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Spontaneous Rotation of Active Droplets in Two and Three Dimensions
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We use numerical simulations and linear stability analysis to study active nematic droplets in the regime where
the passive phase is isotropic. We show that activity leads to the emergence of nematic order and of spontaneous
rotation in both two and three dimensions. In two dimensions the rotation is caused by the formation of a chiral
+1 defect at the center of the drop. With increasing activity, the droplet deforms to an ellipse and then to a rotating
annulus. Growing droplets form extended active arms which loop around to produce holes. In three dimensions
the rotation is due to a disclination which loops away from and back to the surface, defining the rotation axis. In
the bulk the disclination loop ends at a skyrmion. Active extensile flows deform the droplet to an oblate ellipsoid
and contractile flows elongate it along the rotation axis. We compare our results on rotation in two-dimensional
droplets with experiments on microtubule and motor protein suspensions and find a critical radius approximately
equal to 700 µm, above which the spontaneous rotation gives way to active turbulence. Comparing the simulation
parameters with experiments on epithelial cell colonies shows that the crossover radius for cell colonies could
be as large as 2 mm, in agreement with experiments.
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I. INTRODUCTION

There are many examples where small aggregates of living
particles spontaneously rotate. In vivo, persistent angular mo-
tion of Xenopus and Drosophila eggs [1] has been shown to be
essential for proper embryonic development [2]. Multicellular
human mammary cell (MCF10A) spheroids embedded in an
alginate and Matrigel-based extracellular matrix rotate [3] and
there is evidence that the correct formation of spheres of
epithelial cells surrounding a hollow lumen relies on rotation
[4–6]. Rotation has been observed in vitro in experiments on
confined myoblast colonies [7], active microtubule networks
[8], and bacterial systems [9,10] and also in unconfined layers
of cells [11–13] and bacteria [14].

There is increasing interest in interpreting biological phe-
nomena in terms of the theories of active matter [15–19].
Active matter models in two dimensions that lead to collective
rotation include generalized Potts models [13], simulations
of rodlike swimmers [20], agent-based simulations of self-
propelling particles with intrinsic angular velocity [21,22] or
in the presence of randomly distributed obstacles [23], annular
confinements [24,25], and activity gradients [26]. Continuum
simulations have also been able to predict collective rotation
in particular geometries. These include circular confinements
with anchoring conditions that impose net topological charges
[27,28], colonies with an imposed motility difference between
the center and the rim [12], and polar systems [29]. In the
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presence of no-slip and anchoring boundary conditions in
circular confinement, it has been shown that the imposed
+1 defect leads to the formation of circulating currents, and
when activity is larger than a threshold, it leads to oscillatory
behavior of the defects [28].

In three dimensions, continuum simulations have identified
rotation in confined three-dimensional (3D) nematic droplets
with strong passive anchoring [30], in chiral active nematics
[31], and in active polar systems moving on curved surfaces
[32,33]. Agent-based simulations of self-propelling particles
moving on a fixed sphere have also reported the formation of
collective rotation [34,35].

Continuum theories of active nematics have been partic-
ularly successful in describing the properties of microtubule
motor mixtures, bacterial and epithelial cell monolayers
[15,36–44]. Here we describe how this approach can pre-
dict spontaneous rotation in cell aggregates in both two and
three dimensions. We work in the limit, relevant to systems
of isotropic cells, where there is no nematic ordering in the
absence of activity [45,46] and the boundaries at the edge of
the droplets have no imposed confinement or anchoring.

In two dimensions we find a spontaneous transition to
a rotating state above an activity threshold. The rotation is
driven by active shear flow due to director misalignments
which result from the formation of a +1 or two +1/2 topo-
logical defects at the center of the droplet. Increasing activity
elongates the droplets and can lead to lumen (hole) formation
at the droplet center.

We also observe rotation in 3D droplets, with a disclination
loop forming along the axis of rotation. The resultant active
flows extend the droplet along (perpendicular to) the rotation
axis for extensile (contractile) active forcing.

We first introduce the equations of motion. We then per-
form a linear stability analysis to find the onset of collective
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motion and explore the phase diagram of 2D active isotropic
droplets in terms of surface tension, droplet radius, and activ-
ity. We also discuss the role of growth in the emergence of the
different dynamical steady states. In the next section of the pa-
per, we study the behavior of active isotropic droplets in three
dimensions in the absence and presence of growth. Finally, we
discuss our results and compare them to experiments.

