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Phenotypic Variability Shapes Bacterial Responses to Opposing Gradients
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Although bacterial chemotaxis behavior in a single gradient has been well studied, chemotaxis of bacterial
population in complex environments is not well understood. Here, we discovered four distinct behaviors of
Escherichia coli populations in microfluidic experiments with different opposing gradients of MeAsp and serine.
By using a population chemotaxis model based on the dynamics of intracellular signaling pathways, we found
that the nongenetic variability of the relevant chemoreceptors (Tar and Tsr) within the population is responsible
for the diverse population behaviors. Through analyses combining the phenotype-to-performance mapping and
Tar/Tsr ratio distribution, we predicted the phase diagram of population chemotaxis behaviors under varying
chemical gradients and the effect of growth period on population behaviors, which were verified by additional
experiments. Our study suggests that phenotypic heterogeneity in chemoreceptors enables diverse chemotactic
strategies, which cells may adopt to improve their population fitness in complex environments.
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I. INTRODUCTION

The chemotaxis system enables living cells to sense and
respond to a variety of environmental stimuli [1–5], which
allows cells to move to more favorable locations by ascending
chemoattractant (usually nutrients and orienting cues) gradi-
ents or descending repellent gradients. As one of the best
understood biological systems, the molecular mechanisms of
Escherichia coli chemotaxis have been elucidated [6–10]. An
E. coli cell exhibits a run-and-tumble motion with a switching
frequency between the two modes of motion (run and tumble)
depending on the external chemical stimuli [11]. E. coli senses
and responds to chemical signals primarily through five trans-
membrane chemoreceptors: the two major receptors (Tar and
Tsr), which together account for 90% of the total number of
receptors, and the minor receptors (Tap, Trg, and Aer) [12,13].
The binding of chemoreceptors to chemical ligands inacti-
vates the receptor-CheW-CheA complex, thereby inhibiting
the autophosphorylation activity of CheA, which in turn re-
duces the phosphorylation of the response regulator CheY. A
lower level of CheY-P suppresses the tumbling frequency of
the bacterial flagellar motor, which increases the run duration
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of the cell. The chemosensory system can also adapt to a
constant level of stimulus and thus allows E. coli cells to climb
up attractant gradients and migrate down repellent gradients in
a biased run-and-tumble random walk.

While the chemotactic behavior of E. coli migrating along
a single chemoeffector gradient has been investigated ex-
tensively [11,14,15], the chemotactic behavior of bacteria in
complex environments involving multiple chemical gradients
is still unclear. The natural habitat environment of bacteria,
such as the mammalian gut and aquatic environments, is al-
ways spatially heterogeneous due to the fine spatial structures
or randomly distributed nutrient hot spots [16–20], where
multiple chemoeffectors from the same or different nutrient
hot spots can generate complex gradients. The latter situation
presents a dilemma for bacterial cells as they need to process
conflicting signals from opposite directions and decide where
to migrate to. As illustrated in Fig. 1(a), in an environment
with opposing gradients of two attractants sensed by the
two most abundant chemoreceptors, Tar and Tsr, respectively,
there naturally emerges four distinct chemotactic strategies for
a population of bacterial cells, as shown in Figs. 1(b)–1(e).

It is natural to expect that these different behaviors depend
on the relative abundance of Tar and Tsr, which was found to
depend on the cell culture density by Salman and Libchaber
[21]. Indeed, in an earlier work by Kalinin et al. [22], the
authors studied E. coli chemotaxis behaviors in a microfluidic
channel with fixed opposing gradients of MeAsp and serine,
and showed that the chemotactic behaviors depend on the
cell culture density [characterized by optical density (OD)] at
which cells were collected. In most cases bacterial populations
exhibited a “winner-take-all” behavior with cells migrating to

2835-8279/2024/2(1)/013001(9) 013001-1 Published by the American Physical Society

https://orcid.org/0000-0002-4483-1290
https://orcid.org/0000-0003-1585-7368
https://orcid.org/0000-0001-8974-7693
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXLife.2.013001&domain=pdf&date_stamp=2024-01-09
https://doi.org/10.1103/PRXLife.2.013001
https://creativecommons.org/licenses/by/4.0/


LI, ZHANG, SUN, OUYANG, TU, AND LUO PRX LIFE 2, 013001 (2024)

