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The question of whether human living cells in physiological conditions exhibit mechanical resonances has
remained unresolved for more than 70 years. We here construct a theoretical model to predict how these
hypothetical vibration modes of a living cell can modify the stochastic response of a supporting micromechanical
resonator. The key signatures that demonstrate the existence of these vibration modes are then searched for
experimentally. To this aim, single human breast epithelial cells were attached to the surface of compliant small
microcantilevers. Close examination of the frequency spectra of the thermal fluctuations of the microcantilever
over a high-frequency range of 1 kHz–1 MHz revealed anomalies that are consistent with our theoretical
predictions. We identify the stochastic coupling of the first and third vibration modes of the cell with the torsional
and flexural vibration modes of the cantilever, respectively. These mechanical resonances are very broad and
are located at 10–30 kHz and 150–180 kHz, respectively. The analysis of the experiments allows us to obtain
information on the temporal evolution of several physical properties of the cell, in addition to the resonance
frequencies, during the adhesion process—such as the mass, viscoelasticity, and contact area. These results open
multiple avenues in our understanding of single cell mechanobiology, vibrational spectrometry of living cells
and mechanical destruction of cancerous cells by targeting specific cell frequencies.
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I. INTRODUCTION

The question of whether living cells exhibit mechanical
resonances as any solidlike body was raised by Ackerman
during the 1950s [1–3]. He studied the interaction of acous-
tic fields with living cells such as animal erythrocytes and
paramecia, finding that cells break down more easily at
characteristic frequencies that can be related to mechanical
resonances. These works were rapidly forgotten due to the
lack of robust experimental evidence. The question was re-
visited in 2005 by Zinin et al., who developed theoretical
models to calculate the vibrational properties of living cells
and predict the interaction between ultrasound fields and cells
[4,5]. These models predict resonance frequencies associated
to the fundamental quadrupole mode of cells free in fluid
of about 5 MHz for 1 µm diameter bacteria and of about
160 kHz for 9-µm-diameter yeast cells. The expected quality
factors (Qs) of these resonances are very low, 1–7, due to fluid
damping. However, to date, these predictions have not been
confirmed experimentally. Very recent experiments using ul-
trasensitive optomechanical devices have revealed mechanical
resonances of single bacterial cells in vacuum and air [6,7].
In these low-dissipation environments, the fluid damping is
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low and cells exhibit elasticlike behavior. More importantly,
these cells may be dead or in a nonfunctional biological
state. Observation of mechanical resonances of living cells
requires measurements in a culture medium where the cells
are biologically active and they can naturally grow and divide.
However, these environments are highly dissipative due to
the strong interaction of the fluid with the cell wall [5]. In
addition, more complex cells, such as human cells, are highly
heterogeneous, comprising solidlike structures (cytoskeleton,
organelles, and macromolecules) bathed in an interstitial fluid
(cytosol) [8–11]. The mechanical response of the cells is
highly dependent on the frequency, varying from elasticlike to
viscouslike behavior and evolving from uniform dynamics to
more localized dynamics in cell components [12]. Given these
factors, it is uncertain whether complex living human cells in
physiological conditions can sustain mechanical resonances.
However, if these resonances do exist, they could revolu-
tionize our comprehension of single cell mechanobiology,
offering intriguing possibilities in cell fingerprinting and the
utilization of mechanical vibrations to stimulate cell behavior
and selectively eradicate cancerous cells [13]. Indeed, the
impact of low-frequency mechanical vibrations, ranging from
1 to 100 Hz, on cell proliferation, stem cell differentiation, cell
behavior, and cell fate is beginning to be recognized [14–16].

