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Gene Expression Tradeoffs Determine Bacterial Survival and Adaptation to Antibiotic Stress
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To optimize their fitness, cells face the crucial task of efficiently responding to various stresses. This
necessitates striking a balance between conserving resources for survival and allocating resources for growth
and division. The fundamental principles governing these tradeoffs is an outstanding challenge in the physics
of living systems. In this study, we introduce a coarse-grained theoretical framework for bacterial physiology
that establishes a connection between the physiological state of cells and their survival outcomes in dynamic
environments, particularly in the context of antibiotic exposure. Predicting bacterial survival responses to
varying antibiotic doses proves challenging due to the profound influence of the physiological state on critical
parameters, such as the minimum inhibitory concentration (MIC) and killing rates, even within an isogenic cell
population. Our proposed theoretical model bridges the gap by linking extracellular antibiotic concentration
and nutrient quality to intracellular damage accumulation and gene expression. This framework allows us to
predict and explain the control of cellular growth rate, death rate, MIC, and survival fraction in a wide range of
time-varying environments. Surprisingly, our model reveals that cell death is rarely due to antibiotic levels being
above the maximum physiological limit, but instead survival is limited by the inability to alter gene expression
sufficiently quickly to transition to a less susceptible physiological state. Moreover, bacteria tend to overexpress
stress response genes at the expense of reduced growth, conferring greater protection against further antibiotic
exposure. This strategy is in contrast to those employed in different nutrient environments, in which bacteria
allocate resources to maximize growth rate. This highlights an important tradeoff between the cellular capacity
for growth and the ability to survive antibiotic exposure.

DOI: 10.1103/PRXLife.2.013010

I. INTRODUCTION

Bacteria must regularly cope with a diverse set of harsh
environments in their natural habitats. In unpredictable con-
ditions, cells must balance the competing objectives of
replication and protection against stress. Previous work has
focused on identifying the molecular players, which control
the bacterial stress response and understanding how specific
genes confer protection against specific stressors [1–4]. In
addition, the role of phenotypic heterogeneity and population-
level bet hedging strategies in the bacterial stress response
have been studied [2,5–7]. However, the fundamental prin-
ciples governing the tradeoffs between expression of these
genes and genes needed for growth is an outstanding question.

Antibiotic exposure is one such pertinent environmental
stressor. Antibiotics are often produced by competing mi-
crobes [8,9], and are commonly used in the treatment of
human infections [10]. Systems-level changes to bacterial
physiology induced by antibiotic exposure, such as changes
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to cellular growth rate [11–14], gene expression [6,15–17],
and cell morphology [18–21] have been well characterized.
As a result, much is known about the proximate causes
of antibiotic action, but vastly less is known about how
these causes ultimately lead to bacterial cell death, and how
cell death is abated by systems-level changes to cell phys-
iology [22]. Furthermore, killing efficiency is not solely
dependent on antibiotic dose, but on many other factors in-
cluding the environment and the physiological state of the cell
[Fig. 1(a)]. As such, to understand bacterial stress response
strategies and to predict antibiotic efficacy in different en-
vironments, it is necessary to link environment not only to
growth physiology, but also to damage accumulation and cell
viability.

Previous work has shown that death rate increases approx-
imately linearly with growth rate, but that the sensitivity of
death rate to changes in growth rate depends significantly on
environment and metabolic state [17,23–25]. Many mathe-
matical models have been developed to link antibiotic dose
to growth rate [13,26–28], but little has been done to connect
growth physiology mechanistically to cell survival outcome.
A recent work [17] identified a general stress-response sector
in E. coli, whose expression reduces death rate. However,
many questions remain unanswered: how is resource alloca-
tion to stress protein production mechanistically linked to the
environment, and what specific effects does it have on cell
physiology to mitigate antibiotic-induced death?
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FIG. 1. Coarse-grained model for cell growth and death in dynamic antibiotic environments. (a) The survival outcome of a bacterial
population exposed to antibiotics is heavily dependent on the preshift environment through its influence on the physiological state of the cell.
(b) Schematic of coarse-grained model of bacterial physiology. Nutrients (c) are imported by metabolic proteins (P) and converted to amino
acids (a), which are then consumed by ribosomes (R) to produce proteins. Antibiotics (b) enter the cell and bind their intracellular target (D)
to produce damage, which can be repaired by stress proteins (S). (c) By dynamically regulating the fraction of the total translational flux
devoted to each proteome sector i, fi, in response to changes in a and U triggered by environmental changes, the cell alters its proteome
composition, thus altering its susceptibility to further antibiotic challenge. (d) In our model framework, the minimum inhibitory concentration
(MIC) is defined as the minimum value of b which causes U to cross the critical damage threshold (U = U0). (e) Model successfully explains
antibiotic-induced growth reductions for different values of b. Gray region indicates antibiotic application. Experimental data are of E. coli
BW25993 cells in LB exposed to 8 (green) and 32 (blue) µg/ml of ciprofloxacin from Ref. [14] (see Fig. S3 [29] for data analysis details). See
Table I for a list of model parameters, and Fig. S5 [29] for the effects of parameter variations on growth rate dynamics.

To gain a systems-level understanding of how cellular
stress response and growth are connected to the environ-
ment and antibiotic killing efficiency, we have developed a
multiscale model for cell growth and death, which coarse
grains cellular physiology into a limited number of state vari-
ables and kinetic parameters to predict both single-cell and
population-level behavior. Specifically, our model connects
extracellular antibiotic concentration and nutrient quality to
the stochastic dynamics of damage accumulation and pro-
teome allocation to predict bacterial growth rate, death rate,
and survival fraction in a wide range of time-varying environ-
ments.

We apply our model to predict changes in minimum in-
hibitory concentration (MIC) of antibiotics as a function of
the environment in response to replication-targeting bacte-
ricidal antibiotics. We find that cells with reduced growth
rates caused by stressful preshift environments are able to
survive higher concentrations of antibiotics (increased MIC),
in agreement with recent experimental data [17]. Our model
predicts that this nonintuitive relationship between growth and
death is a consequence of the dynamics of damage accumula-
tion and removal, which are heavily dependent on the initial
physiological state of the cell. Specifically, cells which are
preexposed to low levels of antibiotics overexpress genes that
can repair antibiotic-induced damage. Thus, when exposed to
higher levels of antibiotics, they can more quickly repair new

damage and survive, despite starting with an initially higher
level of damage.

