 1

N
� · R◦2

)−1

i j

� jkRklDlmRkm,

Q̃∗
i = 0,

with R◦2 := R 
 R and 
 denoting the elementwise
(Hadamard) product.
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Finally, making use of the Wiener-Khinchin theorem
[Eq. (B1)] and inserting the solution of the saddle-point equa-
tions into Eqs. (20) yields the mean covariances averaged
across the disorder of the connectivity:

〈C〉W = 〈XX T〉Q∗,Q̃∗

= (1 − M)−1[D + diag(Q∗)](1 − M)−T.

Averaging over the disorder in D then yields

〈C〉W ,D = (1 − M)−1{D + diag[Q∗(D = D)]}(1 − M)−T.

(22)

Here D denotes the disorder-averaged noise strength [cf.
Fig. 3(b) and discussion after Eq. (31)]. Note that the saddle
point Q∗(D = D) together with D yields an effective noise
strength which shifts average variances and covariances. Im-
portantly, it is only the heterogeneity in the connectivity W
that causes this shift. Average covariances are insensitive to
heterogeneity in the noise strengths D; they only depend on
the average D.

B. Variance of cross covariances

Replica method. Calculating the variances of covariances
across the ensemble of possible network connectivities,

〈δC2〉W = 〈C◦2〉W − 〈C〉◦2
W , (23)

requires making use of the replica method [40,56] and
deriving an expression for the disorder-averaged moment-
generating function of the replicated system 〈Z (J)Z (K )〉W , as
this allows calculating disorder averages of arbitrary squared
moments 〈〈Xi1 · · · Xik 〉2〉W , which occur in the first term in
Eq. (23). The procedure is completely analogous to the previ-
ous section’s derivations. However, the disorder average now
affects the term〈

exp
(
X̃

T
W X + Ỹ

T
WY

)〉
W

=
∏
i, j

exp

[ ∞∑
k=1

κk,i j

k!

(
X̃iXj + ỸiYj

)k

]
,

where X and Y refer to the activity in the first and second
replicon, respectively. A cumulant expansion up to second
order introduces—along four-point couplings separately in X
and Y similar to the one in Eq. (15)—a replica coupling term

exp

⎛⎝ 1

N

∑
i j

�i j X̃iỸiXjYj

⎞⎠.

To deal with the four-point couplings, we again introduce
auxiliary variables

QXX,i = 1

N

∑
j

�i jXjXj,

QYY,i = 1

N

∑
j

�i jYjYj,

QXY,i = 1

N

∑
j

�i jXjYj,

and obtain a relation similar to Eq. (20),

〈〈Xi1 · · · Xik 〉2〉W

=
∫

DQ
∫

DQ̃p
(
Q, Q̃

)〈Xi1 · · · XikYi1 · · ·Yik 〉Q,Q̃,

〈Xi1 · · · XikYi1 · · ·Yik 〉Q,Q̃

= ∂

∂Ji1

· · · ∂

∂Jik

∂

∂Ki1

· · · ∂

∂Kik

ZQ,Q̃(J, K )

∣∣∣∣
J,K=0

, (24)

but with

p(Q, Q̃) = exp
(−S(Q, Q̃)

)∫
DP

∫
DP̃ exp

(−S(P, P̃)
) ,

S (Q, Q̃) = NQT
XX Q̃XX + NQT

XY Q̃XY

+ NQT
YY Q̃YY − ln Z̃Q,Q̃(0, 0), (25)

Z̃Q,Q̃(J, K ) =
∫

DX
∫

DX̃
∫

DY
∫

DỸ

× exp
[
SQXX ,Q̃XX

(X , X̃ ) + SQYY ,Q̃YY
(Y , Ỹ )

+ X̃
T
diag(QXY )Ỹ + X Tdiag

(
Q̃

T
XY �

)
Y

+ JTX + KTY
]
,

ZQ,Q̃(J, K ) = Z̃Q,Q̃(J, K )/Z̃Q,Q̃(0, 0),

where Q and Q̃ are shorthand notations denoting all auxiliary
variables, and SQXX ,Q̃XX

(X , X̃ ) and SQYY ,Q̃YY
(Y , Ỹ ) are given by

Eq. (18).
Saddle-point approximation. As in Sec. III A, we approx-

imate p(Q, Q̃) as a delta function at the saddle point Q∗, Q̃
∗

(for details see Appendix F), and with Eq. (24) to lowest order
we get 〈

C2
i j

〉
W = 〈〈XiXj〉2〉W

=
∫

DQ
∫

DQ̃ p
(
Q, Q̃

)〈XiXjYiYj〉Q,Q̃

=
∫

DQ
∫

DQ̃ p
(
Q, Q̃

)
(26)

× (〈XiXj〉Q,Q̃〈YiYj〉Q,Q̃

+〈XiYi〉Q,Q̃〈XjYj〉Q,Q̃

+〈XiYj〉Q,Q̃〈XjYi〉Q,Q̃

)
≈ 〈XiXj〉Q∗,Q̃∗ 〈YiYj〉Q∗,Q̃∗

+ 〈XiYi〉Q∗,Q̃∗ 〈XjYj〉Q∗,Q̃∗

+ 〈XiYj〉Q∗,Q̃∗ 〈XjYi〉Q∗,Q̃∗

= 〈XiXj〉Q∗,Q̃∗ 〈YiYj〉Q∗,Q̃∗

≈ 〈〈XiXj〉〉2
W

= 〈Ci j〉2
W , (27)

where we used Wick’s theorem, which is allowed by the fact
that, for Q and Q̃ given and fixed, Z̃Q,Q̃(J, K ) describes a
Gaussian theory, and the fact that all cross-replica correlators
〈XiYj〉Q∗,Q̃∗ vanish at the saddle point (see Appendix F).
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Fluctuations around the saddle point. Equation (27) implies
that the variance of covariances is zero in the saddle-point
approximation, and we need to account for Gaussian fluc-
tuations of the auxiliary fields around their saddle points
by making a Gaussian approximation of p(Q, Q̃). The cru-
cial fluctuations are the ones of QXY and Q̃XY , as they can
potentially preserve the replica coupling and thus lead to
nonvanishing variance contributions of cross-replica correla-
tors 〈XiYi〉Q∗,Q̃∗ . Away from the saddle points, the correlators

in Eq. (26) depend on Q and Q̃ in a complicated manner.
To render the integrals in Eq. (26) solvable in the Gaussian
approximation, we perform a Taylor expansion of the correla-
tors around the saddle points Q∗, Q̃

∗
, which effectively is an

expansion of Z̃Q,Q̃(J, K ) (see Appendix G for more details).

In the first term of Eq. (26), leading-order fluctuations in
QXY and Q̃XY depend on correlators with an odd number of
variables of each replicon. Therefore, this term cannot yield
a contribution to the variance due to fluctuations of QXY and
Q̃XY . The major replica coupling arises from the second and
third terms in Eq. (26). We note that the third term contains
off-diagonal elements of correlators which are suppressed by
a factor 1/N with respect to the diagonal ones. Therefore,
we can neglect this term for cross-covariances as well and
only keep the second term in Eq. (26) as the leading-order
contribution. For autocovariances the second and third terms
in Eq. (26) are the same, yielding an additional factor 2.
Introducing δQ = Q − Q∗ and defining δQ̃ equivalently, we
obtain

〈XiYi〉Q,Q̃ =
∑

k

〈
XiYiX̃kỸk

〉
Q∗,Q̃∗δQXY,k +

∑
k,l

�kl〈XiYiXlYl〉Q∗,Q̃∗δQ̃XY,k + O
(|δQ|2, |δQ̃|2)

=
∑

k

〈
XiX̃k

〉2
Q∗,Q̃∗δQXY,k +

∑
k,l

�kl〈XiXl〉2
Q∗,Q̃∗δQ̃XY,k + O

(|δQ|2, |δQ̃|2), (28)

where we used that cross-replica correlators vanish at the saddle point. Inserting the above fluctuation expansion result around
Q∗

XY and Q̃
∗
XY into Eq. (26) leads to∫

DQ
∫

DQ̃ p
(
Q, Q̃

)〈XiYi〉Q,Q̃〈XjYj〉Q,Q̃

=
∑
k,l

〈
XiX̃k

〉2
Q∗,Q̃∗

〈
XjX̃l

〉2
Q∗,Q̃∗ 〈δQXY,kδQXY,l〉Q,Q̃ +

∑
k,l,m

〈
XiX̃k

〉2
Q∗,Q̃∗�lm〈XjXm〉2

Q∗,Q̃∗
〈
δQXY,kδQ̃XY,l

〉
Q,Q̃

+
∑
k,l,m

〈
XjX̃k

〉2
Q∗,Q̃∗�lm〈XiXm〉2

Q∗,Q̃∗
〈
δQXY,kδQ̃XY,l

〉
Q,Q̃ +

∑
k,l,m,n

〈XiXm〉2
Q∗,Q̃∗ 〈XjXn〉2

Q∗,Q̃∗�km�ln
〈
δQ̃XY,kδQ̃XY,l

〉
Q,Q̃. (29)

Next, we consider the Gaussian approximation of p(Q, Q̃)
with

S
(
Q, Q̃

) = S
(
Q∗, Q̃

∗) + 1

2

(
δQXY , δQ̃XY

)
S (2)

(
δQXY

δQ̃XY

)
,

where S (2) contains the second derivatives with respect to the
auxiliary fields,

S (2) =

⎛⎜⎝ ∂S(Q,Q̃)
∂QXY ∂QXY

∣∣∣
Q∗,Q̃∗

∂S(Q,Q̃)
∂QXY ∂Q̃XY

∣∣∣
Q∗,Q̃∗

∂S(Q,Q̃)
∂Q̃XY ∂QXY

∣∣∣
Q∗,Q̃∗

∂S(Q,Q̃)
∂Q̃XY ∂Q̃XY

∣∣∣
Q∗,Q̃∗

⎞⎟⎠,

which allows evaluating the correlators of the auxiliary fields
in Eq. (29) (see Appendix H for details). Inserting the results,
to leading order we find (see Appendix I for details)〈