The aim of this work is to definitively answer the question
originally formulated by Ackerman: “Do biological cells ex-
hibit mechanical resonances?” To this aim we attach single
living human breast epithelial cells to the surface of small
microcantileverlike resonators in physiological conditions. In
addition, we develop a theoretical framework to predict the
effect of stochastic coupling between the vibration modes of
the cell and the microcantilever. We then probe the stochastic
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FIG. 1. Theory of the mechanical interaction between a living cell and a micromechanical resonator. (a) 3D cartoon of a cell on the
microcantilever (top). The cantilever oscillation (zr ) is transmitted to the cell (zc ) (bottom). When the cell is infinitely rigid, it oscillates in
sync with the cantilever. However, living cells are soft and viscoelastic, which results in a different oscillation amplitude and a phase lag.
(b) Schematics of the model of the interaction between a vibration mode of the cantilever and the cell. The cantilever vibration mode is
represented as a damped harmonic oscillator loaded by a frequency-dependent complex mass given by the product of the mass of the cell (mc )
and the mass transfer function MTF. (c) Schematic of the mass transfer function of the cell that encloses information on the cell vibration
modes and their coupling with the cantilever vibration modes of the cell through the coefficients φi. (d) Schematic of the first vibration modes
of a sphere attached to a surface obtained by FEM. Azimuthal and spheroidal modes are represented in grey and blue tones, respectively. (e)
Excitation coefficients (φ2

n ) computed by FEM for the cell vibration modes shown in (d) for vertical (top) and tilting oscillation (bottom) of
the contact surface. The data show that tilting oscillation efficiently excites the first vibration mode of the cell with negligible contribution of
the rest of the modes. Similarly, out-of-plane oscillation efficiently excites the third vibration mode of the cell.

fluctuations of the microcantilever in a wide frequency win-
dow between 1 kHz and 1 MHz, searching for the signatures
predicted by the theory that reveal the existence of vibration
modes of the cell.

II. THEORY

We develop a three-dimensional (3D) theoretical model
to predict the effect of a viscoelastic body (the cell) on the
vibrational properties of the cantilever; the model is fully
detailed in the Supplemental Material (SM) [17]. Within the
linear viscoelasticity regime [18], the model demonstrates that
the extraordinary complexity of the problem can be reduced

without loss of generality to a damped harmonic oscillator
representing a vibration mode of the resonator that is loaded
by a frequency-dependent complex mass that can be expressed
as the product of the cell mass, mc, and the mass transfer
function, MTF(ω), given by (Figs. 1(a)–1(c); see Sec. I of the
SM [17]),

MTF =
∞∑

k=1

φ2
k [1 + mcω

2χk (ω)], (1)

where χk (ω) is the mechanical susceptibility of the kth vi-
bration mode of the cell that linearly relates the displacement
to the force in the frequency domain, and φk is the average
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projection of the kth eigenmode displacements within the cell
on the direction of the cantilever motion,

φk = ∫VC

−→ur
−→
�kdV

VC
, (2)

where �ur is a unit vector that represents the direction of motion
of the cantilever vibration mode at the contact between the
cell and the cantilever,

−→
�k is the kth cell eigenmode function,

and VC is the cell volume. Since the eigenmode set
−→
�k forms

an orthonormal basis of the function space of kinematically
admissible displacements in the body, the projection coeffi-
cients satisfy

∑∞
k=1 φ2

k = 1. This condition applied to Eq. (1)
implies that the mass transfer function is 1 for frequencies
much lower than the frequency of the first excitable vibration
mode of the cell and zero for frequencies much higher than
the last excitable mode of the cell.

The essence of the problem is determining an appro-
priate description of the mass transfer function of a living
cell. This requires two steps: (1) calculation of the vibration
modes of the adhered cell and (2) calculation of the coeffi-
cients φ2

k , referred to as excitation coefficients, that determine
which vibration modes of the cell can be coupled to the
cantilever vibration modes. These calculations are performed
by combining our theory with finite element method (FEM)
simulations.

For the sake of simplicity, we assume that the cell behaves
as an isotropic and homogeneous viscoelastic sphere attached
to a surface. The viscoelasticity of the cell is described by
a complex elastic modulus that obeys a power-law behavior,
Ec(ω) = E0(i ω

ω0
)β , where E0 is the elasticity modulus at the

reference frequency ω0, and β is the power-law exponent that
can range between 0 (elastic solid) and 1 (viscous liquid)
[19,20]. In general, the viscoelasticity of the cells is more
accurately described by a weak power-law term with β ≈
0.1−0.3 that dominates for frequencies below approximately
100 Hz and a strong power-law term with β ≈ 0.4−0.95 that
becomes dominant for frequencies higher than approximately
1 kHz [12,21]. For the high-frequency range studied here,
the first term can be neglected. Figure 1(d) shows the first
vibration modes of the cell calculated by the finite element
method (FEM). The modes are here split into azimuthal
vibration modes and spheroidal modes. The azimuthal vibra-
tion modes, which include the second, seventh, and eighth
modes, are characterized by tangential motion without any
change in volume or the center of mass. On the other hand,
the spheroidal modes, which comprise the remaining modes,
are characterized by changes in volume, shape, and/or a net
displacement of the center of mass. Now, we calculate the
excitation coefficients (φ2