Our model predicts that there is a maximum antibiotic dose
above which bacteria cannot survive unless through mutation,
regardless of physiological state. However, model analysis
reveals that cell death is rarely due to antibiotic levels reaching
this limit, but instead survival is limited by the inability of
a cell to alter gene expression sufficiently quickly to tran-
sition to a less susceptible physiological state. Our model
highlights a critical gene expression tradeoff between growth
and survival: allocation to stress response pathways is imper-
ative to survive antibiotic challenge, but investment in these
pathways reduces the resources available for growth. Thus,
our model predicts that non-growth-optimal proteome alloca-
tion increases bacterial survival compared to growth-optimal
allocation, a strategy which is preferred in many nutrient en-
vironments [30–32]. This tradeoff between allocation towards
growth and stress response provides an explanation for the
non-growth-optimal allocation observed in E. coli [11,15].

II. RESULTS

A. Resource allocation theory of cellular stress
response in dynamic environments

Stress-induced cell death can be a consequence of many
factors. For bactericides in particular, cell death is not
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simply a result of target-specific inhibition. Instead, primary
drug-target interactions perturb various metabolic pathways
to induce an array of downstream effects, which can cause
damage to both DNA and proteins [22,33–36]. To combat
such damage, bacteria can induce both a nonspecific and
specific stress response in which many similar proteins are up-
regulated in response to nutrient, antibiotic, or osmotic stress
[17,35,37,38]. Bactericide-induced damage can be repaired by
such proteins, e.g., SOS proteins in the case of DNA damage
[1], allowing bacteria to survive and grow despite antibiotic
challenge. Importantly, over short timescales survival is medi-
ated by changes in gene expression, and is not due to genetic
mutations [17,39].

Here we model physiological effects of bactericidal antibi-
otics, specifically those targeting DNA replication. Motivated
by the common mechanism of cellular death induced by
bactericides, we propose a coarse-grained model of damage
accumulation and removal and connect it to cell physiology to
predict bacterial growth and survival [Fig. 1(b)]. Specifically,
the dynamics of the damage concentration U carried by a
single cell can be expressed as

dU

dt
= αφDb − βφSU − Uκ, (1)

where b is the antibiotic concentration, which produces dam-
age at a concentration specific rate α when bound to its target
protein D, e.g., DNA gyrase in the case of quinolones [40].
Here φD represents the mass fraction of D, and U represents
the total concentration of damage incurred by a single cell,
which may include factors such as misfolded proteins, mem-
brane and DNA damage, or other contributors to cell death.
This coarse-grained approach to modeling cell damage has
recently proved successful in the context of bacterial aging
[41]. Damage is actively removed by stress proteins S, with
mass fraction φS , at a rate β, and is also diluted with growth
rate κ . Cell death occurs when damage accumulation exceeds
a critical level U0, such that U (t = τdeath) = U0. Mathemati-
cally, this threshold is the value of U above which the fixed
point of the dynamical system, corresponding to survival, is
no longer accessible in the deterministic model (discussed in
more detail is Sec. II C). We assume that the dynamics of
damage accumulation are much slower than the dynamics of
antibiotic import and target binding, and thus model changes
in b as instantaneous.

Critically, bacteria alter φS and φD in response to envi-
ronmental changes. Thus, we connect damage accumulation
dynamics to changes in gene expression following our re-
cently introduced framework for dynamic proteome allocation
[42]. In brief, cells import and convert nutrients to amino
acids, with mass fraction a, via metabolic proteins, with
protein mass fraction φP. Amino acids are consumed by trans-
lating ribosomes, with mass fraction φR, to synthesize all
proteins, including themselves. As a result, φR sets the cellu-
lar growth rate, specifically κ = κt (a,U )φR, where κt (a,U )
is the translational efficiency. Importantly, the translational
efficiency is reduced under conditions of limited amino acid
availability and elevated damage levels, in order to capture
the effects of damage on the translational machinery (see
Appendix A for details). The dynamics of each sector are

given by

dφi

dt
= κt (a,U )φR[ fi(a,U ) − φi], (2)

where i = [P, R, S, D, Q] and fi(a,U ) denotes the fraction of
total cellular protein synthesis flux devoted to sector i, and can
be a function of a and/or U . We impose two constraints on the
model motivated by E. coli proteomics data. First, a significant
portion of the proteome is invariant to environmental pertur-
bations [43], thus we define the housekeeping sector such that
φQ = fQ = const., and∑

i �=Q

fi = 1 − fQ = φmax
R , (3)

where φmax
R is the upper limit to the allocation fraction devoted

to ribosomal proteins. Second, steady-state proteomics data
[16] revealed that the molecular targets of many antibiotics,
which inhibit DNA replication, such as DNA gyrases, are
coregulated with ribosomal proteins under carbon, nitrogen,
and translation limiting regimes (Fig. S1 [29]). As this work
focuses on replication-targeting bactericides, we assume that
the target sector, φD, is coregulated with the R sector, such that
φD ∝ φR. These constraints reduce the number of independent
sectors to two, namely φR and φS .

Cells exhibit a general stress response, which is induced
in response to cellular damage, and is mediated by various
signaling molecules and transcription factors including ppGpp
and RpoS [1,37,38,44,45]. Thus, fS is indirectly activated
by U , and we model its dependence by a simple sigmoidal
function, fS (U ) = φmax

S U 2/(K2
U + U 2), where expression sat-

urates at φmax
S and KU is a constant. Additionally, steady-state

transcriptomic analysis revealed that ribosomal sector expres-
sion is reduced to allow for stress sector expression [17].
As such, the fraction of total synthesis capacity devoted to
ribosomes, fR, is now a function of both a and U , where
the maximum value of fR is reduced as U increases (see Ap-
pendix A for details). When U = 0, fR is chosen to maximize
translational flux at steady state, thus maximizing growth rate
[42,46,47].

Lastly, the dynamics of the amino acid mass fraction are
given by the difference in the metabolic and translational
fluxes, specifically

da

dt
= κn(a)

(
φmax

R − φR − φS − φD
) − κt (a,U )φR. (4)

Our model now has two key kinetic variables: a and U
[Fig. 1(c)]. a acts as a readout of flux imbalance, driving
metabolic and ribosomal proteome reallocation in response to
nutrient changes. Increase in U caused by antibiotic applica-
tion drives stress protein expression, which in turn can impact
allocation to the other sectors.