II. EQUATIONS OF MOTION

To investigate the dynamical behavior of colonies in two
and three dimensions, we solve the continuum equations of
motion for an active nematic droplet. The relevant hydro-
dynamic variables are an orientational order parameter Q =
Sd (nn − I/d )/(d − 1), which describes the magnitude S and
direction of the nematic order n in d dimensions, the concen-
tration of the active material φ, and the velocity u [47].

The dynamics of the nematic tensor is governed by [48]

(∂t + u · ∇)Q − S = γ H, (1)

where γ is the rotational diffusivity and S is the corotational
advection term that accounts for the impact of the strain rate
E = (∇uT + ∇u)/2 and vorticity � = (∇uT − ∇u)/2 on the
director field. The corotational advection has the form

S = (λE + �) ·
(

Q + I
d

)
+

(
Q + I

d

)
· (λE − �)

− (d − 1)λ

(
Q + I

d

)
(Q : ∇u), (2)

where the flow-aligning parameter λ controls the coupling be-
tween the orientation field and the flow, determining whether
the nematogens align or tumble in a shear flow. The relax-
ation of the orientational order is described by a free energy
F = ∫

fQdV through the molecular field

H = −
(

δ fQ

δQ
− 1

3
I Tr

δ fQ

δQ

)
. (3)

The nematic free-energy density is

fQ = A
2

Q2 + B
3

Q3 + C
4

Q4 + KQ

2
|∇Q|2. (4)

We choose A, B, and C so that the passive system is in the
isotropic phase in equilibrium. In active systems in experi-
ment, one can look at the magnitude of the nematic order
in the absence of activity to infer if free energy favors the
isotopic or nematic phase. For example, it has been observed
in the experiments performed in [49] that, without activity,
microtubules form an isotropic phase and the presence of
activity leads to the formation of nematic order. Another ap-
proach is to use machine learning to find the values of the
parameters related to the bulk free energy. This has been used
for a microtubule motor protein system in Ref. [50], where it
was again shown that the ground state of the free energy favors
an isotropic phase. This regime is also relevant to epithelial
cells, such as MDCK strains, which are, on average, isotropic.

The final term in Eq. (4) encodes the elastic free-energy
density due to spatial inhomogeneities in the nematic tensor.
We assume a single Frank elastic constant KQ [47].

The concentration field φ defines the position of the ne-
matic droplet, with φ = 1 corresponding to the active phase

and φ = 0 to the passive phase. It evolves according to [51]

∂tφ + ∇ · (uφ) = �φ∇2μ + kdφ, (5)

where the mobility �φ quantifies how fast the concentration
field responds to gradients in the chemical potential μ =
∂ fφ
∂φ

− ∇ · ( ∂ fφ
∂∇φ

), and the last term is a source term which de-
scribes droplet growth. The concentration free-energy density
is

fφ = Kφ

2
|∇φ|2 + A

2
(φ − 1)2φ2, (6)

where Kφ and A control the surface tension and interface
width.

The dynamics of the velocity field is governed by the
incompressible Navier-Stokes equations, which read

ρ(∂t + u · ∇)u = ∇ · �, (7)

∇ · u = 0. (8)

Here ρ is the density and � is a generalized stress tensor that
has both passive and active contributions. The passive part
of the stress includes the viscous stress �visc = 2ηE, elastic
stress

�elastic = −PI + 2λQ(Q : H ) − λH · Q − λQ · H

− ∇Q :
δ f

δ∇Q
+ Q · H − H · Q, (9)

and capillary stress due to the inhomogeneous concentration
field

�capillary = ( fφ + fQ − μφ)I − ∇φ

(
∂ fφ
∂∇φ

)
. (10)

In the equations for the passive stress, P is the isotropic
pressure and η is the viscosity [48].

The active stress drives changes in the flow field caused
by continuous energy injection at the microscopic scale. The
activity generates flows for nonzero divergence of the nematic
tensor, and the active stress takes the form [52]

�act = −ζQφ. (11)

The parameter ζ determines the strength of the activity. Ex-
tensile (contractile) activity is represented by ζ > 0 (ζ < 0).
It has been previously shown that phase field models and ver-
tex models, which explicitly resolve individual cells, show a
similar behavior to continuum models, such as formation and
annihilation of defects, and velocity and director correlations
that decay over a scale much larger than cell size if active
nematic driving is added (see [53–55]), and recent work is
aimed at investigating the mapping between the models in
more detail [56,57].