C2
i j

〉
W

= (1 + δi j )

[(
1 − 1

N
RT◦2�

)−1

〈XX T〉◦2
Q∗,Q̃∗

×
(

1 − 1

N
RT◦2�

)−T]
i j

− δi j〈Ci j〉2
W . (30)

To get the variances rather than the second moments, we sub-
tract the squared mean covariances 〈Ci j〉2

W . However, for the
setup that we study here the squared mean cross-covariances
are of the order O(1/N2) and therefore negligible. Tak-
ing into account that R = (1 − M)−1 ≈ 1, which holds as

long as the network is inhibition dominated,2 we find the
following expression for the disorder-averaged variance of
cross-covariances (see Appendix I for full expression):

〈δC2〉W = (1 − S)−1(D + diag[Q∗(D)])2(1 − S)−T, (31)

where we wrote S = �/N .
However, if the noise strength D has to be estimated using

Eq. (11), this expression is still dependent on the specific
realization of W , both implicitly through the estimates of the
single-neuron rates and CVs described in Sec. II and explicitly
through the matrix B [Eq. (12)]. Since the right-hand side of
Eq. (31) depends nonlinearly on D, averaging over the statis-
tics of D introduces terms depending on the heterogeneity of
D. However, Fig. 9 in the Appendix shows that heterogene-
ity in D—both via the explicit dependence on W and via
the implicit dependence through distributed firing rates and
CVs—is negligible for the statistics of cross-covariances. This
can be understood by considering the structure of Eq. (35):
The matrices (1 − S)−1 are multiplied with D, such that any
heterogeneity in D is averaged out. An E-I network is an illus-
trative example, with (1 − S)−1 = 1 + U with a 2×2 block
matrix U whose entries are homogeneous in each population

2M scales as O(N−1/2) and, in inhibition-dominated networks,
eigenvalues of M are far away from the divergence at 1.
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block, such that the matrix product effectively is an average
over D.

To obtain an average D that is not depending on a specific
realization of W , we follow Eq. (11) and set

Dii =
∑

j

(1 − S)i j · CV2
jν j, (32)

which inserted into the disorder-averaged expression for the
autocovariances [Eq. (22)] yields the correct autocovariances:

〈Cii〉W ,D = [(1 − M)−1{D + diag[Q∗(D)]}(1 − M)−T]ii

≈ {D + diag[(1 − S)−1S · diag(D)]}ii

=
∑

j

(1 − S)−1
i j D j j

= CV2
i νi. (33)

Here we used (1 − M)−1 ≈ 1 and Q∗ ≈ (1 − S)−1S ·
diag(D). The realization-independent estimates νi and

CV2
i of the rates and CVs, respectively, can be obtained using

standard population-resolved mean-field theory [42,43],
which only requires knowing the statistics of W . A procedure
similar to the one described in Sec. II can be used: In the
population view, however, the indices i, j no longer denote
single neurons but rather populations of equal neurons. In
Eq. (1) Ji j is replaced by Ki jJi j and J2

i j in Eq. (2) is replaced
by Ki jJ2

i j , where Ki j is the indegree from population j to
population i, and Ji j then is interpreted as the mean synaptic
weight from population j to population i.

Replacing D in Eq. (31) by Eq. (32) yields a fully
realization-independent disorder-averaged estimate of the
variance of cross-covariances.

C. Singularities

Next, we discuss the interpretation of the derived formulas.
Thereto, we need to have a closer look at the effective noise
strength D + diag[Q∗(D)], which occurs in both the mean
[Eq. (22)] and the variances [Eq. (31)] of covariances. Using
Eq. (32), we find that the impact of heterogeneity on the
effective noise cancels:

diag(D) + Q∗(D) ≈ diag(D) + (1 − S)−1S · diag(D)

= (1 − S)−1 · diag(D)

= (1 − S)−1(1 − S) · a

≈ a, (34)

where ai = CV2
i νi is the vector of estimated autocovariances.

This is because we specifically choose the noise strength
D such that autocovariances match those from the spiking
networks: As heterogeneity is increased, external fluctuations
get amplified by the factor (1 − S)−1 in Eq. (34). To achieve
that autocovariances do not diverge, external inputs need to
be scaled down according to Eq. (32). Hence, the mean and
variance of cross-covariances are given by

〈C〉W ,D ≈ (1 − M)−1diag(a)(1 − M)−T, (35)

〈δC2〉W,D ≈ (1 − S)−1diag(a2)(1 − S)−T. (36)

Note that any inverse matrix can be written as A−1 =
det(A)−1adj(A), where adj(A) denotes the adjugate matrix.
As a result, the elements of an inverse matrix A−1 diverge
if the determinant of the matrix A vanishes, which occurs
when at least one eigenvalue of A is zero. Therefore, the
divergence behavior of the mean and variance of covariances
is determined by the eigenvalues of M and S with real parts
close to 1.

Equation (35) reveals that mean cross-covariances are de-
termined by the mean connectivity M. By choosing D to
match the autocovariances of the spiking model, they are, in
particular, unaffected by network heterogeneity, represented
by S. A range of important network properties, such as pop-
ulation structure determining E-I balance [34,36,37,45,57],
spatial structure like distance-dependent connection probabil-
ities [8,58–62], or low-rank structures [63], can be encoded in
M. Divergences in mean covariances, caused by eigenvalues
of M close to 1, can thus be indicative of phenomena like
loss of E-I balance with excessive excitation (cf. Fig. 8D of
Ref. [57]) or instability of the homogeneously active state in
spatially organized networks [64].

Variances of cross-covariances are determined by network
heterogeneity [Eq. (36)], encoded in the connectivity vari-
ance S, and are to leading order independent of the mean
connectivity M. Note that subleading terms nevertheless can
become sizable if eigenvalues of M are close to the instability
line at 1. As demonstrated by Aljadeff et al. [65], if S is
a block structured matrix encoding different populations, its
eigenvalue spectrum is circular, with a spectral radius r that
is determined by the square root of the maximum eigenvalue
of S.

For the E-I network studied here, the matrices M and S
have nontrivial block structure with one excitatory and one
inhibitory block (see Appendix M). In this case, the spectral
radius is given by [66]

r2 = NEσ 2
E + NIσ

2
I .

The spectral radius, a measure of network heterogeneity, in-
creases when the variance of synaptic strength grows, which is
controlled by an interplay between the connection probabili-
ties of different populations and the variances of the associated
synaptic weights. Intuitively, as explained in Dahmen et al.
[8], multisynaptic signal transmission is very efficient in a
network with a large spectral radius, such that pairs of neurons
influence each other via a large number of neuronal path-
ways, possibly including differing numbers of excitatory and
inhibitory neurons. The effects of these various pathways add
up, and the large variety of potential pathways results in a
broad distribution of covariances.

We see that the effects of M and S are mostly inde-
pendent of one another, allowing the mean and variance
of covariances to vary separately. This, however, applies
only to synaptic weights that are identically and indepen-
dently distributed. If the weights are correlated, such as
through chain structures in the connectivity, the respective
eigenvalues cannot be changed independently. A more de-
tailed analysis of this behavior is to be published elsewhere.
As a final remark, it is worth noting that the indepen-
dence of the mean covariances of S confirms that previously
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FIG. 4. Statistics of covariances at different spectral radii of the effective connectivity matrix W . Covariance statistics are resolved accord-
ing to population membership of neuron pairs (EE, both neurons excitatory; EI, one neuron excitatory, one neuron inhibitory; II, both neurons
inhibitory). Dots show the population-resolved [(a)–(c)] mean or [(d)–(f)] variance of the spike count cross-covariances [Eq. (7)] measured in
network simulations of spiking E-I networks. Solid lines show the theoretical predictions of the mean [Eq. (22)] and variance [Eq. (31)] of
cross-covariances, respectively, using the noise strength estimate [Eq. (32)]. The dashed lines show the population-resolved empirical mean
and variance of cross-covariances from Eq. (9) averaged over 20 realizations of W , and the shaded area depicts a two-standard-deviation
range around the mean. The variances computed from the simulation results have been corrected for bias due to finite simulation time (see
Appendix K). Same excitatory-inhibitory network model as in previous figures. For model details and simulation parameters see Appendix A.

employed population models [31,36,37,45,57], which neglect
the variance of connectivity, are valid for computing mean
covariances.

To illustrate how the mean and variance of covariances
change as functions of the network heterogeneity, we plot
Eqs. (22) and (31) with Eq. (32) for spectral radii between
0 and 1 in Fig. 4 (predicted linear). We kept the working point
roughly constant for the different spectral radii by maintaining
the mean μ and variance σ 2 of the total input to each neuron
while modifying the synaptic efficacy. To compensate for the
increased intrinsic input and fluctuations at larger spectral
radii, we reduced the mean and fluctuations of the external
input.

Confirming the discussion of Eqs. (35) and (36), when the
spectral radius is modified, the variances of covariances vary
by several orders of magnitude, whereas mean covariances
remain in the same order of magnitude. A range of prior

research [31,37,57] has shown that a divergence of mean
covariances would be observed as a function of E-I balance,
e.g., by altering g. Here we focus on network scenarios away
from the excitatory instability (fixed g = −6) and therefore
do not see a divergence of mean covariances. Nevertheless,
we observe a change of mean covariances when changing
the spectral radius. This is because, in the sparse random
network chosen here, the variance of the synaptic weights
is not independent from the mean of the weights. Adjusting
the spectral radius requires modifying the weights, resulting
in the residual change in the mean covariances visible in
Figs. 4(a)–4(c). Note that by keeping the working point of the
network constant across spectral radii, we also keep the noise
strength factor in Eqs. (22) and (31) constant [cf. Eqs. (35) and
(36)]. If the external noise strength was instead determined by
a fixed external process, i.e., D independent of W , then mean
covariances would also diverge as a function of the spectral
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radius due to the factor (1 − S)−1, which enters the noise
strength term via Q∗.