Predicting minimum inhibitory concentration. Our model
can be utilized to predict the minimum inhibitory concentra-
tion (MIC), typically defined as the antibiotic concentration
threshold beyond which a bacterial population can experience
complete extinction, while concentrations below the MIC al-
low the population to persist [39,48]. Thus, for a given preshift
environment, the MIC can be predicted using our framework
by identifying the minimum postshift antibiotic concentration
b, which results in cell damage accumulating to the critical
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TABLE I. Model parameters. See Appendix A for more details.

Parameter Description Value Figure number

φmax
R Maximum flux allocation to ribosome production [12] 0.55 All

at Translation attenuation threshold [47] 10−4 All
an Feedback inhibition threshold [47] 10−3 All
κ0

t (h−1) Translational efficiency rate constant, strain specific, fitted 2.7 2–6
3.5 1

κ0
n (h−1) Nutritional efficiency rate constant, nutrient specific, calculated 5.5 2–6

1.12 1
α/U0 ( ml

μg h ) Normalized damage production rate constant, nalidixic acid, fitted 1.54 2–4, 5(d), 6
Normalized damage production rate constant, ciprofloxacin, fitted 0.13 1, 5(a)–5(c)

β (h−1) Damage removal rate constant, nalidixic acid, fitted 10.5 2–4, 5(d), 6
Damage removal rate constant, ciprofloxacin, fitted 5.29 1, 5(a)–5(c)

Ku Value of half-maximal expression, strain specific, fitted 0.076 2–6
0.030 1

φmax
S Maximum flux allocation to stress protein production, antibiotic specific, fitted 0.33 2–4, 5(d), 6

0.18 1, 5(a)–5(c)
σ Noise amplitude, fitted 0.015 5, 6
μX (h−1) Division protein degradation rate [42] 0.6 5, 6
γα (μm−3) Division protein production parameter [42] 4.5 5, 6
γβ (μm−3) Division protein production parameter [42] 1.1 5, 6

threshold, U (t ) = U0 [Fig. 1(d)], which corresponds to cell
death. This value can be obtained by solving the constrained
optimization problem:

MIC ≡ min b s.t. max U � U0, (5)

where U denotes the vector of damage values across time (see
Appendix B for more details).

Taken together, Eqs. (1)–(4) define our model. This model
can be fit well to experimental data (see Table I for a list
of parameters), and yields extremely accurate predictions
for growth rate dynamics for other antibiotic concentrations
above and below the MIC not used in fitting (Fig. 1(e)
and Fig. S2(a) [29]). Critically, when antibiotics are re-
moved, growth rate recovers to its preshift value for antibiotic
concentrations below the MIC, but does not recover for con-
centrations above the MIC (Fig. S2(b) [29]).

B. Growth rate control under stress

Bacteria must quickly alter gene expression to adapt to
environmental stress. Our model can be utilized to predict
the dynamics of damage accumulation, proteome allocation,
and growth rate in response to time-varying antibiotic stress
[Fig. 2(a)]. Antibiotic application leads to accumulation of
damage, causing a sharp increase in allocation to stress pro-
tein production. Allocation to stress proteins largely comes at
the expense of ribosomal allocation. This reduction in φR, in
combination with the increase in U , results in a growth rate
reduction [Fig. 2(a)].

Furthermore, the model is able to qualitatively capture
experimentally observed [17] relationships between proteome
allocation and growth rate across both nutrient and antibiotic
conditions. Specifically, the model predicts that ribosomal
sector allocation decreases with growth rate when growth
is reduced either through a reduction in nutrient quality or
through an increase in antibiotic concentration [Fig. 2(b)]. In

contrast, stress sector expression is not affected by changes
to nutrient quality, which reduce growth rate, but sector al-
location increases with decreasing growth rate when growth
is reduced by increasing the applied antibiotic concentration
[Fig. 2(c)].

C. Effect of preshift environment on MIC

Interestingly, when comparing the relationship between
preshift growth rate and MIC, the model predicts very dif-
ferent behavior based on the preshift environment [Fig. 3(a)].
Decreasing the growth rate by decreasing the nutrient quality
has little impact on the MIC. However, decreasing the growth
rate by exposure to low levels of preshift antibiotic result in
significant increases in MIC, with higher preshift doses re-
sulting in higher MIC values. These predictions quantitatively
capture recent experimental results [17], and highlight the
important role the environment plays in determining bacterial
fitness in response to antibiotic challenge.

Our model predicts that these fitness gains by bacteria
preexposed to antibiotics are explained by the differences
in proteome allocation and their impact on the dynamics
of damage accumulation. Cells in different nutrient
environments initially do not carry damage, and so the
stress sector is not expressed [Figs. 2(c) and 3(b)]. As a
result, when antibiotics are applied, cells quickly accumulate
damage regardless of initial growth rate, resulting in very
similar values of MIC [Figs. 3(a) and 3(b)]. This can be seen in
Eq. (1), where when φS is small, the dynamics of U are largely
dictated by b (the smaller impact of φD will be discussed in
later sections). In contrast, cells exposed to increasing initial
levels of antibiotic both have increasing initial damage levels
[Fig. 3(c)], but also have increased stress sector expression
[Fig. 2(c)]. This yields the counterintuitive result that cells
that initially have more damage are able to withstand higher
antibiotic concentrations, resulting in an increased MIC
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FIG. 2. Proteome reallocation and damage accumulation predicts bacterial growth rate across stress conditions. (a) Top to bottom:
Antibiotic concentration, stress sector mass fraction, antibiotic target sector mass fraction, cell damage, and growth rate (κ) dynamics in
response to stepwise application of replication-targeting bactericide at t = 1 h. (b), (c) Ribosome and stress sector mass fraction as a function
of growth rate for different nutrient environments (blue) and for different concentrations of preshift antibiotic exposure (green). See Table I for
a list of parameters.

[Figs. 3(a) and 3(c)]. Again this can be explained in terms of
the dynamics of U : Slower-growing cells have higher initial
values of φS , thus when additional antibiotics are applied,
the damage removal rate is significantly higher, resulting in a
higher value of b required for U to go above U0.

An important prediction of this model is that the dynamics
of damage accumulation and removal dictate survival, and that
these dynamics are heavily influenced by the initial physiolog-
ical state of a cell. Consequently, cell fate can be determined
by considering a cell’s position in the φS-U phase space imme-
diately before an antibiotic shift. For most environments, there
exists only one positive real steady-state solution of the system
for a given antibiotic concentration, b, corresponding to a
stable fixed point, which describes the steady-state physiology
of surviving bacteria (growth bistability is predicted to occur
only in very poor nutrient and high antibiotic environments,
see Appendix C). Critically, this fixed point is not accessi-
ble from all regions of phase space. The trajectories of cells
characterized by high damage levels and/or low stress sector
expression will diverge away from the fixed point, resulting in
cell death when U = U0 [Fig. 3(d)]. Only cells with elevated
values of φS and/or low values of U will have trajectories,
which arrive at the fixed point, corresponding to survival
[Fig. 3(d)].