n ) of the cell vibration modes for two
classes of cantilever motion: vertical (z axis) oscillation that
is dominant in the flexural vibration modes and tilting oscil-
lation characteristic of torsional vibration modes [Fig. 1(e)].
Azimuthal vibration modes of the cell are not excited by the
cantilever vibration modes as expected from examination of
Eq. (2). Interestingly, the cell fundamental vibration mode,
which is characterized by a net angular displacement of the
cell symmetry axis, can be efficiently excited by the torsional
vibration of the cantilever. Conversely, the cantilever flexural
vibration modes can effectively excite the cell third vibration

mode, which is characterized by an extension or compression
deformation of the cell along the vertical direction. The rest
of the spheroidal modes are negligibly coupled to the flexural
and torsional vibration modes of the cantilever. Hereinafter,
the fundamental and third vibration modes of the cell are
referred to as the bending and extensional vibration modes
of the cell, respectively. Our analysis indicates that these cell
vibration modes can be coupled to the torsional and flexural
vibrations of a microcantilever, respectively. We now analyze
the optimal conditions to observe stochastic coupling between
these cell vibration modes and the cantilever vibration modes.

For the sake of convenience, we split the mass transfer
function into its real part and the minus imaginary part,
i.e., MTF = MTF′ − i MTF′′. The term MTF′ modulates the
“apparent” cell mass that loads the microcantilever, whereas
MTF′′ increases the dissipation of the microcantilever upon
cell attachment. We calculate MTF′ and MTF′′ for power-law
exponents β of 0.4, 0.6, and 0.8 [Fig. 2(a)]. In this highly
damped system, the resonance frequency of the cell (ωc)
is defined as the frequency where cell dissipation is at its
maximum (see Sec. II of the SM [17]). The real part of the
mass transfer function exhibits a sigmoidal shape that goes
from 1 at ω � ωc to 0 at ω 	 ωc passing by 1

2 at ω = ωc.
The transition is broader as the dissipation is higher, i.e.,
as β increases. For β � 0.6, MTF′ increases above 1 before
resonance, making the apparent mass higher than the real
mass, and it turns into negative after resonance, resulting
in negative apparent masses. The minus imaginary part of
the mass transfer function exhibits a Gaussian shape with
maximum at resonance. The peak flattens and broadens as
the dissipation increases. The impact of the mass transfer
function of the cell on the frequency response of a resonator’s
vibration mode is shown in Fig. 2(b). In these calculations,
the resonator quality factor is 3 and the mass ratio between
the cell and the cantilever 0.56, similar to our experimental
values. For β = 0.4, the resonance peak splits into two peaks
when the resonator frequency is about twice the resonance
frequency of the cell. As the resonator frequency increases,
the two peaks separate and the amplitude of the first peak
decreases. As the cell dissipation increases the peak splitting
becomes less visible. For β = 0.6, a shoulder at the left of the
main resonance peak is observed instead of two clear peaks,
whereas for β = 0.8, a peak broadening is only observed. This
analysis indicates that the optimal conditions for observing
the effect of a cell vibration mode are achieved when the first
resonance frequency of the cantilever is moderately higher
than the resonance frequency of the first excitable mode of
the cell. We now estimate the resonance frequencies of the
bending and extensional vibration modes of the cell, which
can be expressed as