D. Comparison of prediction and measurement
of covariance statistics

To check how closely the predictions match the outcomes
of spiking network simulations, we ran ten simulations for
different spectral radii of the effective connectivity matrix
W similar to the one shown in Fig. 1 using the parameters
specified in Appendix A. The spectral radius was modified
by changing the synaptic weight scale j (see Table II).
In the sparse E-I networks that we consider here, this
affects both the mean connectivity M and the variance of
connections, S [cf. Eq. (A3)]. We ensured that the spiking
networks have roughly similar working points for the different
spectral radii by adjusting the external input as explained in
Appendix D. The theory of Eqs. (22) and (31) yields, for
any pair of neurons in the network, predictions for the
mean and variance of covariances measured across different
network realizations. In brain circuits, one finds statistical
similarities between different neurons, for example, given
by their population membership. These similarities result in
symmetries in the matrices M and S. In the current example
of the excitatory-inhibitory network, the statistical similarity
among all excitatory neurons and the similarity among all
inhibitory neurons is reflected in the block structure of the
matrices M and S. This block structure results in a similar
block structure for the matrices for the mean and variance
of covariances. Any off-diagonal element of one of the
blocks (EE, EI, or II) is representative of the statistics of
cross-covariances for this type of neuron pair. If networks
and groups of statistically similar neurons are sufficiently
large, then—by the self-averaging property [7,40,50,51]—an
empirical average across these statistically similar neurons
is insensitive to the particular network realization and can
be compared to the results for the statistics across network
realizations from the theory. We thus computed the empirical
mean and variance of the measured covariances for each type
of neuron pair (EE, EI, and II), corrected the variances for
bias due to finite simulation time (see Appendix K for details),
and compared the results to the predictions by Eqs. (22) and
(31). The results are displayed in Fig. 4: The top row shows
changes in mean covariances with spectral radius of W [via
according changes in M; see Eq. (22)], and the bottom row
shows changes in the variance of covariances with spectral
radius of W [via according changes in S; see Eq. (31)].

We observe that the order of magnitude of mean and
variance are well predicted by Eqs. (22) and (31), which is
especially evident for the variances [Figs. 4(d)–4(f)], which
span several orders of magnitude. However, there is some
quantitative discrepancy between the predictions of the pre-
sented linear theory and the results of the simulated spiking
network, which is visible in Figs. 4(a)–4(c), indicating that
a linear theory cannot fully capture the nonlinear spiking
dynamics at high spectral radii, where potential nonrenewal
effects of spiking arise [67]. To verify that the discrepancy
originates mostly from the linear-response approximation
rather than our disorder-average approximations, we plotted
the predictions of the linear theory [Eq. (9)] for 20 different

network realizations: At small spectral radii, the predicted
disorder-average-based mean is equal to the empirical mean
of the linear networks, and for large spectral radii, the pre-
dicted mean appears to be within the range of two standard
deviations around the empirical mean. This shows that the
deviations to the spiking network results mostly stem from the
linear-response approximation. The remaining difference be-
tween the predicted and the empirical mean in linear networks
could be explained by the fact that, for high spectral radii, the
effective connectivity matrix contributes much more strongly
to the noise strength, such that we can no longer disregard its
contribution to the noise strength (cf. Fig. 3) and averaging
over W and D separately is no longer feasible.

IV. DISCUSSION

In this study, we introduce theoretical tools based on sta-
tistical physics of disordered systems to investigate the role
of heterogeneous network connectivity in shaping the coor-
dination structure in neural networks. While the presented
methods are applicable to arbitrary independent connectivity
statistics, for illustration we focus our analysis on the proto-
typical network model for cortical dynamics by Brunel [42],
which is a spiking network of randomly connected excita-
tory and inhibitory leaky integrate-and-fire neurons receiving
uncorrelated external Poisson input. This model has been ex-
tensively studied before using mean-field and linear-response
methods to understand neuronal spiking statistics such as
average firing rates and CVs [30,68] as well as average cross-
covariances between populations of neurons [27,37,45,57,58].
In this study, we go beyond the population level and intro-
duce tools from field theory of disordered systems to study
the heterogeneity of activity across individual neurons. We
show how to turn a linear-response result on the link between
covariances and connectivity [27–31] into a field-theoretic
problem using moment-generating functions. Then we apply
disorder averages, replica theory, and beyond-mean-field ap-
proximations to obtain quantitative predictions for the mean
and variance of cross-covariances that take into account the
statistics of connectivity, but are independent of individual
network realizations. We show that this theory can faithfully
predict the statistics of cross-covariances of spiking leaky
integrate-and-fire networks across the whole linearly stable
regime. In doing this, we fixed the statistics of individual
neurons according to their theoretical prediction and showed
that this one working point, defined by the firing rates of all
neurons in the network, can correspond to very distinct cor-
relations structures. Furthermore, we demonstrate that while
the heterogeneity in single-neuron activities directly impacts
the statistics of neuronal autocovariances, it does not have
a sizable impact on the heterogeneity in cross-covariances
(cf. Fig. 9). The latter heterogeneity is determined by the
heterogeneity in neuronal couplings, quantified by the spectral
radius of effective connectivity bulk eigenvalues.

Technically, by employing linear-response theory, we
study two systems: the spiking leaky integrate-and-fire net-
work and a network of linear rate neurons. We derive a
procedure to set the external input noise of the linear model
in such a way that the covariance statistics of the spik-
ing network and the linear network match quantitatively.
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This way, the autocovariances are fixed to values determined
by single-neuron firing rates and CVs, as predicted by re-
newal theory for spike trains. Consequently, autocovariances
remain finite in the matched rate network even when ap-
proaching the point of linear instability. This is achieved
by reducing external input fluctuations to account for the
increased intrinsically generated fluctuations when increas-
ing the heterogeneity in network connectivity. As a result,
also neuronal cross-covariances remain finite close to linear
instability. The variance of cross-covariances nevertheless dis-
plays a residual divergence, which is why, within the linear
regime, mean cross-covariances only vary mildly, while the
variance of cross-covariances spans many orders of magni-
tude when changing the spectral radius of bulk connectivity
eigenvalues.

The methods presented here are restricted to the linearly
stable network regime, usually referred to as the asynchronous
irregular state of the Brunel model [42]. We show that, while
mean covariances are low in this state [5,34,36], individ-
ual cross-covariances between pairs of neurons can still be
large, reflected by the large variance of cross-covariances in
strongly heterogeneous network settings. Linear stability can,
for example, be realized in excitatory-inhibitory networks if
the overall recurrent feedback in the network is inhibition
dominated or only marginally positive [37] and if synaptic
amplitudes are not too strong. Previous work [67,69] has
shown that the here-considered model transitions to a different
asynchronous activity state if synaptic amplitudes become
larger. This state, however, is not well described by linear-
response theory, as slow network fluctuations and nontrivial
spike-train autocorrelations emerge, causing deviations from
the renewal assumptions on spike trains used here. Note that
such slow network fluctuations have not been observed in
previous studies on spontaneous activity in macaque motor
cortex [7,8] and mouse visual cortex [41] that employed first
results of the more general theoretical approach presented
here to explain experimentally observed features, such as the
large dispersion of covariances, long-range neuronal coordi-
nation, a rich repertoire of timescales, and low-dimensional
activity. These studies relied on Wick’s theorem to calculate
the variance of covariances, which is, however, restricted to
linear systems. Here we instead employ a more general replica
approach that can be straightforwardly applied to nonlinear
rate models [52], as extensively studied in the recent the-
oretical neuroscience literature [65,70–76]. Importantly, the
replica theory reveals in a systematic manner that the vari-
ance of covariances is an observable that is O(1/N ) in the
network size and requires beyond-mean-field methods to be
computed. In mean-field or saddle-point approximation, the
replica coupling term that yields the nontrivial variance of
covariances vanishes. We here calculate the next-to-leading-
order Gaussian fluctuations around saddle points that yield
good quantitative results across the whole linear regime. The
fact that the linear rate model captures the covariance statistics
of the spiking leaky integrate-and-fire model further shows
that the presented results on the link between connectivity and
covariances do not depend on model details and are generally
valid in the linear regime, which enables applications to ex-
perimental data [7,8,41].