Above a threshold antibiotic concentration bmax, all fixed
points become imaginary. This transition corresponds to the
maximum survivable antibiotic concentration without muta-
tion, and is given by bmax = βφmax

S

α(φmax
R (1+K2

U )−φmax
S )

. This value is
much higher than concentrations typically required to cause

cell death, as this fixed point is almost entirely inaccessible.
Thus, our model reveals that cell death is rarely due to antibi-
otic levels being above the maximum physiological limit, but
instead survival is limited by the inability to transition to the
appropriate physiological state.

D. Non-growth-optimal resource allocation
promotes bacterial survival

As shown in the previous section, a cell’s survival is
heavily dependent on the preshift environment, i.e., its initial
position in the φS-U phase space. As a result, the specific way
bacteria allocate resources in response to antibiotic exposure,
and thus alter their position in φS-U space, has a significant
impact on surviving additional increases in antibiotic level.
For this reason, we were interested in comparing our proposed
model to other potential resource allocation strategies. Bacte-
ria are known to allocate resources to maximize growth rate
in many different nutrient environments [30,46,47], and so we
compared our model to the growth-optimal strategy.

The growth-optimal strategy was implemented by comput-
ing the growth-optimal proteome allocation [subject to the
constraints of Eq. (3)] for each environment, using these val-
ues to set the allocation fractions fi=[P,R,S,D]. Figure 4(a) shows
stress protein expression as a function of damage level for
both resource allocation strategies. Evidently, our proposed
model significantly overexpresses stress proteins compared
to the growth-optimal model for low and moderate dam-
age levels. This result is consistent with experimental results
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FIG. 3. Preshift environment heavily influences damage accumulation dynamics and survival. (a) Minimum inhibitory concentration (MIC)
as a function of preshift growth rate under nutrient limitation (blue), and growth inhibition via low levels of preshift antibiotic (green), as
computed from Eq. (5). Experimental data are from from Ref. [17] and are of E. coli NCM3722 cells grown in different sugars or exposed to
different amounts of the bactericidal antibiotic TMP, before the MIC of nalidixic acid was measured. Model behavior is robust to parameter
choice (see Fig. S6 [29]). (b), (c) Example trajectories of growth rate and damage accumulation for decreasing nutrient quality (b) and
increasing preshift antibiotic concentration (c). (d) Phase portrait in φS-U plane with two example trajectories corresponding to preshift
antibiotic exposure (green) and no exposure (blue). Green dots denote starting position, and red dot and X denotes fixed point and cell death,
respectively. See Table I for a list of parameters.

showing that E. coli resource allocation is not growth-rate
optimal when exposed to replication-targeting bactericides
[11], but also raises the question, are there any potential fitness
advantages conferred by this nonoptimal resource allocation
strategy? To answer this, we computed the predicted MIC
values for the growth-optimal strategy in a range of preshift
antibiotic environments. In all environments tested, the MIC
is significantly reduced compared to the non-growth-optimal
model [Fig. 4(b)]. Thus, our model suggests that cells trade
reduced growth for increased survival chances in bactericidal
environments.

To understand how the overexpression of φS results in an
increased MIC, we can again consider cell state dynamics
in the φS-U phase space. With increasing antibiotic concen-
tration b, the region in which the fixed point is accessible
shrinks. Specifically, the boundary separating survival from
cell death shifts upwards in the φS-U plane [Fig. 4(c)]. Thus,
by overexpressing φS at low levels of b, cell survival becomes
more resilient to further increases in b. Conversely, in the
growth-optimal model, stress sector expression remains sig-
nificantly lower for the same b value, positioning it much

lower in the phase diagram. Here, even slight increments in b
lead trajectories to be absorbed towards the boundary U = U0

[see Fig. 4(c)], causing cell death.

E. Stochastic model of damage accumulation connects
single-cell physiology to population-level behavior

Stress-induced cell death in an isogenic bacterial pop-
ulation is inherently stochastic [2,5]. When exposed to
bactericidal antibiotics in particular, a significant fraction
of bacteria die at sub-MIC concentrations, highlighting the
stochastic nature of antibiotic killing. Furthermore, the frac-
tion of surviving cells decreases in a dose-dependent manner
[14,39]. Our deterministic theory is limited to binary out-
comes, namely a population either entirely survives or is
completely eradicated, and so is unable to capture these
phenomena. Therefore, to explain population-level behav-
ior induced by bactericides, we must include the effects of
stochasticity on cell death. In our model, cell death is ulti-
mately determined by damage accumulation to the threshold
level. Many factors can contribute to stochasticity in this
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FIG. 4. Non-growth-optimal physiology increases bacterial survival. (a) Steady-state stress sector expression as a function of cellular
damage for proposed model (blue) compared to growth-optimal allocation (black). For U � 0.15 growth-optimal allocation to stress protein
expression remains at 0 because damage accumulation is prevented solely by growth dilution. (b) Predicted MIC for proposed model (blue)
and growth-optimal allocation (black), with identical conditions as Fig. 3(a). (c) Cell outcome phase diagram for two values of b. Shaded
regions indicate positions in phase space corresponding to cell death, whereas white indicates survival. Example trajectories from proposed
model (blue) and growth optimal allocation (black), where dashed lines correspond to b = 7, and solid lines indicate b = 5. See Table I for a
list of parameters.

process, including noise in gene expression, antibiotic import,
and damage removal. As such, we choose to coarse grain
the noise in damage accumulation and reformulate the de-
terministic dynamics of U in terms of a Langevin equation,
yielding

dUt = (αφDb − βφSUt − Utκ )dt +
√

2σdWt , (6)

where Wt denotes a Wiener process with variance σ 2. Example
trajectories using this framework are given in Fig. 5(a), and
show that cell death can occur even when the deterministic
trajectory remains well below the critical damage thresh-
old. Importantly, as the average damage level approaches the
threshold, smaller deviations away from the mean are required
for a cell to die, thus increasing the probability of death.
More formally, Eq. (6) can be written in terms of a poten-
tial function, and the risk of death and survival fraction can
be approximated as a function of antibiotic concentration in
our model from the first-passage time of U above U0 (see
Appendix D). Using the best-fit strain and antibiotic-specific
parameters from the deterministic model, σ can be fit to
yield good agreement between theory and data for experi-
ments where survival fraction is not impacted by division rate
[Fig. 5(b)].