ωn = λn
(

a
R

)
R

√
|Ec(ωn)|

ρc
, (3)

where λn is a function of the ratio of the contact radius (a)
to cell radius (R), and ρc is the cell density. The resonance
frequencies of the bending and extensional vibration mode of
the cell are calculated for a radius of 9 µm as a function of
the elasticity modulus for a/R between 0.1 and 0.5 [Fig. 2(c)].
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FIG. 2. Effect of the cell mechanical resonances on the frequency spectra of a micromechanical resonator. (a) Theoretical mass transfer
function (MTF) for a viscoelastic cell assuming that only a single mode of the cell is excited. The cell’s viscoelasticity is described by a
complex elastic modulus that follows a power-law behavior. The graphs show the real (MTF′) and the minus imaginary (MTF′′) parts of the
mass transfer function for power-law exponents β of 0.4, 0.6, and 0.8. (b) Effect of the theoretical mass transfer functions on the resonator
frequency response for different ratios between the resonance frequencies of the resonator and the cell (ωr/ωc). The quality factor of the
resonator is 3 and the cell mass to resonator mass ratio is 0.56, similar to the experiments. (c) Resonance frequencies of the bending and
extensional modes of the cell calculated by FEM. The cell radius is 9 µm and the density 1000 kg/m3. The frequency bands arise from varying
the radius of the contact area a from 0.1 to 0.5 times the cell radius R. The color intensity peaks at a/R = 0.25 and vanishes at 0 and 0.5. The
resonance frequencies of the first flexural and torsional vibration modes of the cantilever used in the experiments are plotted as a reference.

Data on the modulus of elasticity of cells at frequencies signif-
icantly above 10 kHz are limited, but it is estimated to range
from tens to hundreds of kPa. In this range, the frequencies
of the bending and extensional vibration modes are approx-
imately located at the frequency windows of 3–30 kHz and
30–300 kHz, respectively. The frequencies of the first flexural
and torsional vibration modes of the cantilever used in the ex-
periments are of about 15 and 135 kHz, respectively. In these
conditions, weak or negligible coupling is expected between
the first flexural mode of the cantilever and the cell extensional
mode. However, the resonance frequency of the first torsional
mode of the cantilever is well above the expected resonance
frequency of the bending mode of the cell. In these conditions,
it can be expected the effect of this resonance on the frequency
spectra of the cantilever torsional fluctuations.

III. EXPERIMENTAL RESULTS AND MODELING

We describe here the experimental validation of our model
with living human breast epithelial MCF-10A cells. The ex-
periments are carried out with an atomic force microscope
(AFM) mounted on an inverted optical microscope [Fig. 3(a)].
We use small Au-coated silicon nitride microcantilevers,
50 µm long, 20 µm wide, and 270 nm thick to capture single
cells. The microcantilevers are treated with the extracellular

matrix protein fibronectin to promote cell adhesion. The mi-
crocantilever end is positioned onto the center of the selected
cell in the culture dish. It is then brought into contact with
the cell maintaining a force of 3 nN for 10 min to ensure
cell adhesion [22,23]. Subsequently, the microcantilever is
withdrawn with the living cell attached to its surface. The ex-
periments are conducted in a culture medium at 37 ◦C. Optical
microscopy is used to track the position, shape, and size of the
cell [Fig. 3(b)]. After attachment, the cell assumes a spherical
form and can move around the initial attachment point without
exceeding the boundaries of the microcantilever [Figs. 3(b)
and 3(c)]. Simultaneously, the cantilever fluctuations are mon-
itored by the laser beam deflection method, allowing for
independent measurements of the flexural and torsional mo-
tions [24]. Figure 3(d) shows the frequency spectra of the
flexural and torsional fluctuations of the cantilever before and
after the attachment of a MCF-10A breast epithelial cell.
The unloaded cantilever’s spectra display three flexural and
two torsional vibration modes. Upon cell attachment, notable
alterations are observed in the cantilever’s flexural and tor-
sional fluctuation frequency spectra. A prominent change is
the emergence of a broad shoulder at the left side of the
first torsional resonance peak, with its frequency and ampli-
tude increasing over time. This phenomenon aligns with our
theoretical predictions [see Fig. 2(b)], indicating stochastic
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FIG. 3. Experimental realization and data analysis for unveiling mechanical resonances of living human cells in physiological conditions.
(a) Schematic cartoon of the cell capture by the microcantilever. (b) Optical image of a MCF-10A breast epithelial cell adhered on the cantilever
surface after its capture. (c) Scanning electron microscopy of a MCF-10A cell after fixation. (d) Frequency spectra of the thermal displacement
fluctuations of the cantilever before the cell attachment, during cell attachment, and after cell fixation. The left and right graphs correspond to
flexural-like and torsional-like oscillation that can be independently measured by the laser-beam deflection method. The frequency spectra of
the unloaded cantilever show the first three flexural vibration modes labeled as 1F, 2F, and 3F, and the first two torsional vibration modes, as
1T and 2T. The mode shapes are included. (e) Fractional changes of the “apparent” mass added to the cantilever and energy dissipation of the
system due to internal losses of the cell.