The equations of active nematohydrodynamics are solved
using a hybrid lattice Boltzmann and finite-difference method
[58,59], with the discrete space and time steps defining the
simulation units. See the Supplemental Material in [60]
for the list of parameters and initial conditions. For all the
simulations, we use the same set of parameters unless stated
otherwise.
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FIG. 1. (a) In droplets that are in the nematic phase (S0 ∼ 1), when the elastic constant is large, the droplet elongates (top) [62,63]. The
direction of elongation is along the nematic order in extensile systems and perpendicular to that in contractile systems. For smaller elastic
constants, the vorticity � destabilizes the nematic phase and leads to the formation of defects. The defects lead to interfacial instabilities
[19,63]. (b) In systems in which the free energy favors an isotropic phase, the strain rate E leads to the creation of nematic order and instability
of the isotropic phase. When confined to a droplet, activity leads to spontaneous rotation without the need to impose any topological charge at
the interface [11]. The blue dashed line with arrows shows the direction of rotation of the droplet. (c) Emergence of spontaneous rotation in
active isotropic droplets in the plane of activity ζ and scaled elastic constant KQ/�2

0, where �0 is the droplet radius. The black line is a linear fit
to the data. Here we have chosen a large surface tension to avoid droplet deformation.

III. TWO DIMENSIONS

A. Linear stability analysis

As a first step towards understanding the behavior of the
isotropic droplet, we perform a linear stability analysis around
an inert isotropic phase, Q = 0 + δQ and u = 0 + δu, and
study the growth rate of perturbations in δQ and δu. Since
we are working in a low-Reynolds-number regime, we use an
overdamped approximation and ignore density fluctuations.
We also consider a free-energy cost for the formation of the
nematic phase. Introducing the Fourier transform for any fluc-
tuating field f as f (r, t ) = ∫

dω dq f̃ (q, t )ei(q·r+ωt ), Fourier
transforming Eqs. (1), (7), and (8) gives

iωδQ̃xx −
(

B1 + ζλ sin2 2θ

2η

)
δQ̃xx − B2δQ̃xy = 0,

iωδQ̃xy −
(

B1 + ζλ cos2 2θ

2η

)
δQ̃xy − B2δQ̃xx = 0, (12)

where the wave vector q = q(cos θ, sin θ ), B1 = γ (A +
KQq2), and B2 = (ζλ sin 4θ )/4η. From Eq. (12) the growth
rate of the perturbations is

�(ω1) = −γ (A + KQq2), (13)

�(ω2) = ζλ

2η
− γ (A + KQq2). (14)

These equations show that nematic perturbations are sup-
pressed by elasticity KQ and the free-energy term A that favor
an isotropic phase. Conversely, �(ω2) also includes a term,
depending on activity ζ , that destabilizes the isotropic phase.
We note that this differs from the instabilities of the isotropic
phase in a regime where friction is dominant over viscosity
and viscous flows can be ignored [61]. In particular, in the

frictional regime activity appears as a second-order term ζq2

in the growth rate, whereas in our system activity appears as a
first-order term ζq0.

For an active system confined to a droplet, the largest wave
vector corresponds to the inverse of the droplet size q ∼ 1/�0.
Figure 1(c) displays simulation results for the onset of nematic
ordering and rotation in active droplets showing the expected
collapse of the data to a line predicted by Eq. (14) when
plotted in terms of KQ/�2

0 for fixed A. At the linear level, the
velocity inside the droplet is given by

δũ = iζ

ηq2

(
q · δQ̃ · q

q
− q · δQ̃

)
. (15)

This shows that once perturbations in the nematic order
grow and the nematic order parameter becomes nonhomo-
geneous, the velocity inside the droplet becomes nonzero.
Equation (14) shows that perturbations in the nematic tensor
and the rotational flows grow due to shear, through the tum-
bling parameter λ. In Fig. S3 in the Supplemental Material
[60], we confirm this by performing simulations where we
ignore the vorticity terms � · Q − Q · � and consider only the
strain rate E. The graphs show that without vorticity the angle
between the director and the radius of the droplet is equal to
π/4. This means that there is a spiral defect at the center of the
droplet. The presence of vorticity decreases (increases) the an-
gle in contractile (extensile) systems as contractile (extensile)
activity produces splay (bend) when nematic order is formed.