Although our stochastic model can capture the decrease
in survival fraction with increasing antibiotic concentration
seen experimentally, it does not take into account replication
of surviving bacteria. Thus, to fully capture population-level
behavior, we must both model single-cell death and division
dynamics, which requires adding rules for division. To this

end, we add a new sector, X , which regulates cell reproduction
using rules for division and proteome allocation from our pre-
vious work (detailed in Ref. [42]). This allows us to simulate
populations of cells in complex time-varying environments,
with population dynamics governed by single-cell death and
division events.

Using this stochastic multiscale model, we simulated
single-cell trajectories for a population of cells, tracking the
total number of living and dead cells over time in response
to antibiotic application [Fig. 5(c)]. We found a significant
portion of the population died at antibiotic concentrations be-
low the MIC due to stochastic damage accumulation above the
critical threshold, while a surviving subpopulation continued
to grow and divide, in agreement with experimental observa-
tions [14]. Importantly, once U = U0 the cell dies and damage
cannot return to the mean value. Thus this absorbing boundary
condition allows for the creation of two stable subpopulations
defined by cell viability.

We calculated the fraction of surviving cells after sim-
ulating different time intervals of antibiotic exposure for
increasing sub-MIC antibiotic concentrations, using the pre-
vious best-fit parameters. Not surprisingly, shorter exposure
resulted in a higher survival fraction, with survival fraction
stabilizing after several hours of exposure [Fig. 5(b)]. The
dependence of exposure time on survival fraction is antibiotic
specific, because it is set by the dynamics of damage accumu-
lation specific for each drug, thus highlighting the necessity of
considering exposure time when assessing killing efficiency.
The fraction of surviving cells decreased with increasing
antibiotic concentration, however, the survival fraction was
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FIG. 5. Stochastic model captures population-level behavior. (a) Representative trajectories of cell damage in response to antibiotic
application at t = 2 h. At sub-MIC concentrations, the deterministic dynamics (black) remain below U = U0, but in the stochastic case,
both survival outcomes are possible, with some cells surviving (blue) and others dying (green). (b) Survival fraction of a bacterial population
exposed to various concentrations of antibiotic, relative to the MIC. Solid line denotes theoretical prediction from first-passage time of U above
U0, dotted lines denote population simulation results for different durations of antibiotic exposure. Experimental data are from Ref. [39] and
are of E. coli NCM3722 cells in LB exposed to ciprofloxacin, determined via plating efficiency. Model behavior is robust to parameter choice
(see Fig. S7 [29]). (c) Population dynamics for bacteria exposed to antibiotics at t = 3 (dashed line), initialized with 300 cells. Following
a division event, both resulting daughter cells were simulated. For each cell if U � U0, the cell was removed, corresponding to cell death.
(d) Death rate of E. coli in 10 µg/ml nalidixic acid, defined as the inverse of the time required for 90% of the initial population (4000 cells) to
be eliminated, as a function of preshift growth rate, normalized to the death rate in glucose. Solid lines indicate our proposed model, dashed
line indicates growth-optimal resource allocation model. Data from Ref. [17]. See Table I for a list of parameters.

always greater than that predicted by the single-cell theory
[Fig. 5(b)]. This is because sub-MIC, surviving cells are able
to continue to grow and divide, thus inflating the number of
living cells.

F. Population-level death rates are predicted
by single-cell physiological state

To assess how the preshift environment and cellular
stress response affects bacterial death dynamics, we used
our multiscale model to simulate cell population dynamics
in response to antibiotic exposure above the MIC. Here, to
facilitate comparison with experimental data [17], we defined
the death rate as the inverse of the time required for 90% of
the initial population to be eliminated (1/t90). Interestingly,
in all cases death rate decreased with decreasing growth rate,
with cells preexposed to low levels of antibiotic having a
lower death rate than those in a poor nutrient environment
with the same growth rate [Fig. 5(b)].

As with the predictions for the MIC, the reduction in
death rate for cells preexposed to low levels of antibiotic
is largely explained by the increase in stress protein ex-

pression causing a reduced rate of damage accumulation
[Fig. 3(b)]. However, the decrease in death rate for cells in
poor nutrient conditions is caused by a decrease in concen-
tration of the antibiotic target, φD. This can be understood
by considering Eq. (1) and bearing in mind that, since we
are considering gyrase-targeting antibiotics, φD ∝ φR, and
φR decreases with decreasing nutrient-imposed growth rate
[Fig. 2(b)]. Consequently, slower-growing cells produce less
damage [Fig. 3(b)]. As all cells initially have no damage,
and thus no stress protein expression, and cell division is
greatly reduced in all cases regardless of nutrient quality,
differences in damage production dominate the dynamics of
damage accumulation, and thus death rate. Importantly, we
also simulated death dynamics using the growth-optimal re-
source allocation strategy, and found that death rates were
significantly higher for this allocation strategy compared to
our proposed model, and did not match the experimental
data [Fig. 5(d)]. In fact, death rate increases at low preshift
antibiotic levels in the growth-optimal model, as cells in this
regime initially carry more damage, but do not induce a
stress response [Fig. 4(a)]. This further supports the notion
that bacteria utilize a non-growth-optimal proteome allocation
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FIG. 6. Proteome reallocation confers mutation-independent adaptation. (a) Population dynamics from single-cell simulations for bacteria
under pulsatile antibiotic exposure above the MIC, initialized with 100 cells. Population recovers and surpasses initial size after four pulses.
See Table I for a list of parameters. (b) Schematic depicting phenotypic switch model for population dynamics in time-varying environment.
In response to antibiotic application (b), susceptible cells alter their gene expression to become more resistant at rate u, at the cost of a reduced
growth rate. Upon antibiotic removal, cells switch back at rate v. See Appendix E for more details. (c) Phenotypic switch model can capture
the adaptation to pulsatile exposure seen in (a).

strategy in order to increase survival chances under antibiotic
challenge.

G. Differing timescales of stress exposure and proteome
reallocation enable mutation-independent adaptation

With our model able to capture experimentally observed
growth rate, gene expression, and death dynamics, we then
tested the model in more complex time-varying environments,
focusing on pulsatile antibiotic exposure. We simulated a
bacterial population growing in rich media subjected to re-
peated bactericide application. Interestingly, we found that
for concentrations above the MIC of the initial population,
population size recovered to its initial value after several
pulses and then surpassed it as cells continued to proliferate
[Fig. 6(a)].