In this paper, we focus on intrinsic mechanisms for het-
erogeneity and study the first- and second-order statistics of
network connectivity. The formalism can be applied to any
network topology, as arbitrary connectivity structures can be
encoded in the mean and variance matrices that are the cen-
tral objects of the theory. The results of the formalism are
particularly useful for comparing covariance statistics within
a single network with groups of statistically equivalent neu-
rons sharing the same connectivity statistics, such as different
cell types within neural circuits. Such statistical equivalence
imposes symmetries on the structure of the matrices M and
S that encode the first- and second-order connectivity statis-
tics. These symmetries allow a dimensionality reduction of
the problem and, by the self-averaging property [7,40,50,51],
the comparison of theoretical results to empirical averages
over covariances of different pairs of neurons within a single
circuit. Here we study a network with two populations, exci-
tatory and inhibitory, leading to a block structure in both M
and S. This example has been chosen as the simplest but rele-
vant setting that goes beyond the fully homogeneous random
network in Dahmen et al. [7] with a correspondingly sim-
pler homogeneous theory. Extensions to more populations or
neuron clusters as well as more complex population-specific
connectivity statistics are straightforward by adding more
blocks to M and S. Another application of the here-derived
theory to a more complex scenario, including interneuron
distance dependence of connection statistics, has been studied
(without derivation) by Dahmen et al. [8]. Notably, in our
theory we assume that connection weights are independently
drawn across different neuron pairs from an arbitrarily com-
plex probability distribution with finite cumulants. The focus
on mean Mi j and variance Si j of this distribution is justified as
long as connection weights scale at least as O(1/

√
N ), a scal-

ing that is often employed to preserve fluctuations in the limit
of large networks [34,55]. In this scaling, effects of higher-
order-connectivity cumulants are suppressed by the typically
large network size, and the Gaussian approximation of the
connectivity yields accurate results for network dynamics,
as here demonstrated on the example of excitatory-inhibitory
networks with population-specific connectivity statistics com-
prising sparseness (Bernoulli distribution) in addition to
distributed (Gaussian) synaptic amplitudes of existing con-
nections. Generalization of dynamic mean-field methods to
heavy-tailed connectivity, which cannot be expanded in cumu-
lants, has been proposed for studying single-neuron activity
statistics [77,78]. A similar approach may potentially be
combined with the methods presented here to investigate
cross-covariances. Furthermore, extensions to correlated con-
nection weights, reflecting an over- or under-representation of
reciprocal, convergent, divergent, and chain motifs, have been
proposed in Ref. [41].

In addition to network connectivity, external inputs can
be correlated and heterogeneous and thereby cause hetero-
geneity in covariances of local circuits. Previous works have
shown that external inputs can have a strong impact on local
covariances, especially in the limit of infinite network size
[36,58,79,80]. For biologically realistic network sizes of local
circuits, intrinsically generated covariances via local recur-
rent activity reverberations, however, make up a substantial
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contribution to cross-neuronal coordination [7,57]. This con-
tribution is explainable with the here-presented methods. In
general, more research is required to decipher the precise
interplay between intrinsic heterogeneity and external inputs
to arrive at a complete picture for the mechanistic origin of
heterogeneous covariance structures in local circuits.

Many previous studies have linked connectivity and dy-
namics on an average level, taking into account particular
connection pathways between neural populations [19], clus-
tering [81,82], or the spatial dependence of connections
[83–85]. In contrast, we here focus on heterogeneity as a
key feature of neural network connectivity and show that
it yields a wealth of complex coordination patterns that are
progressively becoming experimentally accessible via recent
advances in measurement techniques [15]. Our theoretical
framework to systematically incorporate structural hetero-
geneity and predict dynamical heterogeneity in biologically
plausible neural network models enables the use of this ex-
perimental knowledge about neural systems. Likewise, the
current framework can be used for the inverse problem of
inferring network properties from measured covariances, as
we demonstrated in Ref. [7] for the spectral radius in homo-
geneous random networks (see Appendix M for an extension
to E-I networks) and in Ref. [8] for long-range, multisynaptic
interactions in networks with spatially organized connectiv-
ity. Our work thus opens new avenues for the interpretation
of data on network structure and dynamics and proposes
a change of focus from population-averaged observables to
higher-order statistics that uncover the central role of hetero-
geneity in biological networks.

All code and data to reproduce the simulations and figures
of this study are publicly available under the Ref. [86].
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APPENDIX A: NETWORK MODEL
AND NEST SIMULATION

We simulate networks of leaky integrate-and-fire neuron
models, where the subthreshold dynamics of the membrane
potential Vi of neuron i is given by

τm
dVi(t )

dt
= −Vi(t ) + RIi(t ), (A1)

with total input current Ii(t ) that consists of recurrent input via
connections with strength Ji j and delay d as well as external

input:

RIi(t ) = τm

⎛⎝∑
j

Ji js j (t − d ) + jsext,E(t ) + gjsext,I(t ) + Iext

C

⎞⎠.

(A2)

Synaptic currents are instantaneous without synaptic filtering
[88,89]. The external input is decomposed into a constant
current Iext and Poisson spike trains sext,E(t ) of rate νext,E and
sext,I(t ) of rate νext,I that affect neurons with excitatory weight
j and inhibitory weight gj, respectively. R and C denote the
membrane resistance and capacitance, respectively. More in-
formation on the model parameters and their values can be
found in Tables I and II.

We consider random sparse connectivity J, with connec-
tion probability 10 %. Sparse connections are realized with
a fixed excitatory indegree KE = 800 and inhibitory indegree
KI = 200, with potential self-connections and prohibiting
multiple connections between the same pair of neurons. To
compensate for the imbalance in excitatory and inhibitory
neuron count, we scale the strengths of existing inhibitory
connections with respect to excitatory ones by a factor g = −6
to obtain an asynchronous irregular dynamic regime [42].
We distribute synaptic amplitudes of existing connections
according to population-specific normal distributions jE ∝
N ( j, 0.2 j) and jI ∝ N (gj, 0.2 j). The parameter j determin-
ing the overall scale of connection strength is varied to modify
the overall heterogeneity of connections as measured by the
variance

Var(Ji j ) ∝ j2 (A3)

and thereby the spectral radius of bulk connectivity eigenval-
ues (Table II).

APPENDIX B: TIME-LAG-INTEGRATED COVARIANCES

The cross-covariance function of two stochastic zero-mean
processes xi(t ) and x j (t ) is defined as

Ci j (s, t ) = 〈xi(s)x j (t )〉,
where the average is over the ensemble of realizations of the
processes. If the stochastic processes are stationary, the cross-
covariance function solely depends on the time lag τ = t − s:

Ci j (τ ) = 〈xi(s)x j (s + τ )〉.
Here we are considering the time-lag-integrated covariances,
as they can be linked to the experimentally accessible spike-
count covariances [6,7],

Ci j :=
∫ ∞

−∞
Ci j (τ )dτ

= lim
T →∞

1

T
(〈nin j〉 − 〈ni〉〈n j〉),

which can be interpreted as a zero-frequency Fourier trans-
form. The Wiener-Khinchin theorem (Appendix C) allows
expressing the time-lag-integrated covariances in terms of the
time series’s Fourier components Xi(ω) at frequency zero,

Ci j = 〈Xi(0)Xj (0)〉. (B1)
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TABLE I. Parameters used for NEST simulations and subsequent analysis.

Network parameters

Neuron type iaf_psc_delta

Synapse type static_synapse

Connection rule fixed_indegree

autapses True Connections of a neuron to itself
multapses False Multiple connections between a pair of neurons
NE 8000 Number of excitatory neurons
NI 2000 Number of inhibitory neurons
KE 800 Number of excitatory inputs
KI 200 Number of inhibitory inputs
C 1 pF Membrane capacitance
τm 20 ms Membrane time constant
τr 2 ms Refractory period
Vth 15 mV Relative threshold voltage
d 1 ms Synaptic delay
j [0.04, 0.38] mV Excitatory synaptic weight
g −6 Ratio of inhibitory to excitatory weight
σ j 20% of jE Std of Gaussian distribution of E and I weights
Iext [5, 125] pA External DC current
νext,E [800.73, 315049.84] Hz Rate of external excitatory Poisson noise
νext,I [640.42, 572214.84] Hz Rate of external inhibitory Poisson noise
Simulation parameters

dt 0.1 ms Simulation step size
tsim 10 000 000 ms Simulation time
Analysis parameters

T 1000 ms Bin width for calculating spike-count correlations
Tinit 1000 ms Initialization time

APPENDIX C: WIENER-KHINCHIN THEOREM

Here in parts we follow the book by Gardiner [90]. Let
x(t ) and y(t ) be stochastic, stationary processes. Stationary
means that for any n-tuple (t1, t2, . . . , tn) of time points and
any real number u the samples x(t1), . . . , x(tn) follow the
same distribution as the samples x(t1 + u), . . . , x(tn + u) [91].
Consequently, we may define a raw correlation function as

c(τ ) = 〈x(t )y(t + τ )〉,

which, due to the assumption of stationarity, does not depend
on the time t . The average is over the ensemble of realizations
of the processes. If the Fourier transforms of x and y exist, we

may calculate the ensemble average over X (ω) and Y (ω) as

〈X (ω)Y (ω′)〉 =
∫

dt e−iωt
∫

dt ′ e−iω′t ′ 〈x(t )y(t ′)〉

subst. t ′=t+τ=
∫

dt e−iωt
∫

dτ e−iω′(t+τ )

× 〈x(t )y(t + τ )〉

=
∫

dt e−i(ω+ω′ )t
∫

dτ e−iω′τ 〈x(t )y(t + τ )〉

= 2πδ(ω + ω′)
∫

dτ e−iω′τ c(τ )

= 2πδ(ω + ω′)C(ω′), (C1)

TABLE II. Parameters adjusted for setting different spectral radii while keeping the firing rate constant: The spectral radius of the
connectivity is set by choosing different synaptic strengths j of connections. The synaptic strength not only affects the mean connectivity
but also the variance of connections, i.e., the heterogeneity of the network, that determines the spectral radius [see Eq. (A3)]. The parameters
of the external inputs, which model the total excitatory and inhibitory input from external populations of neurons, are furthermore adjusted
to maintain a constant firing rate across different spectral radii. This is done to isolate effects of changing spectral radii on correlations from
effects of changing firing rates (see Appendix E and Fig. 6). For small spectral radii and thus weak recurrent input, strong external input is
needed to drive the network to moderate firing rates, while for large spectral radii and strong recurrent input, only weak external input is needed
for moderate firing rates.

r 0.10 0.20 0.29 0.39 0.49 0.60 0.70 0.79 0.86 0.90
j (mV) 0.04 0.08 0.12 0.16 0.2 0.25 0.29 0.33 0.36 0.38
Iext (pA) 125.0 65.0 40.0 25.0 20.0 15.0 10.0 8.0 6.0 5.0
νext,E (Hz) 315049.84 35406.98 27510.16 32862.34 13335.56 4292.70 6393.05 2149.08 1593.05 800.73
νext,I (Hz) 572214.84 139878.53 58597.12 29923.17 17262.46 9063.65 5147.04 2722.54 1360.93 640.42
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FIG. 5. Validity of firing rate and CV prediction for single LIF neuron with instantaneous synapses provided with two independent Poisson
inputs. (a) Simulated rates and (b) simulated CVs at given mean input μ and input variance σ 2. (c) Relative error ε = |νsim − νthy|/νsim of rate
and (d) relative error of CV prediction using Eqs. (3) and (4). Black pixels denote error values larger than 1.00.

where we used the identity
∫

dt e−iωt = 2πδ(ω) which fol-
lows from 1

2π

∫
dω eiωt 2πδ(ω) = 1, so that 2πδ(ω) is the

Fourier transform of the constant function and vice versa.
Equation (C1) states that the cross spectrum between two
stationary processes vanishes except at those frequencies ω =
−ω′, where it is proportional to a δ distribution times the
Fourier transform of the autocorrelation function.