FIG. 1. Schemes of possible chemotactic strategies of the bacterial population in dual opposing gradients of attractants. (a) Schematic
diagram of the opposing gradients of attractants. Two kinds of attractant molecules diffuse from the left (red) and right (blue) sides of the
x axis, respectively. [(b)-(d)] Four different possible chemotactic behaviors for bacterial populations: unidirectional taxis to (b) the left end or
(d) the right end, (c) bidirectional taxis to both ends, and (e) no taxis.

either the MeAsp side (high OD) or the serine side (low OD)
of the channel depending on the relative abundance of Tar and
Tsr, similar to those cases illustrated in Figs. 1(b) and 1(d). For
a small regime of intermediate OD (or Tar/Tsr ratio) in the
Kalinin et al. study [22], the population of E. coli did show
a bimodal distribution similar to that illustrated in Fig. 1(c).
However, it was not identified as a distinct population behav-
ior possibly because the authors regarded it as the result of
boundary effect.

Although the Kalinin et al. work studied the relationship
between chemotactic preference and the average Tar/Tsr ratio
in cells, the dependence of the population behavior on the
relative strength of the two competing gradients and the cell-
to-cell variability of the Tar/Tsr ratio within a population are
not well understood. Phenotypic heterogeneity is ubiquitous
in all biological systems [23–25], and nongenetic phenotypic
diversity is known to play an important role in chemotaxis of
the bacterial populations [26,27]. The cell-to-cell variations in
pathway gain [28], adaptation time [29], and tumble bias [30]
all contribute to the heterogeneous chemotactic performance
within a clonal bacterial population when climbing up a
chemoattractant gradient. Diversity in chemotaxis helps to en-
rich bacterial functionalities in the population when climbing
up a single attractant gradient [28,30,31]. Directly important
to our work, Yoney and Salman reported that the relative
abundance of chemoreceptors varies greatly among individual
cells in a population collected at a given OD [32]. To elucidate
the chemotactic behavior of bacteria in different environments
with competing attractant stimuli, we investigated the chemo-
tactic behavior of bacteria in opposing gradients of MeAsp
and serine by varying their relative strength systematically in
a microfluidic chip.

We found that the E. coli population exhibits all four
different chemotactic behaviors (including the bimodal behav-
ior) shown in Figs. 1(d) and 1(e), depending on the relative
strength of the two attractant gradients. To understand the
molecular mechanisms for the diverse behaviors, we used a
population chemotaxis model based on intracellular signal-
ing dynamics. Besides reproducing the experimental results

quantitatively, the model showed that the phenotypic diver-
sity in the relative abundance of the chemoreceptors Tar and
Tsr is crucial in enabling the different population behaviors.
The predicted dependence of the population chemotactic be-
haviors on the Tar/Tsr ratio from our model was verified
quantitatively by additional experiments with cells collected
at different ODs.

II. RESULTS

A. Four different population chemotaxis behaviors
in opposing gradients of MeAsp and serine

Various opposite linear gradients of MeAsp and serine
were constructed in the observation channel of the microflu-
idic chip, as shown in Fig. 2(a) (see also Fig. S1 in the
Supplemental Material [33]). Both attractant gradients de-
crease approximately from 2/3 of the loading concentration
(near end to the source) to 1/3 of that (farther end from
the source) in the observation channel. For convenience, the
loading concentration of MeAsp in reservoir I, CMA, was set
at 2 mM, and the serine concentration in reservoir II, Cser, was
varied over three orders of magnitude in a series of parallel
channels. We found four distinct population behaviors based
on the distribution of bacteria in different attractant environ-
ments [Fig. 2(b)]: (i) MeAsp-taxis behavior (S1), where cells
accumulate near the MeAsp end of the channel; (ii) dual-taxis
behavior (S2), where cells accumulate at both ends of the
channel, leading to a bimodal distribution; (iii) serine-taxis
behavior (S3), where cells accumulate near the serine end of
the channel; and (iv) no-(apparent-)taxis behavior (S4), where
cells spread almost evenly in the observation channel and
seemingly lose chemotaxis ability to either attractant.