These results identify a short-timescale, mutation-
independent, adaptive response to bactericidal antibiotic
exposure. Initially, antibiotic-induced damage accumulation
occurs quickly, resulting in high rates of cell death. However,
damage accumulation also causes bacteria to increase φS

expression (Fig. S4 [29]). As a result, cells that survive
the initial pulse are better able to withstand subsequent
exposure, resulting in an increased MIC and decreased
death rate amidst future antibiotic challenge. Importantly,
when antibiotics are removed, bacteria again reallocate their
proteome to maximize growth, resulting in a decrease in
φS . Consequently, the observed adaptation is a result of the
difference in timescales of antibiotic application and proteome
reallocation. Specifically, when reallocation is slower than
the time period of application, surviving cells will on average
have a higher value of φS upon reexposure compared to
cells one period prior. As a result, the physiological state
of surviving cells is better able to combat the next round of
antibiotic application, thus yielding a higher survival fraction,
in agreement with experimental observations [49].

Simulations in time-varying environments again highlight
the importance of the physiological state of the cell in deter-
mining antibiotic killing efficacy. In such environments, this
altering of physiological state can be modeled as a phenotypic
switch between two subpopulations [Fig. 6(b)], a framework

that has been used successfully in pharmacodynamics (PD) to
model resistance evolution [50], as well as in modeling bacte-
rial persistence [6]. Critically, unlike previous work, here sus-
ceptibility is not altered via mutations or persister formation,
but due to changes in gene expression (sector allocation) in
growing cells (see Appendix E for full model description and
Table II for a list of parameters). Using this framework, we
constructed a population-level description of our multiscale
model, which was able to reproduce the observed adaptive
behavior [Fig. 6(c)]. Importantly, this adaptive behavior
was mitigated when proteome reallocation after antibiotic
removal was accelerated [Fig. 6(c)], demonstrating that slow
phenotypic switching can facilitate adaptation to pulsatile
environments.

III. DISCUSSION

We have developed a multiscale model for cell growth
and death, which connects extracellular antibiotic concen-
tration and nutrient quality to bacterial physiology, allowing
us to quantitatively capture the observed control of growth
rate, death rate, minimum inhibitory concentration (MIC), and
survival fraction across a wide range of environments. Al-
though the model has been derived based on data from E. coli
under replication-targeting bactericides, we expect the theo-
retical framework of proteome allocation theory and damage

TABLE II. Model parameters for phenotypic switching model.

Parameter Value

κmax 1
κmin −10
n 2
c 0.25
MICS 1
MICR 2.15
umax 0.2

v
high
max 0.85

vlow
max 0.2
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accumulation to generalize to other environmental stressors
and other microorganisms. Using proteomics data in conjunc-
tion with MIC assays for a particular organism and drug pair,
the various proteomic and kinetic parameters can be eluci-
dated in our model, allowing for quantitative prediction of
growth rate control and death rate in complex time-varying
environments.

Our model reveals that cell death seldom occurs due
to antibiotic levels exceeding the maximum physiological
tolerance, but rather, cell survival hinges on the ability to tran-
sition to the appropriate physiological state. Consequently, the
MIC of a bacterial population, typically assumed to remain
constant unless raised by mutations [51], can be signifi-
cantly altered by manipulating its physiological state through
environmental changes. In addition, our model brings under-
standing to how changes in gene expression enable cellular
adaptation in fluctuating environments. This is extremely
pertinent over short timescales, when resistant mutations have
yet to accumulate. As a result, our model has direct clin-
ical relevance, as it allows for quantitative prediction and
understanding of bacterial growth and death in time-varying
nutrient and antibiotic environments at both the single-cell and
population levels.

Furthermore, our model predicts that when exposed to
bactericides, bacteria tend to overexpress stress response path-
ways at the expense of growth. This strategy enhances their
resilience to future antibiotic challenge but comes at the
cost of growth potential. This strategy highlights an impor-
tant gene expression tradeoff that cells must make between
growth and survival. Protection against environmental stress
is expensive, as it requires synthesis of energy-consuming
homeostatic mechanisms and repair processes [52]. Alloca-
tion towards such processes reduces the resources available
for growth. Moreover, in fluctuating environments, rapid
adaptation can confer a fitness advantage. As such, bacteria
must continually respond to environmental changes to exe-
cute a program that balances the needs for both growth and
survival.

Our modeling framework can easily be extended in fu-
ture work to capture other environments and physiological
contexts. The effects of dynamic stressors on drug-resistant
bacteria, which constitute a serious global health problem
[3,4], can be studied by adding an additional proteome sec-
tor corresponding to the expression of resistance-conferring
genes, or by altering the effective damage removal rate con-
stant (β). In addition, our framework could be used to study
the complex and nonintuitive effects of antibiotic combina-
tions [1,53,54]. As our model is able to predict growth and
death dynamics, it is particularly well suited to investigate
temporal interactions between sequentially applied drugs in
order to understand the effects of antibiotic-induced pheno-
typic changes on future drug applications.
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APPENDIX A: MODEL DERIVATION

To connect the physiological effects of bactericidal ap-
plication to the population-level dynamics of cell death, we
propose a coarse-grained process of damage accumulation
and removal and connect it to other cell-level processes.
Specifically, the dynamics of cell damage concentration U
for a single cell can be expressed as dU

dt = αdb − βsU −
Uκ , where b is the antibiotic concentration, which produces
damage at a concentration specific rate α when bound to
its target D, with concentration d . Damage is removed by
stress proteins, with concentration s, at rate β, and is di-
luted by cell growth at rate κ . Cell death occurs when the
damage level exceeds a critical concentration, U (τdeath) =
U0. In many conditions, cell density remains constant and
total protein mass is proportional to the cell’s dry mass
[55,56], thus the concentration of each protein sector i
can equivalently be expressed in terms of mass fraction,
φi. Therefore our equation for damage dynamics can be
rewritten as

dU

dt
= αφDb − βφSU − Uκ, (A1)

where the constants α and β are now mass fraction specific
rates.

A significant number of known bactericides target the DNA
gyrase, thus preventing replication. Steady-state proteomics
data revealed that DNA gyrases are coregulated with riboso-
mal proteins under carbon, nitrogen, and translation limiting
regimes [16]. Thus we assume such coregulation is main-
tained under DNA gyrase antibiotic challenge, such that its
proteome fraction, φD, is proportional to the R sector (φD =
νφR). Therefore Eq. (A1) becomes dU

dt = α̃φRb − βφSU −
Uκ where α̃ = να.