APPENDIX D: VALIDITY OF THEORETICAL
PREDICTIONS

In this section, we discuss the conditions under which the
theory and simulation described in this paper yield the same
results. There are several factors to consider: the limits of the
theory we built upon, the limitations of the newly presented
theory, and the simulation’s constraints.

The estimation of covariances presented in this paper relies
on the proper estimation of firing rates and CVs, for which
we employ Eqs. (3) and (4) [42], which rely on a diffusion
approximation that substitutes spiking input by uncorrelated
white noise input. Due to this approximation, these formu-
las have their own limitations, and they do not yield good
estimates in all parameter regimes, as shown in Fig. 5 and
Figs. 6(a) and 6(b) for a single neuron receiving Poisson
input. Note that a correction due to the finite amplitude of
spiking input could in principle be accounted for [92]; the
diffusion approximation was shown to typically overestimate
firing rates, as can be seen, for example, in Fig. 2(a). In
a network context, the diffusion approximation furthermore
neglects any nontrivial structure of the autocorrelation of in-

puts, as well as their cross-correlation structure. Apart from
an offset, Fig. 2(a) also shows a clustering of inhibitory firing
rates in theory. The difference between the two clusters can
be traced back to the presence or absence of self-connections:
Firing rates of neurons with self-connections are more in line
with simulated rates. This fact, however, does not seem to gen-
eralize as networks with other spectral radii do not show any
apparent clustering in firing rate predictions (Fig. 7). Because
the estimates for firing rates and CVs are used to calculate
the effective connectivity matrix and noise strength, a poor
estimate has a direct impact on the covariance estimation. Fur-
thermore, the quality of the rate estimates affects how closely
the simulated network matches its analytical counterpart due
to the way we set the parameters for the simulation: We fix the
mean and variance of the single-neuron input, and therefore
their firing rates νset, and adjust the external input to set the
spectral radius r, which we estimate using the result of Rajan
and Abbott [66] for random Bernoulli E-I networks,

rset =
√

w2
eff,E(vset )p(1 − p)NE + w2

eff,I(vset )p(1 − p)NI,

with connection probability p. The effective weights weff,E(ν),
weff,I(ν) are computed using Eq. (6). Once we simulate the
network, we can measure the firing rates, extract the connec-
tivity matrix, and compute the effective connectivity matrix
realized in the simulation. Its largest eigenvalue determines
the spectral radius rsim. A comparison of rset and rsim is shown
in Fig. 6(c). They do not coincide perfectly, which is a direct
result of the unreliable estimation of the firing rates, which are
slightly overestimated by the theory [see Figs. 2(a), 6(a), 7(a),
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FIG. 6. Prediction accuracy of spiking network simulation properties. Predicted and measured (a) mean firing rates and (b) mean CVs at
different spectral radii. (c) Set spectral radius rset vs measured spectral radius rsim. Same excitatory-inhibitory network model as in previous
figures. For model details and simulation parameters see Appendix A.

7(d), and 7(g)]. To make sure the simulated network is always
in a linearly stable regime, we restrict our analysis to spectral
radii rset � 0.90, for which rsim � 0.94.

We estimate the noise strength D by computing the vari-
ances using Eq. (10), assuming that D is diagonal, and
inverting Eq. (9) which yields Eq. (11). First of all, the equa-
tion for the variances, Eq. (10), relies on the assumption that
the spike trains are well described by renewal processes [48].
Therefore, the noise strength estimate is reliable only if the
spike trains are not too bursty. However, even for networks
with CV ≈ 1 we observed that for large spectral radii this
approach of estimating the noise strength can yield negative
values for D, which has no physical interpretation. Measuring
the covariances in a simulation and inverting Eq. (9) without
restricting D to be diagonal yields a matrix that seems to be
almost diagonal, shown in Fig. 8(a). Setting the off-diagonal
elements to zero and using the result to compute the co-
variances via Eq. (9), however, reveals that the off-diagonal
contribution cannot be neglected [Fig. 8(b)], which means
that the external noise sources do have to be correlated to
explain the observed covariance. In cases in which the lowest
eigenvalue of Dfull is negative, we conclude that it is not

possible to find a physical linear system (positive-definite D)
that explains the individual pairwise covariances observed in
the spiking network simulation with a large spectral radius.
Our theoretical predictions for the mean and variance of cross-
covariances, Eqs. (22) and (31), based on D computed with
Eq. (11) and its averaged analog, Eq. (32), nevertheless yield
quantitatively matching results with respect to the spiking
network simulations also in this regime (Fig. 4), because, as
we show in Fig. 9, the results only depend on the average of D.
The theory based on the statistics of connections is therefore
found to be more robust than the theory based on individual
connectivity realizations. Finally, simulations have one major
limitation: their finite simulation time, which results in a bi-
ased estimation of the covariances at the single-neuron level.
As seen in Figs. 7(b), 7(c), 7(e), 7(f), 7(h), and 7(i), there is
some variance in the simulations that is not explained by the
theory. This variance is caused by the finite simulation time
and vanishes for longer simulations. The relative unexplained
variance is larger for small spectral radii, since the firing
rates of the neurons are slightly smaller in these networks,
leading to poorer estimation of covariances, and overall the
covariances are smaller for small spectral radii.

APPENDIX E: DERIVATION OF MOMENT-GENERATING FUNCTION

As discussed in Sec. II, in absence of correlated external input and in the regime of low average covariances, covariances
can be understood in linear-response theory [31], where the dynamical equation of LIF neurons describes a model network
of Ornstein-Uhlenbeck processes [Eq. (5)]. Grytskyy et al. [31] further showed that relation (9) between time-lag-integrated
covariances and effective connections is independent of the particular filter kernel h(t ) and whether noise is injected in the input
or output of neurons. Therefore, we here for simplicity choose Gaussian white noise in the input and h(t ) to be an exponential
kernel with unit time constant. The stochastic differential equation becomes

dx(t ) = −x(t )dt + W x(t )dt + dξ(t ), (E1)

with generating functional [7]

Z ( j) =
∫

Dx
∫

Dx̃ exp

[̃
xT(∂t + 1 − W )x + D

2
x̃Tx̃ + jTx

]
.
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FIG. 7. Simulation results vs theoretical estimates for E-I networks with three different spectral radii [(a)–(c)] r = 0.10, [(d)–(f)]
r = 0.49, and [(g)–(i)] r = 0.90. ρ denotes the Pearson correlation coefficient. [(a), (d), (g)] Firing rates. [(b), (e), (h)] Covariances. [(c),
(f), (i)] Correlation coefficients. The insets show a closer look at the data points. Same excitatory-inhibitory network model as in previous
figures. For model details and simulation parameters see Appendix A.

The latter can easily be interpreted in the Fourier domain due to the linearity of Eq. (E1) and the invariance of scalar products
under unitary transforms,

Z (J) =
∫

DX
∫

DX̃ exp

[
X̃

T
(iω + 1 − W )X + D

2
X̃

T
X̃ + JTX

]
,

with Fourier-transformed variables denoted by capital letters. The scalar product in the frequency domain reads X̃
T
X̃ =∑

j

∫
dω X̃ j (−ω)Xj (ω). The generating functional factorizes into generating functions for each frequency ω. As we use Eq. (8)

to calculate the time-lag-integrated covariances, we only require the zero-frequency components X (0). In the following, we
therefore only discuss zero frequency and omit the frequency argument; i.e., we write X ≡ X (0) and correspondingly for sources
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FIG. 8. Noise strength properties. (a) First 100 entries of Dfull computed from simulated covariances. (b) Comparison of covariances
computed using Dfull and using Ddiag = diag(Dfull ). Same excitatory-inhibitory network model as in previous figures. For model details and
simulation parameters see Appendix A for spectral radius r = 0.9.

FIG. 9. Dependence of population-resolved covariance statistics on heterogeneity in noise strength D. The continuous lines show the results
using the realization-independent estimate of D [Eq. (32)]. For the dashed lines, Eq. (32) with the single-neuron resolved estimates of CV2

i νi

introduced in Sec. II was used, whereas the dotted lines show the results using the full single-neuron resolved estimate of D [Eq. (11)]. [(a)–(c)]
Mean cross-covariances. [(d)–(f)] Variance of cross-covariances. Same excitatory-inhibitory network model as in previous figures. For model
details and simulation parameters see Appendix A.
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J. After integrating over all nonzero frequencies, we obtain the generating function for zero frequency,

Z (J) = λ

∫
DX

∫
DX̃ exp

[
X̃

T
(1 − W )X + D

2
X̃

T
X̃ + JTX

]
, (E2)

with the single-frequency scalar product defined as X̃
T
X̃ = ∑

j X̃ j X̃ j , integration measures
∫
DX = ∏

j

∫ ∞
−∞ dXj and

∫
DX̃ =∏

j
1

2π i

∫ i∞
−i∞ dX̃ j , and normalization prefactor λ. We introduce another source variable J̃ so that later we can also compute

correlators that include X̃ :

Z (J, J̃) = λ

∫
DX

∫
DX̃ exp

[
X̃

T
(1 − W )X + D

2
X̃

T
X̃ + JTX + J̃

T
X̃
]
.