For low serine gradients, the MeAsp gradient dominates,
resulting in the S1-type behavior. As the serine gradient in-
creases, it starts to dominate and the system exhibits the
S3-type behavior. However, an excessive level of serine leads
to a relapse of the MeAsp-taxis (S1-type) behavior due to
the saturation of binding of serine to Tsr. The unidirectional
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FIG. 2. Four kinds of chemotactic behaviors in a microfluidic
channel with opposing attractant gradients. (a) Diagrammatic sketch
of the microfluidic device. Reservoirs I and II contain MeAsp (red)
and serine (blue), respectively. The MeAsp concentration is fixed at
2 mM while the serine concentration is varied between 4 µM and
16 mM. See the Supplemental Material [33] for details of the mi-
crofluidic chip architecture and fabrication. (b) Typical cell-density
profiles of different chemotactic behaviors. Each one shows the
real fluorescence photo (above) and the corresponding normalized
cell-density profile averaged over the y direction (below). (c) The
heat map displaying the cell density profiles for different serine
concentrations. The whole map separates into five regions, and the
corresponding chemotactic behavior types are labeled in each region.
(d) The empirical criterion based on values of w1 and w2 (upper),
and the corresponding changes of w1 (middle) and w2 (lower) in
experiments shown in (c). The grey dashed lines show the threshold
values (wl = 0.2, wu = 0.8, and wc = 0.2) we used to distinguish
the four different types of chemotaxis behaviors, which are divided
by the yellow dotted lines in (c) and (d). Error bars indicate standard
errors of three replicates.

taxis behaviors, S1 and S3, were reported in the previous
study [22]. Two additional chemotactic behaviors, S2 and S4,
were observed during the transition process as the system
transitioned from S1 to S3 and back from S3 to S1. The
heat map of cell density profiles under different attractant
conditions indicates the S1-S2-S3-S4-S1 sequence of change
in population behaviors as the serine concentration increases
from 4 µM to 16 mM as shown in Fig. 2(c).

Two dimensionless chemotaxis parameters w1 and w2 were
used to quantify the differences in chemotactic behavior based
on the shape of cell density distribution in the channel: w1 =
x̄/L and w2 = |x/L − 1/2|, where the overbar denotes the
mean value and x is the bacterial location. w1 is the normal-
ized average position of the cells, and w2 is the normalized
average distance of cells to the center of the channel, which
characterizes the spread of the cell population. The S1-type
behavior is characterized by a smaller value of w1 � wl , while
the S3-type behavior has a large value of w1 � wu, where
wl and wu are the lower and upper thresholds, which are set
to be wl = 0.2 and wu = 0.8 in this paper. Both S2 and S4
behaviors have intermediate values of w1, wl < w1 < wu [top
panel of Fig. 2(d)]; however, they can be distinguished by their
different values of w2: S2-type behavior has a larger value
of w2 > wc while S4-type behavior has a smaller value of
w2 � wc [bottom panel in Fig. 2(d)], where wc is a threshold
value set to be 0.2 in this paper. By comparing the w1 and
w2 values to their empirically determined threshold values,
we classified the bacterial distributions into four types of
chemotactic behaviors (w criterion).

B. Molecular mechanism for the four
types of population behaviors

To understand the molecular mechanism responsible for
the different population behaviors of bacteria in complex at-
tractant environments with multiple opposing gradients, we
used a population model of E. coli chemotaxis that is based
on the dynamics of intracellular signaling pathways [34–37].
Importantly, relevant molecular details such as specific ligand-
receptor binding (Tsr to serine and Tar to MeAsp) and the
Tar/Tsr receptor ratio are included explicitly in the pathway-
based population model, which allows us to test the hypothesis
about the molecular origins of the observed behaviors and to
make predictions that can be checked in experiments to test
the hypothesis (see the Supplemental Material [33] for details
of the pathway-based population model).

In environments with a single chemical gradient, simu-
lations of the pathway-based population model with a fixed
average chemoreceptor abundance worked well to capture the
population behaviors of E. coli chemotaxis [38–40]. However,
in the case of opposing gradients of MeAsp and serine, our
initial simulations of the population behaviors using a fixed
Tar/Tsr ratio for all cells missed the occurrence of the S2-type
behavior, a key feature of our experimental results (Fig. S2
[33]). This prompted us to consider the effects of cell-to-cell
variability in the Tar/Tsr ratio, which was shown to vary
significantly in a genetically homogeneous population of cells
[32]. For each individual cell in the population, we randomly
assign a Tar/Tsr ratio (denoted by r) according to a log-
normal distribution: log10 r ∼ N (μ, σ ). By proper choice of
the mean (μ0) and standard deviation (σ0) that are consistent
with experiments [32] as shown in Fig. 3(a), our model can
quantitatively reproduce the main features of our experimental
results, particularly the correct behavior sequence (S1-S2-S3-
S4-S1) as the serine concentration (Cser) increases [Figs. 3(b)
and S2(b)]. The dependence of the two order parameters, w1