coupling [6,25] between the bending vibration mode of the
cell and the first torsional mode of the cantilever. In order to
confirm our theoretical assumptions, the cells were stiffened
by using a fixative solution containing 8% paraformaldehyde
and 8% glutaraldehyde for 15 min. Fixation produces covalent
cross-linking between most of the molecules within the cell,
resulting in a rigid and insoluble meshwork [26]. By using
atomic force microscopy, we find that the MCF-10A cells
stiffen by a factor between 8 and 20, which in turn induces
an increase of the resonance frequency by a factor between 3
and 5. In addition, fixation can induce the reduction of the cell
volume and loss of mass, contributing to a higher resonance
frequency [27,28]. After replacing the fixative solution with
the original growth media, the broad shoulder at the left side of
the first torsional resonance peak disappears and the resonance
frequency of the first torsional vibration mode of the cantilever
downshifts –12% with respect to the unloaded cantilever.
Interestingly, the resonance peak of the second torsional vibra-
tion mode becomes significantly broader. These observations
indicate that fixation-induced stiffening of the cell shifts the
bending resonance frequency of the cell to frequencies higher
than that of the first torsional vibration mode of the cantilever.

The shape of the cantilever flexural spectra, on the other
hand, is little modified upon cell attachment; however, the
frequency and width of the three resonance peaks are no-
tably changed. We analyze these changes by calculating
the frequency and quality factors of the cantilever vibra-
tion modes by fitting the frequency spectra to a model
that combines the damped harmonic oscillator model, the
fluctuation-dissipation theorem [29,30], and fluid-cantilever
interaction theory [31–33] (see Sec. III of the SM [17]). For
the sake of convenience, we convert the resonance frequencies
and quality factors (Q factors) into the following parameters
[Fig. 3(a)] [34],

μn =
(

ωn,0

ωn

)2

− 1, (4)

ζn = Qn,0

Qn
−

(
ωn

ωn,0

)2

, (5)

where ωn,0 and ωn are the resonance frequencies of the nth
vibration mode of the cantilever, before and after attach-
ment of the cell, and Qn,0 and Qn are the corresponding
Q factors, before and after attachment of the cell. The first
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parameter provides the relative increase of the cantilever ap-
parent mass at the frequency of the nth vibration mode due to
the cell attachment [34,35]. The second parameter [Eq. (5)]
represents the relative change in system energy dissipation
due to inherent losses within the cell (see Sec. I of the SM
[17]).

This parameter is preferred over the change in quality
factor because an increase in cantilever mass, resulting from a
load without internal dissipation, alters the energy dissipation
due to the change in viscous damping with frequency [32,36].
In such a scenario, the change in the Q factor is equivalent
to the relative change in mass (μn), while ζn remains zero.
More importantly, the proposed experimental observables are
intimately connected to the vibrational properties of the cell
through the following expressions,

μn = mc〈ψn(x0)2〉
mr

MTF′(ωn), (6)

ζn = mc〈ψn(x0)2〉
mr

(
ωn

ωn,0

)2

Qn,0MTF′′(ωn), (7)

where mc and mr are the masses of the cell and the cantilever
resonator in fluid, ψn is the normalized shape of the nth
vibration mode of the cantilever, x0 is the center position of
the cell-cantilever contact, and 〈· · · 〉 stands for the average
across the contact area. The relative increase of the resonator
apparent mass μn and energy dissipation ζn follows a behavior
similar to that of MTF′ and MTF′′, respectively [Fig. 2(a)].
When ωn � ωc, the resonator operates in the mass sensor
regime, with μn providing the ratio between the masses of
the cell and the resonator times the amplitude mode shape
and ζn being zero. In contrast, when ωn 	 ωc, both μn and ζn

become zero, referred to as the “insensitive” sensing regime.
The transition between these two regimes is broader when the
cell dissipation is higher. In this transition regime, anomalies
in the experimental observables may be expected, such as the
decay of the apparent mass of the cell with frequency, the
negative increase of apparent mass, or the maximum of ζn at
frequencies near the cell resonance frequency.