In the linear stability analysis presented here, we ignore
the effect of the instabilities that can appear in the con-
centration field. The active instabilities that can form at the
interface of droplets are also interesting and have been stud-
ied using numerical simulations in [19] and using analytical
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FIG. 2. (a) Dynamical steady states of a 2D droplet as a function of the surface tension parameter Kφ . For large Kφ a circular droplet is stable
and undergoes spontaneous rotation (green diamonds). Upon decreasing Kφ , the central +1 defect splits into two +1/2 defects and the circular
droplet deforms into an ellipse (red circles). Decreasing Kφ further, the droplet forms a hole and the +1 defect disappears (yellow stars). The
simulations are started from a homogeneous concentration, which leads to the formation of a droplet with radius �0 = 70. A two-dimensional
phase diagram as a function of elasticity KQ and surface tension coefficient Kφ is shown in Fig. S1(a) in Ref. [60]. (b) Here �1 and �2 (r1 and
r2) are defined as the smaller and the larger outer (inner) radius of the droplet, respectively. The remaining panels demonstrate the hysteretic
nature of the transitions: In (c) the initial condition (for each data point) is a droplet of radius 70; in (d) the initial condition is an annulus. The
blue dashed lines with arrows show the direction of rotation of the droplet.

calculations in [64]. Interface instabilities do not happen at
a linear level when there is no anchoring at the interface
and S0 = 0 [64]. In agreement with this, we do not see any
interface instabilities before the formation of the order and
rotation in our simulations.

In our droplet with an isotropic ground state Q remains
small and the active dynamics of the nematic tensor can be
approximated by ∂t Q ∼ λE [see Eq. (2)]. In an isotropic
droplet, the instability is caused by the strain rate that leads
to formation of a nematic phase and a spiral defect and spon-
taneous rotation. We would like to emphasize that formation
of spontaneous rotation can only be observed in isotropic
droplets. Unconfined droplets that are in a nematic phase
without activity either elongate or form active turbulence and
interface instabilities [19,62].

B. Dynamical steady states

Beyond the linear regime, surface tension becomes im-
portant in controlling droplet behavior and the drop shape
becomes more complex. The possible steady-state droplet
configurations are illustrated in Fig. 2 for varying surface

tension Kφ for fixed activity ζ = 0.01 and an active area
equivalent to �0 ≈ 70 for the case of a single circular droplet.

As expected, for large values of the surface tension droplets
remain circular and active flows form a chiral +1 defect at
the center of the droplets and lead to spontaneous rotation
[see Movie 1 and Fig. 2(a), green diamonds]. As the sur-
face tension is decreased the droplet deforms to a rotating
ellipse and the chiral +1 defect splits into two +1/2 defects
[Movie 2 and Fig. 2(a), red circles].

A further decrease in surface tension shifts the steady state
to a droplet with a hole at its center [Fig. 2(a), yellow stars].
Within the active annulus, the nematic director still has a
chiral orientation and, as a result, the ring of active material
rotates (Movie 3).

Figure S4 in the Supplemental Material [60] compares
contributions to the droplet free energy as the activity is
increased. The figure shows that droplet elongation and the
separation of the two +1/2 defects as the activity increases
leads to a decrease in the elastic energy. The surface tension
energy remains almost unchanged, but shows a sudden jump
when the hole forms. The decrease in the elastic free-energy
density is not large enough to compete with the increase in the
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surface free-energy density; therefore the hole formation can
be identified as an active process.

C. Hysteresis

To quantify the change in the shape of the droplet, in
Fig. 2(b) we define �1 and �2 (r1 and r2) as the smaller and
larger outer (inner) radii of the droplet. In Fig. 2(c) we start
the simulations from a circular droplet for each value of the
surface tension and measure �1 and �2. Decreasing the surface
tension, the droplet first elongates and then forms a hole. By
contrast, in Fig. 2(d) we start the simulations from an annulus
droplet and measure r1 and r2 as a function of surface tension.
As expected, for large values of surface tension, the annulus
collapses back to a configuration with no hole. Decreasing
the surface tension, the radius of the active annulus increases.
The same sequence of transitions, from circle to ellipse to the
annulus, is seen as the activity or the drop radius is increased
(Figs. S4 and S5 in the Supplemental Material [60]).