and w2, on Cser is shown in Fig. 3(c), which shows a narrow
range of S4-type behavior around Cser = 8000 µM. Other
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FIG. 3. Results from pathway-based population model. (a) The
probability density function (Pdf) of the Tar/Tsr ratio (r) follows
a log-normal distribution: log10(r) ∼ N (μ, σ ). Inset: The normal
distribution for log10(r). μ = μ0 = −0.23 and σ = σ0 = 0.43 are
used in our simulations here. (b) The heat map from simulations
for different values of serine concentration in reservoir II ranging
from 4 µM to 16 mM. Different types of chemotactic behaviors are
separated by yellow dotted lines. (c) The corresponding chemotaxis
order parameters w1 and w2 for different concentrations of serine.
The four chemotactic behaviors were determined based on values
of w1 and w2 as described in the text. Refer to Table S1 in the
Supplemental Material [33] (see also Refs. [41–45] therein) to find
the values of parameters used in simulation.

cell-to-cell variations such as cluster size and tumble bias can
affect the response sensitivity to ligands or the drift velocity
in attractant gradients significantly [28–30,46,47]. However,
their effect on population behaviors in opposing attractant
gradients is much less than that from cell-to-cell variability in
the Tar/Tsr ratio (Figs. S3 and S4). Overall, the model results
summarized in Fig. 3 are in quantitative agreement with our
experiments shown in Fig. 2.

Due to its random run-and-tumble motion, the position of
a cell with a fixed Tar/Tsr ratio r follows a probability distri-
bution ρ(x|r), which can be determined analytically from the
pathway-based model with arbitrary serine and MeAsp gradi-
ents. As shown in Fig. 4(a) for the case of Cser = 60 µM, cells
accumulate near the serine or the MeAsp side for r � 0.3 or
r � 1, respectively. For intermediate 0.3 < r < 1, the balance
of the two effectors results in a broad unimodal distribution
that peaks in the middle of the channel. The cell distribution
function with different r can be characterized by x∗(r) defined
as the position of maximum probability: ∂ρ

∂x |x=x∗ = 0. The
dependence of x∗(r) on r as shown in Fig. 4(b) (bottom left)
reveals a simple relationship between cell distribution and
Tar/Tsr ratio: x∗(r) = L for r � r1 and x∗(r) = 0 for r � r2,
where r1 and r2 are the two critical Tar/Tsr ratios that depend
on two competing attractant gradients [see the Supplemental
Material [33], Eqs. (S20) and (S21)].

From our analysis above, the two unimodal population
behaviors (S1 and S3) can be understood by compar-
ing the population average Tar/Tsr ratio μ and the two
gradient-dependent critical ratios r1 and r2. However, a large

FIG. 4. Effects of the heterogeneity of the Tar/Tsr ratio in the
population on population chemotactic behaviors. (a) Probability
distribution of cells with different r for Cser = 60 µM. (b) The nor-
malized preferred location x∗ versus r for Cser = 60 µM (bottom).
Colored dots on the r-x∗ curve correspond to the cell probability
distributions shown in (a) with the same color. Given a broad Tar/Tsr
distribution p(r) in the population (top), which overlaps with the two
regions, r � r1 and r � r2, the corresponding population cell-density
profile ρp(x) = ∫

ρ(x|r)p(r)dr becomes bimodal; i.e., it exhibits
S2-type behavior (right). The colors of shaded areas denote bacteria
accumulating at the MeAsp side (light red), intermediate location
(grey), and the serine side (light blue), respectively.

cell-to-cell variability in r as characterized by a large value
of the standard deviation σ is essential for understanding the
bimodal cell distribution, i.e., the S2-type behavior (Fig. S5).
For a small σ , cells accumulate in the middle of the channel
during the transition from S1 to S3. A bimodal cell distri-
bution only appears for larger values of σ , and the range of
S2-type behavior broadens as σ increases. For a broad Tar/Tsr
ratio distribution p(r) such as the one shown in Fig. 4(b) (top),
which overlaps significantly with the two regions, r � r1

and r � r2, the corresponding population cell-density profile
ρp(x) = ∫

ρ(x|r)p(r)dr becomes bimodal; i.e., it exhibits the
S2-type behavior as shown in Fig. 4(b) (right).