Following our previous model for dynamic proteome al-
location [42], we can connect damage dynamics to changes
in gene expression. Specifically, stress sector dynamics are
given by

dφS

dt
= κt (a,U )φR[ fS (U ) − φS], (A2)

where fS (U ) is the fraction of total cellular protein syn-
thesis flux devoted to stress proteins and κt denotes the
translational efficiency. We assume stress protein expres-
sion is solely dependent on the damage amount, such that
fS (U ) = φmax

S
U 2

K2
U +U 2 . As before [42], κt is reduced by low

levels of a. Importantly, κt is now also reduced by increases
in U to capture the effects of damage on protein produc-
tion. This reduction can be caused by direct inactivation
of ribosomal proteins, as in the case of aminoglycosides
[57], or be caused by indirect effects as is the case for
quinolones, where DNA synthesis inhibition reduces protein
production via a decrease in cellular DNA concentration [28].
Although we choose to model the effects of damage on growth
through the translational efficiency, κt , this can equivalently
be thought of as a growth reduction caused by inactivation
of translating ribosomes, indeed this yields a mathematically
equivalent expression. Thus, κt (a,U ) = κ0

t g(a)(1 − U/U0)
for 0 � U/U0 � 1, where the regulatory function g(a) is de-
fined below. Similarly to Eq. (A2), ribosomal sector dynamics
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are given by

dφR

dt
= κt (a,U )φR[ fR(a,U ) − φR]. (A3)

The rate of change of protein mass is proportional to φR [12],
allowing us to define the growth rate of a single cell as κ =
κt (a,U )φR.

The dynamics of the amino acid mass fraction, a, are given
by the difference in the rate of nutrient import and conversion
of nutrients to amino acids, and the rate of consumption via
translation: da

dt = κn(a)φP − κ , where κn(a) denotes the nutri-
tional efficiency. Using the constraint φR + φP + φS + φD =
φmax

R , this becomes

da

dt
= κn(a)

(
φmax

R − φR − φS − φD
) − κt (a,U )φR. (A4)

To make explicit the dependency of the efficiencies, κn and κt ,
on a, we define two regulatory functions, f (a) and g(a), as
given by Ref. [47]. Specifically, we assume κn = κ0

n (c) f (a)
and κt = κ0

t g(a), where κ0
t is a constant, and κ0

n is a function
of the extracellular nutrient concentration c. The regulatory
functions are then:

f (a) = 1

1 + (a/an)2
, (A5)

g(a) = (a/at )2

1 + (a/at )2
, (A6)

where translation becomes significantly attenuated for amino
acid concentrations below at , and the amino acid supply flux
becomes significantly attenuated by feedback inhibition for a
above an.

Steady-state transcriptomic analysis reveals that ribosomal
sector expression is reduced to allow for stress sector expres-
sion [17]. As such, the fraction of total synthesis capacity
devoted to ribosomes, fR, is now a function of both a and U ,
specifically,

fR(a,U ) = − f ′(a)g(a)
[
φmax

R − fS (U )
]

− f ′(a)g(a) + f (a)g′(a)
. (A7)

When U = 0, fR is chosen to maximize translational flux at
steady-state, thus maximizing growth rate [42].

APPENDIX B: COMPUTING THE MIC

As stated in the main text, the minimal inhibitory concen-
tration (MIC) is defined in terms of our model as:

MIC ≡ min b s.t. max U � U0. (B1)

We take the critical threshold U0 to be constant, allowing
Eq. (1) to be rewritten in terms of the normalized concentra-
tion, Ũ = U/U0, i.e.,

dŨ

dt
= α

U0
φDb − βφSŨ − Ũκ. (B2)

Thus, cell death occurs at Ũ = 1, and the fitting parameter
α/U0, which represents the normalized damage production
rate constant, determines survival.

As a result, we take U0 = 1 and used the normalized
dynamics to solve the constrained optimization problem in
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FIG. 7. A simple line search method converges quickly to a so-
lution for the MIC for a given environment.

Eq. (B1). We use a simple line search method, in which an
initial guess and jump distance are specified, the trajectory of
U is solved via numerical integration of the coupled ODEs
defined in Sec. I, and then the guess and jump distance are
updated each iteration based on the following criteria:

if max U > U0 then
jump ← jump/2.
MICguess ← MICguess − jump.

else
MICguess ← MICguess + jump.

end if

The algorithm typically converges within ten iterations
(Fig. 7).

APPENDIX C: NOTE ON BISTABILITY
AND PROTEOME ALLOCATION

Antibiotic-induced growth bistability has been observed
experimentally in antibiotic-resistant bacteria [4]. Interest-
ingly, due to the nonlinear nature of target protein expression
(φD) as a function of damage (U ), there is a predicted
growth bistability in our model in very poor nutrient and
high antibiotic environments (Fig. 8, top). The stability of
both solutions was confirmed by performing a linear stabil-
ity analysis of the dynamical equations. In such conditions,
faster growing cells carry less damage. Counterintuitively, this
fast growth is achieved by reducing φR and φD expression,
and is not mainly an effect of dilution (Fig. 8, bottom). The
increase in translational efficiency caused by the decrease in
damage accumulation (caused by reduced target expression)
outweighs the decrease in growth caused by reducing ribo-
somal expression. This bistable behavior is not predicted to
occur in any of the environments in which we compare to
experimental data.

APPENDIX D: DERIVATION OF RISK OF DEATH

Here we approximate the risk of death as a func-
tion of bactericidal antibiotic concentration using Kramer’s
approximation for our resource allocation and damage

013010-11



JOSIAH C. KRATZ AND SHILADITYA BANERJEE PRX LIFE 2, 013010 (2024)

5 10 15
0.0

0.2

gr
ow

th
 r

at
e 

(h
−

1 )

MIC

0 5 10 15
antibiotic conc. (μg/ml)

0.1

0.2

ϕ R

FIG. 8. Predicted growth rate (top) and ribosomal allocation
(bottom) bistability. Increased ribosomal expression (gray) corre-
sponds with decreased growth rate (gray).

accumulation model. The model dynamics for damage can be
written as:

dU

dt
= αφDb − βφSU − Uκ +

√
2σξ, (D1)

where ξ denotes Gaussian white noise. Following Ref. [41],
this can be written in terms of a potential function
V (U, t ):

dU

dt
= −∂V (U, t )

∂U
+

√
2σξ, (D2)

where the potential function is

V (U, t ) = −αφD(t )bU + 1
2 {βφS (t ) + κt [a(t )]φR(t )}U 2

− 1
3κt [a(t )]φR(t )U 3. (D3)

We model mortality as the first time when U � 1 after step-
wise application of antibiotic with concentration b. Thus,
death time is a first-passage time of U . To estimate the risk of
death, i.e., hazard rate, we apply the Kramer approximation
[58] for the mean first-passage time:

h(t )|b ≈
√

V ′′(Uss, t )|V ′′(1, t )|
2π

exp

(
−V (1, t ) − V (Uss, t )

σ

)
,

(D4)

where Uss denotes the quasi steady state of the system at time
t after antibiotic application.