The Gaussian integrals are solved as follows:

Z (J, J̃) = λ
∏

i

∫ ∞

−∞
dXi

∏
j

1

2π i

∫ i∞

−i∞
dX̃ j exp

[
X̃

T
(1 − W )X + D

2
X̃

T
X̃ + JTX + J̃

T
X̃
]

= λ
∏

i

∫ ∞

−∞
dXi

∏
j

1

2π

∫ ∞

−∞
dX̃ j exp

[
iX̃

T
(1 − W )X − D

2
X̃

T
X̃ + JTX + ĩJ

T
X̃
]

= λ

(
1

2π

)N ∏
i

∫ ∞

−∞
dXi

∏
j

∫ ∞

−∞
dX̃ j exp

[
−1

2

(
X T, X̃

T)( 0 −i(1 − W T)

−i(1 − W ) D

)(
X

X̃

)
+ (

JT, ĩJ
T)(X

X̃

)]

= λ

(
1

2π

)N
√√√√√ (2π )2N

det
( 0 −i(1 − W T )

−i(1 − W ) D

) exp

⎡⎣1

2

(
JT, ĩJ

T)( 0 −i(1 − W T)

−i(1 − W ) D

)−1(
J

ĩJ

)⎤⎦

= λ√
det

(
0 −i(1 − W T )

−i(1 − W ) D

) exp

[
1

2

(
JT, ĩJ

T)((1 − W )−1D
(
1 − W T

)−1
i(1 − W )−1

i
(
1 − W T

)−1
0

)(
J
ĩJ

)]

= λ√
det

( 0 −i(1 − W T)
−i(1 − W ) D

) exp

[
1

2

(
JT, J̃

T)((1 − W )−1D
(
1 − W T

)−1 −(
1 − W

)−1

−(
1 − W T

)−1
0

)(
J

J̃

)]
.

The identity matrix and the matrix of ones commute; therefore, we can use det(A B
C D) = det(AD − BC), and we get

det

(
0 −i

(
1 − W T

)
−i(1 − W ) D

)
= det

[−i2
(
1 − W T

)
(1 − W )

]
= [det (1 − W )]2.

The normalization condition Z (J = 0) = 1 yields λ = | det(1 − W )|, and the generating function becomes

Z
(
J, J̃

) = exp

[
1

2

(
JT, J̃

T)((1 − W )−1D(1 − W T)−1 −(1 − W )−1

−(1 − W )−T 0

)(
J

J̃

)]
,

or

Z
(
J, J̃ = 0

) = |det (1 − W )|
∫

DX
∫

DX̃ exp

[
X̃

T
(1 − W )X + D

2
X̃

T
X̃ + JTX

]
= exp

(
1

2
JT(1 − W )−1D(1 − W )−TJ

)
, (E3)

respectively. We obtain the time-lag-integrated covariances

Ci j = 〈
XiXj

〉 = ∂

∂Ji

∂

∂Jj
Z
(
J, J̃

)∣∣∣∣
J ,̃J=0

= [(1 − W )−1D(1 − W )−T]i j .
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APPENDIX F: SADDLE POINTS AND CORRELATORS OF ACTIVITY FIELDS

The saddle points Q∗, Q̃
∗

are given by ∂
∂Qi

S(Q, Q̃)|Q∗,Q̃∗ = 0 and ∂

∂Q̃i
S(Q, Q̃)|Q∗,Q̃∗ = 0, which yield

Q∗
i = 1

N

∑
j

�i j〈XjXj〉Q∗,Q̃∗ ,

Q̃∗
i = 1

2N
〈X̃iX̃i〉Q∗,Q̃∗ ,

including correlators evaluated at the saddle point Q∗, Q̃
∗
. To evaluate them, we need to solve the Gaussian integral in Eq. (17),

Z̃ (J, J̃) =
∫

DX
∫

DX̃ exp

[
X̃

T
(1 − M)X + 1

2
X̃

T
[D + diag(Q)]X̃ + X Tdiag

(
Q̃

T
�
)
X + JTX + J̃

T
X̃
]
,

where we added the additional source term J̃
T
X̃ to allow for the calculation of correlators including X̃ . We can rewrite the

equation as

Z̃ (J) =
∫

DZ exp

[
−1

2
ZTAZ + BTZ

]
= (2π )−N

√
(2π )2n

detA
exp

(
1

2
BT A−1B

)
= 1√

detA
exp

(
1

2
BT A−1B

)
,

using

Z =
(

X
X̃

)
, B =

(
J

ĩJ

)
, A =

(
−2 diag

(
Q̃

T
�
) −i(1 − M)T

−i(1 − M) [D + diag(Q)]

)
,

where the prefactor (2π )−N comes from the integration measure DX̃ , such that

A−1
11 = {−2 diag

(
Q̃

T
�
) + (1 − M)T[D + diag(Q)]−1(1 − M)

}−1
,

A−1
12 = i

{−2 diag
(
Q̃

T
�
) + (1 − M)T[D + diag(Q)]−1(1 − M)

}−1
(1 − M)T[D + diag(Q)]−1,

A−1
21 = i[D + diag(Q)]−1(1 − M)

{−2 diag
(
Q̃

T
�
) + (1 − M)T[D + diag(Q)]−1(1 − M)

}−1
,

A−1
22 = [D + diag(Q)]−1 − [D + diag(Q)]−1(1 − M)

× {−2 diag
(
Q̃

T
�
) + (1 − M)T[D + diag(Q)]−1(1 − M)

}−1
(1 − M)T[D + diag(Q)]−1.

Deriving the normalized moment-generating function Z (J, J̃) = Z̃ (J, J̃)/Z̃ (0, 0) twice with respect to J̃ yields

Q̃
∗ = 1

2N

〈
X̃ X̃

T〉
Q∗,Q̃∗

= 1

2N
A−1

22

= 1

2N
([D + diag(Q)]−1 − [D + diag(Q)]−1(1 − M)

{−2diag
(
Q̃

T
�
)

+ (1 − M)T[D + diag(Q)]−1(1 − M)
}−1

(1 − M)T[D + diag(Q)]−1),

which is solved by Q̃
∗ = 0. Inserting this result, we find

〈XX T〉Q∗,Q̃∗ = (1 − M)−1[D + diag(Q)](1 − M)−T,〈
X̃X T

〉
Q∗,Q̃∗ = −(1 − M)−T,

〈X̃ X̃
T〉Q∗,Q̃∗ = 0.

Inserting the correlators into the saddle-point equations and solving for Q∗ yields

Q∗
i = 1

N

∑
j,k,l,m

(
1 − 1

N
� · R◦2

)−1

i j

� jkRklDlmRkm, Q̃∗
i = 0 , (F1)

with R = (1 − M)−1.
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The saddle point of the auxiliary fields QXX , QXY , QYY in the replica theory are determined by finding the zeros of the first
derivative of the action [Eq. (25)]. This yields

Q∗
XX,i = 1

N

∑
j

�i j〈XjXj〉Q∗,Q̃∗ = Q∗
i , Q∗

YY,i = 1

N

∑
j

�i j〈YjYj〉Q∗,Q̃∗ = Q∗
i ,

Q∗
XY,i = 1

N

∑
j

�i j〈XjYj〉Q∗,Q̃∗ , Q̃∗
XX,i = 1

2N

〈
X̃iX̃i

〉
Q∗,Q̃∗ = 0,

Q̃∗
YY,i = 1

2N

〈
ỸiỸi

〉
Q∗,Q̃∗ = 0, Q̃∗

XY,i = 1

N

〈
X̃iỸi

〉
Q∗,Q̃∗ = 0,

and in a fashion analogous to the derivation above, we find

〈XY T〉Q∗,Q̃∗ = (1 − M)−1diag(Q∗
XY )(1 − M)−T.

Inserting the latter solution into the saddle-point equations again yields a linear self-consistency equation for Q∗
XY with the

solution

Q∗
XY,i = 0,

such that

〈XY T〉Q∗,Q̃∗ = 0.

APPENDIX G: FLUCTUATIONS AROUND SADDLE POINTS

Here we showcase how to perform a fluctuation expansion of the correlator 〈XiYi〉Q,Q̃ around Q∗
XY and Q̃

∗
XY . Other correlators

follow analogously. Following the definition in Eq. (24), the correlator is given by

〈XiYi〉Q,Q̃ = ∂

∂Ji

∂

∂Ki
ZQ,Q̃(J, K )

∣∣∣∣
J,K=0

.