The S4-type behavior can be explained by sensing satura-
tion for very high serine gradients. Specifically, for high serine
gradients with Cser > 4000 µM, we have cmin ≈ 1/3 Cser >

K2a, with K2a the dissociation constant of serine binding
to Tsr; thus the Tsr receptors become saturated and less
sensitive to the serine gradient. From the pathway-based pop-
ulation model, bacterial chemotaxis behaviors are controlled
by an effective chemotaxis potential ftotal, which consists of
three independent parts: Tar-MeAsp sensing potential ( f1),
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Tsr-serine sensing potential ( f2), and Tar-serine sensing po-
tential ( f3), which is insignificant for controlling population
behaviors. As Cser increases, the gradient of f2 along the
channel becomes smaller due to the saturation effect, while
the gradient of f1 remains unchanged. As a result, the two
gradients balance each other and the total effective potential
ftotal becomes roughly flat in the channel (with a shallow peak
in the middle), which corresponds to the S4-type population
behavior (see Fig. S6 [33]).

C. Phase diagram of chemotactic behaviors
in different environments

As shown in Fig. 2, a given cell population exhibits
different behaviors (distributions) depending on the relative
strength of the two competing gradients. From our analysis
in the last section, cells with r � r1 have their locational
probability peak at the serine end of the channel (x = L),
while cells with r � r2 have their locational probability peak
at the MeAsp end (x = 0). Both r1 and r2 depend on the
two gradients. In this study, we only vary the serine gradient,
cmin = cser (0) ≈ 1

3Cser, cmax = cser (L) ≈ 2
3Cser, by changing

the serine concentration Cser in reservoir II, and the expres-
sions for r1,2(cmin, cmax) can be determined analytically from
the pathway-based model. For a given population with a dis-
tribution p(r) for the Tar/Tsr ratio r, the fraction of cells that
accumulate near the serine side is given by �1(cmin, cmax) ≡∫ r1(cmin, cmax )

0 p(r) dr, and the fraction of cells that accumu-
late near the MeAsp side is given by �2(cmin, cmax) ≡∫ ∞

r2(cmin, cmax ) p(r) dr. Clearly, a large value of �1 or �2 indi-
cates the cell population will accumulate near the serine or the
MeAsp side, respectively. In the following, by comparing �1

and �2 with a threshold fraction �c, we determine the phase
diagram of the cell population behaviors in the ligand gradient
space spanned by cmin and �c ≡ cmax − cmin. First, the critical
line �1(cmin, cmax) = �c determines two regions in the ligand
(environment) space (cmin, �c), one of which corresponds to
the environment conditions where a large portion of the cells
have their maximum probability peak at the serine side (PSS).
Similarly, the critical line �2(cmin, cmax) = �c determines
two other regions in the environment space (cmin, �c), one
of which corresponds to the environment conditions where
a large portion of the cells have their maximum probability
peak at the MeAsp side (PMS). These two critical lines nat-
urally divide the phase diagram into four regimes (I–IV), as
shown in Fig. 5(a) with regime I, �1 < �c, �2 > �c; regime
II, �1 > �c, �2 > �c; regime III, �1 > �c, �2 < �c; and
regime IV, �1 < �c, �2 < �c. Note that since �1 and �2

depend on cmax and cmin continuously (smoothly), the choice
of �c value does not cause sharp changes in the two critical
lines (Fig. S7 [33]). In particular, the phase diagram by setting
�c = 0.12 is consistent with the simulation results [Fig. 5(b)]
where each cell-density profile from simulation is assigned to
one of the four population behavior states according to the w

criterion as described in the previous section. So, it confirms
that regimes I–IV in the phase diagram correspond to the
four chemotactic behaviors, respectively, and the � criterion
is equivalent to the w criterion. In the experimental setup
for results shown in Fig. 2(d), we have cmax ≈ 2cmin, which
corresponds to the diagonal line shown in the phase diagram

FIG. 5. The phase diagram for four chemotactic population be-
haviors and experimental verification. (a) The two critical lines
�1(cmin, cmax) = �c (blue line) and �2(cmin, cmax) = �c (red line)
separate the phase space into four regimes. The red arrows indicate
the regime with �2 > �c, the PMS regime, and the blue arrows
point to the PSS regime with �1 > �c. �c = 0.12 is used. (b) The
population behaviors (S1, S2, S3, and S4) from simulations of the
pathway-based population models based on the w criterion [see
Fig. 2(d)] are shown as different colors, which are consistent with the
phase diagram in (a). [(c) and (d)] Verifications of the phase diagram
with (c) experimental results in Fig. 2 and (d) another three sets of
experiments by fixing (i) cmin = 67 µM, (ii) cmax − cmin = 67 µM,
and (iii) cmax − cmin = 667 µM, respectively. Each dot in (d) repre-
sents two repeats of experiments for a different choice of cmin and
cmax. The colors of the dots represent the population behavior state
(S1–S4). The dots with half yellow and half blue (or red) showed
either S2 or S3 (or S1) in different experiments.