In the context of aging, it is usually of interest to calculate
the hazard rate and survival function over time [59]. In con-
trast, here we are interested in understanding how the risk of
death changes with increases antibiotic exposure. In this case,
a cell is most likely to die when damage is at its maximum
value, U ∗, which our model predicts will occur shortly after
antibiotic application. Thus to estimate the risk of death and
survival fraction for a given antibiotic concentration, we de-
fine the hazard rate for a given value of b as:

h̃(b) = max h(t )|b. (D5)

Thus using Eqs. (D3), (D4), and (D5), we arrive at an expres-
sion for the hazard rate in terms of our model parameters:

h̃(b) = A exp

(
αbφ∗

D(1 − U ∗) − 1
2 [βφ∗

S + κt (a∗)φ∗
R](1 − U ∗2) + 1

3κt (a∗)φ∗
R(1 − U ∗3)

σ

)
, (D6)

where the prefactor A is given by:

A = √
[βφ∗

S + κt (a∗)φ∗
R(1 − 2U ∗)]|βφ∗

S − κt (a∗)φ∗
R|. (D7)

Importantly a∗, φ∗
S , and φ∗

D are the amino acid mass fraction
and proteome allocation fractions of the S and D sectors when
U = U ∗, and thus depend on b. Equation (D6) can be solved
numerically and is plotted in Fig. 9.
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FIG. 9. Maximum hazard rate as a function of applied antibiotic
concentration.

This hazard function is related to the survival func-
tion, which is the cumulative probability of remaining alive,
through the relation:

S(b) = exp

(
−

∫ b

0
h̃(B)dB

)
. (D8)

Equation (D8) can be integrated numerically to predict sur-
vival fraction as a function of antibiotic concentration, and
can be fit well to experimental data (Fig. 5).

APPENDIX E: PHENOTYPIC SWITCHING MODEL
OF POPULATION GROWTH AND DEATH

IN PULSATILE ENVIRONMENTS

Here we write a continuum description of population-level
growth and death dynamics in response to pulsatile antibi-
otic exposure. Cells grown in rich media are initially highly
susceptible to bactericide application, characterized by a low
MIC and high death rate [17]. In response to damage ac-
cumulation caused by antibiotics, bacteria alter their gene
expression profile, yielding an increase in φS . As a result,
those that survive the initial pulse are better able to with-
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FIG. 10. Population model reproduces adaptation to pulsatile antibiotic exposure seen in our single-cell resource allocation and damage
accumulation model. (a) Static population does not survive antibiotic exposure above the MIC. (b) Adaptive population can survive and
proliferate by altering its physiological state.

stand subsequent exposure, resulting in an increased MIC
and decreased death rate, at the expense of a reduced growth
rate. This altering of physiological state can be modeled as a
phenotypic switch between two subpopulations, a framework
that has been used successfully in pharmacodynamics (PD)
to model resistance evolution [50], as well as in modeling
bacterial persistence [6]. Critically, unlike previous work, here
susceptibility is not altered via mutations or persister forma-
tion, but due to changes in gene expression (sector allocation)
in growing cells.

PD curves model the effect of drug concentration on net
growth rate of bacteria [50]. In the absence of antibiotics,
bacteria grow at rate κmax, which is set by the nutrient
environment. When antibiotics levels are well above the MIC,
bacteria are killed at rate κmin (κmin < 0). The growth curve
for a given nutrient environment can then be defined as [50]:

κ (b) = κmax − γi(b), (E1)

γi(b) = (κmax − κmin)(b/MICi )n

(b/MICi )n − κmin/κmax
, (E2)

where i = [S, R] denotes susceptible cells (PS) or cells with
increased MIC due to an altered physiological state (PR),
with MICR > MICS , and where n is the Hill coefficient.
We use the notation Pi to stress the fact that they denote
two different physiological states of isogenic replicating
bacteria. The drug-dependent growth rate can then be used to
predict overall population-level dynamics, P(t ), from the two
subpopulations:

dPS

dt
= {1 − u[b(t − τ )]}κmaxPS − γS[b(t − τ )]PS

+ v[b(t − τ )](1 − c)κmaxPR, (E3)

dPR

dt
= {1 − v[b(t − τ )]}(1 − c)κmaxPR

+ u[b(t − τ )]κmaxPS − γR[b(t − τ )]PR, (E4)

P(t ) = PS (t ) + PR(t ), (E5)

where κmax is the susceptible bacterial subpopulation maxi-
mum net growth rate, and c is the growth cost of altering gene
expression to increase resistance. u(b) and v(b) denote the rate
of phenotype switching from PS to PR, and PR to PS , respec-
tively, corresponding to proteome reallocation. For constant
antibiotic exposure, this model reduces to a form, which is
mathematically equivalent to the Type II persister model pre-
sented by Balaban et al. [6], however, here we model two sub-
populations of growing cells and do not consider the forma-
tion of persisters. In Eqs. (E3) and (E4), both u[b(t − τ )] and
v[b(t − τ )] are functions of the antibiotic concentration with
delay τ , such that cells switch from PS to PR at rate umax with
some delay in response to antibiotic-induced damage, and
switch back from PR to PS at rate vmax with some delay when
antibiotics are removed to maximize growth. Specifically,

u(b − τ ) = umax
b − τ

bmax
, (E6)

v(b − τ ) = vmax

(
1 − b − τ

bmax

)
. (E7)

When antibiotics are pulsed at concentrations above the MIC
in a static population, which cannot adapt, the population
will perish [Fig. 10(a)]. If surviving cells can alter their
physiological state to become more resistant to antibiotics,
after several pulses cells are able to adapt and proliferate
[Fig. 10(b)]. Critically, this adaptation occurs only when the
timescale of returning to the susceptible phenotype (set by
vmax) is less than the time period of antibiotic pulsing. This
population-level description closely matches what is seen in
our single-cell simulations (Fig. 6).
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