Now, we expand ZQ,Q̃ around the saddle points,

ZQ,Q̃(J, K ) ≈ZQ∗,Q̃∗ (J, K ) +
∑

k

∂

∂QXY,k
ZQ,Q̃(J, K )

∣∣∣∣∣
Q∗,Q̃∗

(QXY,k − Q∗
XY,k ) +

∑
k

∂

∂Q̃XY,k
ZQ,Q̃(J, K )

∣∣∣∣∣
Q∗,Q̃∗

(
Q̃XY,k − Q̃∗

XY,k

)
,

and use ZQ,Q̃(J, K ) = Z̃Q,Q̃(J, K )/Z̃Q,Q̃(0, 0) to obtain

∂

∂QXY,k
ZQ,Q̃(J, K ) = 1

Z̃Q,Q̃(0, 0)

∂

∂QXY,k
Z̃Q,Q̃(J, K ) − Z̃Q,Q̃(J, K )

Z̃Q,Q̃(0, 0)2

∂

∂QXY,k
Z̃Q,Q̃(0, 0). (G1)

Using the definition of Z̃Q,Q̃(J, K ) in Eq. (25), its derivative is given by

∂

∂QXY,k
Z̃Q,Q̃(J, K ) =

∫
DX

∫
DX̃

∫
DY

∫
DỸ X̃kỸk exp

[
SQXX ,Q̃XX

(
X , X̃

) + SQYY ,Q̃YY

(
Y , Ỹ

)
+ X̃

T
diag(QXY )Ỹ + X Tdiag

(
Q̃

T
XY �

)
Y + JTX + KTY

]
,

such that normalizing and evaluating at the saddle point and for zero sources yields
∂

∂Ji

∂
∂Ki

∂
∂QXY,k

Z̃Q,Q̃(J, K )|J,K=0

Z̃Q,Q̃(0, 0)

∣∣∣∣∣
Q∗,Q̃∗

= 〈
XiYiX̃kỸk

〉
Q∗,Q̃∗ .

The second term on the right-hand side of Eq. (G1) vanishes at the saddle point and for J = K = 0

∂

∂Ji

∂

∂Ki

Z̃Q,Q̃(J, K )

Z̃Q,Q̃(0, 0)2

∂

∂QXY,k
Z̃Q,Q̃(0, 0)

∣∣∣∣∣
J,K=0

∣∣∣∣∣
Q∗,Q̃∗

= 〈XiYi〉Q∗,Q̃∗
〈
X̃kỸk

〉
Q∗,Q̃∗ = 0.

The derivative with respect to Q̃XY,k can be computed analogously, with X̃kỸk replaced by
∑

l �klXlYl . Therefore, the first-order
expansion in the replica coupling term reads

〈XiYi〉Q,Q̃ = 〈XiYi〉Q∗,Q̃∗︸ ︷︷ ︸
=0

+
∑

k

〈
XiYiX̃kỸk

〉
Q∗,Q̃∗ (QXY,k − Q∗

XY,k ) +
∑
k,l

�kl〈XiYiXlYl〉Q∗,Q̃∗
(
Q̃XY,k − Q̃∗

XY,k

)
, (G2)

which we use in Eq. (28).
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APPENDIX H: CORRELATORS OF AUXILIARY FIELDS

We consider the Gaussian approximation of p(Q, Q̃) with

S
(
Q, Q̃

) = S
(
Q∗, Q̃

∗) + 1

2

(
δQXY , δQ̃XY

)
S (2)

(
δQXY

δQ̃XY

)
,

where S (2) contains the second derivatives with respect to the auxiliary fields,

S (2) =

⎛⎜⎝ ∂S(Q,Q̃)
∂QXY ∂QXY

∣∣∣
Q∗,Q̃∗

∂S(Q,Q̃)
∂QXY ∂Q̃XY

∣∣∣
Q∗,Q̃∗

∂S(Q,Q̃)
∂Q̃XY ∂QXY

∣∣∣
Q∗,Q̃∗

∂S(Q,Q̃)
∂Q̃XY ∂Q̃XY

∣∣∣
Q∗,Q̃∗

⎞⎟⎠,

with

S (2)
11,i j = 0,

S (2)
12,i j = Nδi j −

∑
k

� jk
〈
X̃iỸiXkYk

〉
Q∗,Q̃∗ = Nδi j −

∑
k

� jkR2
ki,

S (2)
21,i j = Nδi j −

∑
k

�ik
〈
X̃ jỸjXkYk

〉
Q∗,Q̃∗ = Nδi j −

∑
k

�ikR2
k j,

S (2)
22,i j = −

∑
k,l

�ik� jl〈XkYkXlYl〉Q∗,Q̃∗ = −
∑
k,l

�ik� jl〈XkXl〉Q∗,Q̃∗ 〈YkYl〉Q∗,Q̃∗ .

Using

S (2) =
(

0 S (2)T
21

S (2)
21 S (2)

22

)
,

(
S (2))−1 =

(
−S (2)−1

21 S (2)
22 S

(2)−T
21 S (2)−1

21

S (2)−T
21 0

)
,

we find 〈
δQXY δQT

XY

〉 = −S (2)−1
21 S (2)

22 S
(2)−T
21

= 1

N2

[
1 − 1

N
� · R◦2

]−1

�〈XX T〉◦2
Q∗,Q̃∗�T

[
1 − 1

N
� · R◦2

]−T

〈
δQXY δQ̃

T
XY

〉 = S (2)−1
21 = 1

N

[
1 − 1

N
� · R◦2

]−1

〈
δQ̃XY δQ̃

T
XY

〉 = 0.

APPENDIX I: DISORDER-AVERAGED VARIANCE OF COVARIANCES

Starting with Eq. (26), we find〈
C2

i j

〉
W

= 〈〈XiXj〉2〉W

=
∫

DQ
∫

DQ̃ p
(
Q, Q̃

)〈XiXjYiYj〉Q,Q̃

=
∫

DQ
∫

DQ̃ p
(
Q, Q̃

)(〈XiXj〉Q,Q̃〈YiYj〉Q,Q̃ + 〈XiYi〉Q,Q̃〈XjYj〉Q,Q̃ + 〈XiYj〉Q,Q̃〈XjYi〉Q,Q̃

)
≈ 〈〈XiXj〉〉2

W + (1 + δi j )
∫

DQ
∫

DQ̃ p
(
Q, Q̃

)〈XiYi〉Q,Q̃〈XjYj〉Q,Q̃

= 〈Ci j〉2
W + (1 + δi j )

∫
DQ

∫
DQ̃ p

(
Q, Q̃

)〈XiYi〉Q,Q̃〈XjYj〉Q,Q̃.

Inserting the derived expressions for the correlators into Eq. (29) yields∫
DQ

∫
DQ̃ p

(
Q, Q̃

)〈XiYi〉Q,Q̃〈XjYj〉Q,Q̃

=
∑
k,l

〈
XiX̃k

〉2
Q∗,Q̃∗

〈
XjX̃l

〉2
Q∗,Q̃∗

〈
δQXY,kδQXY,l

〉
Q,Q̃ +

∑
k,l,m

〈
XiX̃k

〉2
Q∗,Q̃∗�lm

〈
XjXm

〉2
Q∗,Q̃∗

〈
δQXY,kδQ̃XY,l

〉
Q,Q̃
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+
∑
k,l,m

〈
XjX̃k

〉2
Q∗,Q̃∗�lm〈XiXm〉2

Q∗,Q̃∗
〈
δQXY,kδQ̃XY,l

〉
Q,Q̃ +

∑
k,l,m,n

〈XiXm〉2
Q∗,Q̃∗ 〈XjXn〉2

Q∗,Q̃∗�km�ln
〈
δQ̃XY,kδQ̃XY,l

〉
Q,Q̃

=
∑
k,l

R2
ik

{
1

N2

[
1 − 1

N
� · R◦2

]−1

�〈XX T〉◦2
Q∗,Q̃∗�T

[
1 − 1

N
� · R◦2

]−T
}

kl

R2
jl

+
∑
k,l,m

R2
ik�lm〈XjXm〉2

Q∗,Q̃∗

{
1

N

[
1 − 1

N
� · R◦2

]−1
}

kl

+
∑
k,l,m

R2
jk�lm〈XiXm〉2

Q∗,Q̃∗

{
1

N

[
1 − 1

N
� · R◦2

]−1
}

kl

=
{

R◦2 1

N2

[
1 − 1

N
� · R◦2

]−1

�〈XX T〉◦2
Q∗,Q̃∗�T

[
1 − 1

N
� · R◦2

]−T

R◦2T

}
i j

+
{

R◦2 1

N

[
1 − 1

N
� · R◦2

]−1

�〈XX T〉◦2
Q∗,Q̃∗

}
i j

+
{

〈XX T〉◦2
Q∗,Q̃∗�T 1

N

[
1 − 1

N
� · R◦2

]−T

R◦2T

}
i j

=
{

R◦2�
1

N2

[
1 − 1

N
R◦2 · �

]−1

〈XX T〉◦2
Q∗,Q̃∗�T

[
1 − 1

N
� · R◦2

]−T

R◦2T

}
i j

+
{

R◦2�
1

N

[
1 − 1

N
R◦2 · �

]−1

〈XX T〉◦2
Q∗,Q̃∗

}
i j

+
{

〈XX T〉◦2
Q∗,Q̃∗

1

N

[
1 − 1

N
R◦2 · �

]−T

�TR◦2T

}
i j

=
{(

1 + 1

N
R◦2�

[
1 − 1

N
R◦2 · �

]−1
)

〈XX T〉◦2
Q∗,Q̃∗

(
1 +

[
1 − 1

N
R◦2 · �

]−T 1

N
�TR◦2T

)}
i j

− [〈XX T〉◦2
Q∗,Q̃∗

]
i j

=
{[

1 − 1

N
R◦2 · �

]−1

〈XX T〉◦2
Q∗,Q̃∗

[
1 − 1

N
R◦2 · �

]−T
}

i j

−
[
〈XX T〉◦2

Q∗,Q̃∗

]
i j

=
{[

1 − 1

N
R◦2 · �

]−1

〈XX T〉◦2
Q∗,Q̃∗

[
1 − 1

N
R◦2 · �

]−T
}

i j

− 〈Ci j〉2
W ,

where we used

R◦2

[
1 − 1

N
�R◦2

]−1

� = R◦2
∑

k

[
1

N
�R◦2

]k

�

= R◦2

[
1 + 1

N
�R◦2 + 1

N2
�R◦2�R◦2 + · · ·

]
�

= R◦2�

[
1 + 1

N
R◦2� + 1

N2
R◦2�R◦2� + · · ·

]
= R◦2�

[
1 − 1

N
R◦2�

]−1

.