[Fig. 5(c)]. The experimentally observed population behaviors
as shown by the colors of the dots in Fig. 5(c) are in agreement
with those predicted from the phase diagram with �c = 0.12.
The detailed form of the p(r) distribution used in the sim-
ulations does not change the phase diagram significantly as
long as they have the same mean and standard deviation; e.g.,
the phase diagram obtained using a gamma distribution for
p(r) is also in good agreement with the experimental results
(Fig. S8).

Besides the initial set of experiments shown in Fig. 2 with
cmax − cmin ≈ cmin, to further test the phase diagram obtained
from the population model, we measured the population be-
haviors in three additional sets of experiments (Fig. S9):
(i) cmin = 67 µM, (ii) cmax − cmin = 67 µM, and (iii) cmax −
cmin = 667 µM, which are shown in Fig. 5(d), where each dot
represents an individual experiment. As shown in Fig. 5(d),
the population behavior determined based on the w criterion
shown as the different colors of the dots is consistent with that
predicted from the phase diagram. The three dots, half yellow
and half blue or red, indicate conditions that showed different
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FIG. 6. Effect of Tar/Tsr distribution on the population chemotactic behavior. (a) Determining the chemotactic states (S1–S4) by comparing
r1 with rmin, and r2 with rmax. (b) Changes in the span of each chemotactic behavior state with different values of parameters μ (left) and σ

(right). The dotted box shows the simulation result with values of μ = μ0 and σ = σ0 used in the previous sections of our paper. (c) Model
prediction for the changing trend of the spans of each population behavior state versus bacterial growth density (OD) based on the tendency
of Tar/Tsr distribution with OD measured by Yoney and Salman [32]. (d) Experimental validation of the qualitative predictions in (c) with cell
populations of different ODs. Each dot represents one experiment with a different Cser and bacterial density.

behaviors (S2, or S3 or S1) in different experiments, which
are consistent with the fact that the serine concentrations in
these experiments (dots) are close to the (blue) critical lines.

A chemoreceptor can sense ligands other than its cognate
attractant; e.g., Tar can bind serine albeit with a much lower
affinity [48,49]. Though we incorporate the term of Tar-serine
sensing, f3, in all our model simulations and analysis, we
claim that it does not change the qualitative conclusions.
Quantitatively, by comparing the simulation results with and
without including Tar-serine sensing (Fig. S10), we show that
it only affects bacterial behaviors around Cser of 103∼104 µM
by enlarging the value of r2 several times [Fig. S10(a) and
S10(b)], which promotes the emergence of S4-type behav-
ior. For example, a larger r2 at Cser = 8000 µM shown in
Fig. S10(c) means that less cells will migrate towards the
MeAsp side and as a result the population behavior chnages
from S1 type to S4 type [Fig. S10(d)]. Figures S10(e) and
S10(f) show a subtle difference between the phase diagrams
though: they indicate that the Tar-serine sensing expands the
S4 regime, which makes the S4-type behavior observable in
our experiments.

Based on the phase diagram, further analysis of the S4-type
behavior shows that the ranges between r1 and r2 became
broader as �c(= cmax − cmin) increases [Fig. S11(a)]. We
can predict from the simulation results that, under some en-
vironment conditions within the S4-type behavior, the cell
density profile could form a peak near the middle of the
channel [Fig. S11(b)], instead of spreading evenly across the
channel. However, our current microfluidic chip design limits
the experimental conditions to be below the diagonal of the
phase diagram outside the regime of the appearance of the S4

peak. Improvement of the chip design is needed to verify the
prediction.