We now turn our attention to the experimental data. After
the cell attachment, the cantilever apparent mass increases
at the frequencies of the first and second flexural vibration
modes, but it decreases at the frequency of the third flexu-
ral vibration mode [Fig. 3(e)]. The apparent cell mass can
be estimated by using the well-known equation in resonant
mass sensors, �mn = mr μn

〈ψn(x0 )2〉 [34,35]. Using this method for
the first three flexural vibration modes, we obtain apparent
cell masses of 4.08 ± 0.15 ng at 14 KHz, 1.5 ± 0.2 ng at
120 kHz, and –1.6 ± 0.3 ng at 430 kHz, respectively. The
apparent cell mass decreases with frequency and becomes
negative at higher frequencies, as was theoretically antici-
pated. Additionally, there is a significant increase in energy
dissipation due to the cell at the resonance frequencies of
the first three flexural vibration modes, with maximum dis-
sipation at the second flexural mode. This suggests that the
resonance frequency of the extensional vibration mode of
the cell is near the frequency of the second flexural mode
of the cantilever. Notably, the fractional change in energy
dissipation is much higher than the relative change in apparent
mass at the resonance frequencies of the second and third

flexural vibration modes. A negative apparent cell mass and
very high dissipation are also observed for the cantilever’s
first torsional vibration mode. Following the fixation of the
cell, there is a sudden decrease in energy dissipation across
all vibration modes of the cantilever, with the exception of
the second torsional vibration mode. In addition, the apparent
added mass becomes positive in all vibration modes, again
with the exception of the second torsional vibration mode.
The smaller relative variations in mass observed in the flexural
vibration modes of the cantilever can be attributed to a loss of
cell mass during fixation [27,28] and the shift of the cell to
a position further from the free end, where the amplitude of
the eigenmodes is reduced. The increase of dissipation from
near zero to 45% in the second torsional vibration mode is
consistent with the shift of the bending resonance frequency
of the cell from frequencies well below that of the second
torsional vibration mode to near the resonance frequency of
this mode.

The frequency spectra of the flexural and torsional fluctu-
ations of the cantilever after the cell attachment are fitted to
a stochastic coupling model grounded in our theory and the
fluctuation-dissipation theorem, to determine the cell vibra-
tional properties (see Sec. IV of the SM [17]). We assume that
the high-frequency fluctuations under analysis are in equilib-
rium and are thermally driven. It is worth noting that active
cell fluctuations resulting from ATP hydrolysis can also be
coupled to the cantilever fluctuations, although this typically
occurs at a much lower frequency range, 0.01–10 Hz [37,38].
In our model, the cantilever torsional oscillation triggers a
transversal tilting motion in the cell, with minimal vertical
displacement. In this scenario, the mass transfer function
employed only accounts for the mechanical susceptibility of
the cell bending vibration mode [Eq. (1)]. Flexural oscilla-
tion of the cantilever involves two types of motion: vertical
displacement and longitudinal tilting motion. The latter is
negligible for the first flexural vibration mode near the free
end of the cantilever where the cell adheres. However, for
the second and third flexural vibration modes, which display
the primary anomalies upon cell attachment, the longitudinal
tilting and vertical displacement are comparable (see Sec. V
of the SM [17]). To acquire precise data on the cell extensional
vibration mode, we fit the region of the flexural vibration
spectra encompassing the second and third vibration modes
of the cell. We use a mass transfer function that includes
the responses of both the cell fundamental bending vibration
mode (previously obtained from fitting the torsional frequency
spectra) and the cell first extensional vibration mode. The
obtained mass transfer functions are shown in Fig. 4(a) and
the resonance frequencies and power-law exponents of the
cell vibration modes are shown in Fig. 4(b). The frequency
of the fundamental bending vibration mode of the cell rapidly
increases from 10 to 28 kHz in the first 14 min, then slowly
rises to 34 kHz over the remaining 28 min of the experiment.
The power-law exponent remains relatively stable, ranging
from 0.72 to 0.77. The MTF obtained for the cantilever flex-
ural spectra shows initial localization of cell fluctuations in
the bending vibration mode, but the contribution of the ex-
tensional vibration mode increases over time. The resonance
frequency of the first extensional vibration mode rises from
155 to 190 kHz. The power-law exponent, in turn, increases
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FIG. 4. Retrieving the vibrational properties of living cells adhered to a cantilever by fitting the stochastic frequency response of the
cantilever to our theoretical model. (a) Real and (minus) imaginary parts of the mass transfer function obtained from frequency spectra of
the torsional (top) and flexural (bottom) fluctuations of the cantilever with the MCF-10A cell shown in Fig. 3. The MTF for the torsional
fluctuations is primarily determined by the cell’s fundamental bending vibration mode. In contrast, for flexural fluctuations, both the bending
and first extensional vibration modes contribute to the MTF. (b) Resonance frequency (υ = ω