Finally, we obtain the second moment to leading order,

〈
C2

i j

〉
W

= (1 + δi j )

{[
1 − 1

N
R◦2 · �

]−1

〈XX T〉◦2
Q∗,Q̃∗

[
1 − 1

N
R◦2 · �

]−T
}

i j

− δi j〈Ci j〉2
W ,

and for the covariance we find〈
δC2

i j

〉
W

= 〈
C2

i j

〉
W

− 〈Ci j〉2
W

= (1 + δi j )

{[
1 − 1

N
R◦2 · �

]−1

〈XX T〉◦2
Q∗,Q̃∗

[
1 − 1

N
R◦2 · �

]−T
}

i j

− (1 + δi j )〈Ci j〉2
W

≈ (1 + δi j )[(1 − S)−1[D + diag(Q)](1 − S)−T]i j − (1 + δi j )〈Ci j〉2
W .
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FIG. 10. Bias correction of variance of covariance estimation for different simulation lengths at three different spectral radii r. The light
color depicts the biased estimator, the dark color the corrected estimator (K1). [(a)–(c)] r = 0.10, [(d)–(f)] r = 0.49, and [(g)–(i)] r = 0.90.
Same excitatory-inhibitory network model as in previous figures. For model details and simulation parameters see Appendix A.

APPENDIX J: DEPENDENCE OF
POPULATION-RESOLVED COVARIANCE STATISTICS

ON HETEROGENEITY IN NOISE STRENGTH D

In this Appendix, we study the dependence of population-
resolved covariance statistics on heterogeneity in noise
strength. The heterogeneity in noise strength has two sources:
variability in CVs and firing rates across neurons, and vari-
ability indirectly induced by the connectivity via the matrix
B [Eq. (11)]. We first replace the full single-neuron resolved
estimate of D [Eq. (11)] by an estimate that is independent
of the specific connectivity realization in B (see Eq. (32) but
with neuron-resolved firing rates and CVs). Subsequently, we
additionally replace the individual neuron firing rates and CVs
by their population mean [Eq. (32)]. Both simplifications have
hardly any effect on the mean and variance of covariances
(Fig. 9), confirming that these statistics are determined by
the effective connectivity statistics rather than variability in
single-neuron firing statistics.

APPENDIX K: BIAS CORRECTION OF VARIANCE
OF COVARIANCES

We utilize Eq. (4) from the supplementary information
of Ref. [7] to correct for the bias in the estimation of the
variances of covariances due to the finite simulation time. The

analogous correction for two populations a and b is given by

δC2
ab = δĈ2

ab − 〈Aa〉〈Ab〉 − 〈Cab〉2

N + 1
, (K1)

with the biased estimator of the variance of cross-covariances
δĈ2

ab, mean autocovariance 〈Aa〉, mean cross-covariance 〈Cab〉,
and the number of bins the spike trains are divided into, N =
Tsim/Tbin. Figure 10 illustrates that after a simulation time of
10 000 s, the corrected estimator converges to a fixed value
while the biased estimator does not, especially for smaller
spectral radii. In contrast, the mean covariance estimator con-
verges much faster for all spectral radii, as shown in Fig. 11.

APPENDIX L: NUMERICAL IMPLEMENTATION OF CVs

For computing the theoretical prediction of the CVs, we
make use of the equation found in Appendix A.1 in Ref. [42],
which in our units reads

CV2 = 2π (τmν)2
∫ yth

yr

dx ex2
∫ x

−∞
ds es2

[1 + erf (s)]2. (L1)

However, a naive implementation of Eq. (L1) is numerically
unstable due to the diverging integrals. To proceed, we rewrite
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FIG. 11. Mean of covariance estimation for different simulation lengths at three different spectral radii r. [(a)–(c)] r = 0.10, [(d)–(f)]
r = 0.49, [(g)–(i)] r = 0.90. Same excitatory-inhibitory network model as in previous figures. For model details and simulation parameters
see Appendix A.

Eq. (L1) using the following steps:

CV2 = 2π (τmν)2
∫ yth

yr

dx ex2
∫ x

−∞
ds es2

(1 + erf (s))2

= 2π (τmν)2
∫ yth

yr

dxex2
∫ x

−∞
ds es2

(
2√
π

∫ s

−∞
e−w2

dw

)2

= 8(τmν)2
∫ yth

yr

dx
∫ x

−∞
ds

∫ s

−∞
dv

∫ s

−∞
dw ex2+s2−v2−w2

.

We make a change of variables v′ = s − v, w′ = s − w, where
we immediately drop the prime, yielding

CV2 = 8(τmν)2
∫ yth

yr

dx
∫ ∞

0
dv

∫ ∞

0
dw

×
∫ x

−∞
ds ex2−s2−v2−w2+2(v+w)s.

Another change of variables s′ = x + v + w − s gives

CV2 = 8(τmν)2
∫ yth

yr

dx
∫ ∞

0
dv

∫ ∞

0
dw

∫ ∞

v+w

ds e−s2+2vw+2sx.

We switch the order of integration using∫ ∞
0 dv

∫ ∞
0 dw

∫ ∞
v+w

ds = ∫ ∞
0 ds

∫ s
0 dv

∫ s−v

0 dw, which yields
the form we used for the numerical implementation:

CV2 = 8(τmν)2
∫ ∞

0
ds

∫ s

0
dv

∫ s−v

0
dw

∫ yth

yr

dx e−s2+2vw+2sx

= 8(τmν)2
∫ ∞

0
ds

∫ s

0
dv e−s2

∫ s−v

0
dw e2vw

∫ yth

yr

dx e2sx

= 2(τmν)2
∫ ∞

0
ds

∫ s

0
dv e−s2 1

v

[
e2v(s−v) − 1

]
× 1

s

[
e2syth − e2syr

]
= 2(τmν)2

∫ ∞

0
ds

1

s

[
e2syth − e2syr

]
×

∫ s

0
dv

1

v

[
e−s2−2v2+2sv − e−s2]

.
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APPENDIX M: INFERENCE OF CONNECTIVITY
FEATURES FROM COVARIANCES

Equations (35) and (36) relate the mean connectivity M
and the connectivity’s variance S to the mean covariances
〈C〉W ,D and the variance of covariances 〈δC2〉W ,D, respec-
tively. These relations can be inverted to infer features of M
and S from the statistics of covariances. Here, we focus on
S and, in particular, the spectral radius r = √

NESE + NISI,
which substantially modulates the size of the variance of
covariances, as shown in Fig. 4. In the E-I network considered
in this work, S has the structure

S =
(

SE{1}EE SI{1}EI

SE{1}IE SI{1}II

)
, (M1)

with {1}XY being the matrix of ones of dimension NX × NY .
The inverse matrix (1 − S)−1 then follows as

(1 − S)−1 =
(

1EE + S̃E {1}EE S̃I{1}EI

S̃E{1}IE 1II + S̃I{1}II

)
, (M2)

with

S̃E = SE

1 − NESE − NISI
, (M3)

S̃I = SI

1 − NESE − NISI
. (M4)

From Eq. (36) the variance of covariances follows as

〈δC2〉W ,D = (CV2ν)2F with

F = (1 − S)−1(1 − S)−T

= 1 +
(

2S̃E{1}EE
(
S̃E + S̃I

){1}EI(
S̃E + S̃I

){1}IE 2S̃I{1}II

)
+ (

S̃2
ENE + S̃2

I NI
){1}.

Focusing on the off-diagonal elements of each block of F
yields quadratic equations

FEE = 2S̃E + (
S̃2

ENE + S̃2
I NI

)
,

FII = 2S̃I + (
S̃2

ENE + S̃2
I NI

)
,

FEI = (
S̃E + S̃I

) + (
S̃2

ENE + S̃2
I NI

) = 1

2
(FEE + FII ),

that can be solved for S̃E and S̃I and subsequently, using
Eqs. (M3) and (M4), for the connectivity parameters SE

FIG. 12. Set spectral radius rset (defined in Appendix D) vs in-
ferred spectral radius rinf . Same excitatory-inhibitory network model
as in previous figures. For model details and simulation parameters
see Appendix A.

and SI:

SE = 1

N

⎛⎜⎜⎜⎝1 − σ
(
1 − 1

2 (FEE − FII )NI
)√

1 + N
FEE− 1

4 (FEE−FII )2NI

[1− 1
2 (FEE−FII )NI]2

⎞⎟⎟⎟⎠, (M5)

SI = 1

N

⎛⎜⎜⎜⎝1 − σ
(
1 + 1

2 (FEE − FII )NE
)√

1 + N
FII− 1

4 (FII−FEE )2NE

[1− 1
2 (FII−FEE )NE]2

⎞⎟⎟⎟⎠, (M6)

with σ (x) = 1 for x � 0 and σ (x) = −1 for x < 0,
FEE = 〈δC2

EE〉W ,D/(CV2ν)2, and FII = 〈δC2
II〉W ,D/(CV2ν)2.

As shown in Fig. 12, this in particular allows the
inference of the spectral radius of bulk connectivity
eigenvalues,

rinf = √
NESE + NISI , (M7)

from the variance of covariances. In principle, a similar
procedure could be followed to infer the mean connectiv-
ity ME and MI from the mean covariances. However, we
performed a number of simplifications (1 − M)−1 ≈ 1 in cal-
culating the effective noise [see, e.g., Eq. (33)] to arrive at
Eq. (35). Therefore, the inference of ME and MI based on
measured mean covariances is expected to be less accurate
and would potentially require a more careful mathematical
treatment.
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