D. OD-dependent Tar/Tsr ratio distribution modulates
the population chemotactic behaviors

In the previous sections, we studied the population chemo-
tactic behaviors of a population of cells with a given
distribution p(r) of the Tar/Tsr ratio r. In this section, we
investigate how the population behavior changes as a function
of p(r), which typically follows a log-normal distribution:
log10(r) ∼ N (μ, σ ). The question we try to address is how
the population behavior depends on the mean μ and the vari-
ance σ 2. To understand this question, we define two critical
Tar/Tsr ratios rmin and rmax determined by

∫ rmin

0 p(r) dr = �c

and
∫ ∞

rmax
p(r) dr = �c, where �c is the critical fraction in-

troduced in the previous section. It is clear that both rmin

and rmax depend on μ and σ 2. The two critical lines intro-
duced in the last section (the blue and red lines in Fig. 5)
are given by r1(cmin, cmax) = rmin(μ, σ ) and r2(cmin, cmax) =
rmax(μ, σ ). As shown in Fig. 6(a), for the case with cmax −
cmin = cmin, the comparison of r1 and rmin and that of r2 and
rmax together determine the range of the four chemotactic
behaviors. Therefore, changing p(r) alters the values of rmin

and rmax, which ultimately affects the span range of each state
[Fig. 6(b)]. Specifically, since μ denotes the mean relative
abundance of Tar/Tsr, changes in μ mainly affect the spans of
the two unidirectional-taxis states S1 and S3 while the S2 and
S4 states only exist in a narrow range in Cser for medium to
low values of μ [Fig. 6(b), left]. On the other hand, changing
the variance σ 2 strongly affects the S2 and S4 states with
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a smaller or larger σ 2 favoring the S4 or the S2 behavior,
respectively [Fig. 6(b), right]. The relative expression level
of Tar has been reported to increase at higher ODs [22,32],
presumably to meet the increased demand for amino acids
sensed by Tar [49]. The Tar/Tsr ratio in E. coli populations
at different growth densities measured by Yoney and Salman
[32] approximately follows a log-normal distribution with the
mean μ increasing and standard deviation σ decreasing as OD
increases (Fig. S12). Though a different culture medium was
used in our experiments, the OD-dependent Tar/Tsr distribu-
tion provides a chance to experimentally validate the model
predictions. Specifically, by referring to the experimentally
measured change tendency of μ and σ with OD, our model
qualitatively predicts that, as OD increases, the spans of S2
and S3 narrow until their disappearance while the regimes of
S1 and S4 widen [Fig. 6(c)].

To validate these predictions, we performed experiments
in the same chemotactic environments as in Fig. 2 but us-
ing two other E. coli populations collected at OD = 0.2 and
0.3 (Fig. S13; cells with OD = 0.1 were used in experi-
ments shown in Fig. 2). Experimental results for these E. coli
populations at higher ODs showed the preserved sequential
behavioral state change of S1-S2-S3-S4-S1 with increasing
serine concentration (Fig. S13). The dependence of the spans
of the four behavioral states on the OD of the E. coli popula-
tion agrees with the model predictions [Fig. 6(d)].

III. DISCUSSION

In realistic environments, there can be multiple and
competing chemoeffectors that guide the chemotactic mo-
tion of the cells. In this paper, we systematically studied
the population-level chemotaxis behaviors for E. coli cells
in a microfluidic channel with opposing gradients of two
attractants—serine and MeAsp—by fixing the MeAsp gra-
dient and varying the opposing gradient of serine. Our
experiments revealed four distinct population behaviors (S1–
S4). When one of the chemical effectors is dominant (either
with a much higher chemotaxis efficacy or with a much higher
abundance of the corresponding chemoreceptor), the bacterial
population migrates towards the dominant chemical effector
and the cell density profile peaks near the maximum of the
dominant chemoeffector, which is consistent with previous
studies [22]. As the concentration of serine increases from
a few micromoles to tens of millimoles, the influence of
serine on bacterial behavior is initially small, then becomes
progressively more dominant, attracting all bacteria to its
side, but eventually serine loses its appeal due to satura-
tion of the Tsr receptors. As a result, the E. coli population
behavior goes from the MeAsp-dominant state (S1) to the
serine-dominant state (S3) and back to S1 again as serine
concentration increases. Moreover, we found two interesting
chemotactic behaviors during the two transitions between the
two unidirectional taxis states: a dual-taxis state (S2), in which
the cell population density develops a bimodal distribution at
the first transition from state S1 to state S3 (Cser ∼ 102 µM),
and a no-taxis state (S4), in which the cell population density
spreads broadly in the middle of the channel at the second
transition from state S3 to state S1 (Cser ∼ 104 µM).