2π
) and power-law exponent (β) of the fundamental

bending (bend) and first extensional (ext) vibration modes. (c) Theoretical estimation of the cell’s mass, elasticity modulus at 10 kHz, and
contact radius to cell radius ratio.

from 0.4 to 0.6 during the first 20 min, and then it grows at a
much slower rate.

Close examination of the theoretical and experimental data
reveals information about the cell physical properties and the
adhesion process [39] [Fig. 4(c)]. We find that the effect of the
cell vibration modes on the resonance frequency of the first
flexural vibration mode of the cantilever is marginal (<3%)
(see Sec. V of the SM [17]). Therefore, this mode operates in
the mass sensor regime enabling the determination of the cell
mass [22,23,40,41]. Compared to the cell’s vibrational prop-
erties, the mass remains relatively stable oscillating by about
5% at irregular periods of about 10 min. On the other hand, the
resonance frequencies of the bending and extensional modes
of the cell follow a different dependence on the contact area
[Eq. (3)]. The fundamental bending vibration mode is highly
sensitive to the contact area. For small contact areas λbend ∼
( a

R )1.4, whereas for the first extensional vibration mode
λext ∼ ( a

R )0.6. This difference is used to estimate the contact
area and the elasticity modulus at a reference frequency of
10 kHz [Fig. 4(c)]. The resulting data show that the cell
initially adheres with a small contact area (a/R ≈ 0.2), and
it rapidly strengthens its anchorage during the first 14 min,
reaching a/R ≈ 0.5. This is followed by a slower adhesion
process during the rest of the experiment, reaching a/R ≈

0.55. In parallel, the elasticity modulus decreases rapidly from
160 to 35 kPa in the first 14 min, then slowly decreases
to 25 kPa by the end of the experiment. These values are
consistent with previous reports [12,21]. The initial drop in
cell stiffness has been linked to a temporary decrease in cor-
tical and membrane tension required for spreading [42]. The
observations detailed in this study have also been identified in
other MCF-10A cells, as well as in low invasive breast can-
cer MCF-7 cells and metastatic breast cancer MDA-MB-231
cells. This underscores the universal nature of these findings
across complex eukaryotic cells, such as human cells, under
physiological conditions (see Sec. VI of the SM [17]).

In conclusion, we have demonstrated that complex living
cells in physiological conditions do exhibit detectable vibra-
tion modes, addressing a question posed by Ackerman during
the 1950s [1,3]. Our method has potential for cell finger-
printing, but improvements are needed due to the low quality
factor of the cell bending vibration mode and the weaker effect
of the extensional vibration mode. We foresee enhancements
through the design of micromechanical resonators operating
at higher frequencies [43], enabling observation of more cell
vibration modes with higher resolution. The use of excita-
tion methods could also improve the signal-to-noise ratio and
exploit cell deformation nonlinearities to increase sensitivity
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[19,44]. These advances could lead to new approaches for
vibration spectrometry of living cells and potentially revive
the idea of destroying cancerous cells by targeting specific
cell frequencies with focused ultrasonic waves [13]. Emerging
research is beginning to unveil the effect of mechanical vibra-
tions in the low-frequency range, 1–100 Hz, on the cellular
behavior [14–16]. The precise mechanisms through which
these vibrations exert their effects are still being explored,
but the findings to date suggest a complex interplay between
mechanical forces and cellular biology. Our findings open up
avenues for future research into the impact of mechanical res-
onances on cell survival, proliferation, and migration, which
are critical aspects of cellular biology and cancer disease.