By combining microfluidic experiments and a quantitative
population model that takes into account the dynamics of the
intracellular chemotaxis signaling pathway, we showed that
the mechanism of these different chemotactic behaviors is
due to the interplay between the phenotypic variations of the
relevant chemoreceptors and the competing attractant gradi-
ents. Though the relative abundance of Tar/Tsr is known to be
important in thermotaxis and pH taxis, as well as chemotaxis
under competing attractant gradients [22,32,50,51], the effect
of the variability in the Tar/Tsr ratio on chemotaxis behaviors
has not been fully explored. In comparison to the cell-to-cell
variability in tumble bias and run speed, which can affect
the cell population’s search strategy and drift speed towards
a single source of nutrient [28], our results showed that the
cell-to-cell variability in the Tar/Tsr ratio [32,46] allows the
cell population to make decisions on whether and how to
partition the full population in search of different nutrient
sources. For example, the cell-to-cell variation of the Tar/Tsr
ratio is responsible for the dual-taxis behavior (S2), which
enables the “betting on both sides” strategy to increase the
population’s fitness in fluctuating or uncertain environments
[52–54]. Though the expression level of chemoreceptors
varies across strains, culture mediums, and growth periods,
our experimental and model results can still help study how
chemotactic cells behave and benefit from complex environ-
ments when the distribution of receptors in the population is
determined.

Bacterial chemotaxis is believed to evolve to adapt to com-
plex environments and achieve optimal growth [55–58]. We
believe that the collection of diverse population behaviors
driven by the alternate dominance of different chemoreceptors
and variability in the relative abundance of chemoreceptors
may play a critical (enabling) role for maximizing popu-
lation payoff. As serine concentration increases, an overall
S1-S3-S1 sequence of change is easy to understand since a
moderate level of serine can provide larger (potential) payoff
than MeAsp while excess serine impairs bacterial growth. As
for S2 and S4 during the two transitions between S1 and
S3, a question arises: Why do bacteria hedge their bets in
certain environments and spread evenly in others? Is it just
a by-product of the heterogeneity of the relative abundance of
chemoreceptors or is it an evolved strategy to optimize growth
in changing environments? At the first transition from state S1
to state S3 where the serine concentration is relatively low, it
may be risky for the entire population to migrate collectively
from the MeAsp-rich side to the serine-rich side. In this case,
a safer way to increase the overall payoff may be achieved
by the S2-type behavior: the full population splits into two
subpopulations, each of which centers around one end of the
channel to take advantage of both attractants at the whole pop-
ulation level. However, when both attractants are abundant,
the S4-type behavior is beneficial for the co-utilization of
both nutrients. Further quantitative work (both experimental
and modeling) is needed to explore the relation between the
spatial distribution of cells as a result of chemotaxis in op-
posing attractant gradients and the possible population payoff
in growth from cells utilizing different local nutrients, and
to understand how the population benefits from the different
relative abundance of chemoreceptors observed at different
growth stages [32,51].
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APPENDIX: METHODS AND MATERIALS

a. Cell strains, culture, and cell preparation. The E. coli
strain used throughout this work is RP437 [59], a deviation
from K12, wild-type E. coli commonly used for chemotaxis
studies. They were transformed with a plasmid conferring
ampicillin resistance and constitutively expressing green flu-
orescent protein (GFP) for visualization. E. coli cells were
grown in tryptone broth (TB, 1% NaCl, 1% Bacto-Tryptone,
pH 7.3) supplemented with 50 µg/ml ampicillin in a shaking
bath at 32 ◦ C at 220 rpm. The culture grown overnight was
diluted 1:50 (corresponding to an optical density at 600 nm
of OD600 ∼ 0.01) in fresh medium and grown in the shaker

bath to OD600 ∼ 0.1 or other ODs. The harvested cells were
washed twice with chemotaxis buffer (CB, 10 mM phosphate
buffer, 0.1 mM EDTA, 1 µM methionine, 10 mM lactic acid,
pH 7.3). Cells were resuspended in CB and incubated at 32 ◦ C
for 10 min to recover motility.

b. Data acquisition and imaging. Bacterial cells trans-
ferred with a plasmid expressing GFP were loaded into the
cell-loading pool. The real-time cell density is estimated
using the local image intensity of GFP. Shoots for each mi-
crochannel were taken automatically every 5 min for 5 h to
record the fluorescence intensity across the observation chan-
nel using a Nikon Ti-E inverted microscope, 10× objective
lenses.

c. Data analysis. For each movie series, we averaged the
fluorescence intensity of each frame along the y axis to obtain
the cell density distribution along the attractant gradients at
each time point. Then we calculated the average distribution
for the period from 0.5 to 3 h. To know where cells peak, after
smoothing and normalization for the spatial distributions, the
high cell densities ρ(x) (above the average value) were used
to calculate w1 and w2 as described in the text and assigned
to one of the four population behaviors according to the w

criterion.
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