IV. METHODS

Cell culture. The MCF-10A cell line was purchased
from the American Type Culture Collection (ATCC, USA).
MCF-10A were grown in DMEM/F12 medium (Gibco, Life
Technologies Corporation, USA) supplemented with 5%
horse serum, 20 ng/ml epidermal growth factor, 0.5 µg/ml
hydrocortisone, 100 ng/ml cholera toxin, 10 µg/ml insulin,
500 U/ml penicillin, and 0.1 mg/ml streptomycin.

Cantilever beam and functionalization. We used silicon
nitride cantilevers with nominal length of 50 µm, width of
20 µm, and thickness of 0.21 µm (SD-nAmbition Array5,
Nanoworld, Switzerland). Both cantilever sides are coated
with 2–3 nm of Cr and 30 nm of Au. The nominal spring
constant was 0.17 N/m. Prior to cantilever functionaliza-
tion, cantilever arrays were cleaned with piranha solution (2
H2SO4:1 H2O2) for 15 min at room temperature (RT) (cau-
tion: piranha solution is extremely corrosive, reactive, and
potentially explosive) to remove all the organic residues on
the surface. Then, the cantilevers were extensively rinsed with
Milli-Q water and dried under a stream of nitrogen (N2). After
that the cantilevers were incubated with a 100 µg/ml solu-
tion of thiol PEG amine (HS-PEG2K-NH2, Mn 2000, Sigma
Aldrich) in degassed Milli-Q water for 1 h at 25 ◦C under
agitation. The samples were then rinsed with Milli-Q water
and dried with N2. Next, the cantilevers were immersed in a
2 mg/ml solution of 4-(N-maleimidomethyl) cyclohexane-1-
carboxylic acid 3-sulfo-N-hydroxysuccinimide ester sodium
salt (Sulfo-SMCC, Sigma Aldrich) in phosphate-buffered
saline (PBS) (pH7.4) for 2 h, at RT in N2 atmosphere, and pro-
tected from light. The cantilevers were subsequently washed
twice with PBS, rinsed with Milli-Q water, and dried under
a stream of N2. Afterwards, the cantilevers were dipped into
a 20 µg/ml of fibronectin (Sigma Aldrich) in PBS (pH7.4)
and incubated for 3 h at 25 ◦C under agitation. The cantilevers
were stored at 4 ◦C until its use, which was no longer than
4 days. Finally, the cantilevers were washed with PBS, Milli-
Q water, and dried with N2.

Measurements. The cantilever thermal fluctuations were
measured using a JPK NanoWizard 4 AFM (Bruker) mounted

on an inverted microscope (Leica DMI6000-CS, Germany).
The AFM photodetector signals were processed using cus-
tom software developed in LABVIEW (National Instruments,
Austin, USA). Optical images of the cantilever and cells
were captured using a 40× objective (Leica, HC PL Fluotar
L 40×/0.60, Spain). Cells were maintained in physiological
conditions during measurements using a heater that kept cell
cultures at 37 ◦C. Cells were seeded at a density of 4×104

cells/ml onto untreated lids of 35 mm cell culture plates
(Corning CellBIND Surface) with 3 ml of their respective
medium for 24 h before the experiment. Untreated lids were
used to facilitate cell detachment from the culture plate and
subsequent attachment to the fibronectin-functionalized can-
tilever surface. Cell attachment was achieved by positioning
the cantilever free end above the center of a selected cell
and applying a force of 3 nN during 10 min. Afterward, the
cantilever with the attached cell was retracted 200 µm. The
frequency spectra of the displacement fluctuations of the can-
tilever were recorded before and after the cell attachment for
approximately 1 h (one measurement every 60 s). After that,
the cell was fixed by adding 1 ml of 4× fixing medium [8%
paraformaldehyde + 8% glutaraldehyde, in phosphate buffer
(pH7.4)] to the culture media, to achieve a fixative solution
concentration of 1×. After incubating for 15 min at RT, the
solution was replaced by the culture media. Custom software
written in Wolfram Mathematica was used to process and
analyze the optical images and recorded frequency spectra.

FEM simulations. FEM simulations were carried using the
commercial software COMSOL MULTIPHYSICS. Eigenfrequency
and frequency domain studies were carried out within the
SOLID MECHANICS and the THERMOVISCOUS ACOUSTICS mod-
ule for the surrounding fluid.
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