Figures 2(c) and 2(d) show that the system has consider-
able hysteresis, with the steady state depending strongly on
the initial conditions. In particular, the elliptical configuration
can be reached from an initial circle, but not from an annulus
as the surface tension is increased.

In Fig. 3 we show similar hysteresis as a function of activ-
ity. We measure �1 and �2 as a function of activity, starting
from two different initial conditions, a circular droplet and
an annulus. The graph shows that there is a range of activity,
0.008 < ζ < 0.01, for which the steady state in the simula-
tions preserves the topology of the initial condition, forming
a rotating elongating droplet without or with a hole. For very
large activity ζ � 0.01, the circular droplets also create a hole.

D. Growing droplets

The theories of active nematohydrodynamics have proved
successful in modeling the dynamics of bacteria and ep-
ithelial cell layers. These are systems where cell division is
relevant and therefore it is interesting to study the configu-
rations of growing active droplets. We consider parameters
where the timescale for the growth is much larger than
the active timescale tg = 1/kd > ta = η/ζ (2 × 106 > 102).
Without any temporal perturbations, the drop grows symmet-
rically and the growth suppresses rotation and hole formation.

However, this behavior changes when we add a uniform
noise in the concentration field of magnitude |δφ| < 0.1 every
�T = 30 000 time steps. Figure 4 shows snapshots from sim-
ulations of a growing droplet (see also Movie 4). The initial
radius of the droplet is sufficiently small that the droplet is
isotropic and inert at the beginning of the simulations (t1).
As the droplet grows, it forms a vortex at the center and
starts rotating (t2). As it becomes larger, it accommodates
more than one internal vortex and the interface of the droplet
starts deviating from a circle (t4). When the droplet becomes
larger, still active flows become strong enough to initiate the
formation of arms that fold and form holes (t5–t12). In the
opposite regime where the growth timescale is smaller than
the active timescale, we do not see rotation and hole formation
as the growth suppresses the rotational flows created by the
activity.

FIG. 3. Hysteretic nature of the transitions as activity is varied.
In (a) the initial condition is a droplet of radius 70 (for each data
point); in (b) the initial condition is an annulus with the same amount
of active material and inner radius 40. Here �1 and �2 are the smaller
and the larger outer radius of the droplet, respectively. In both (a) and
(b) Kφ = 0.05. See the Supplemental Material [60] for all the pa-
rameters. The blue dashed lines with arrows show the direction of
rotation of the droplet.

IV. THREE DIMENSIONS

We next investigate whether spontaneous rotation can also
be observed in 3D isotropic droplets. Figure 5(a) shows how
the steady states of the droplet vary for different values of
activity. First we observe, as in two dimensions, that for very
small values of activity, the isotropic phase is stable and the
droplet does not show any collective behavior. Increasing ac-
tivity, nematic order emerges and the droplet starts rotating
[orange stars in Fig. 5(a)] for both extensile and contractile
driving. As it is clear from Eq. (14), for the formation of
the nematic order, we need ζλ > 0, which means in extensile
systems we have chosen ζ , λ > 0 and in contractile systems
ζ , λ < 0.

The rotation is caused by a disclination, which loops from
the surface into the bulk and back to the surface and which
defines the axis of rotation [Fig. 5(b)], which we take to be the
z axis, with the positive z direction from the center of the drop
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FIG. 4. Dynamics of an isotropic growing droplet. The blue background color shows the concentration of the active material and the arrows
show the velocity field. The holes (e.g., yellow outline in t8) result from the formation of isotropic arms (e.g., red outline in t8) that fold. The
green arrows show the direction of time. The snapshots are close-up views. Here we use Kφ = 0.1. A two-dimensional phase diagram as a
function of activity ζ and surface tension coefficient Kφ is shown in Fig. S1(b) in Ref. [60].

towards the ends of the defect line. Measuring the director
field in cross sections perpendicular to the rotation axis shows
two +1/2 defects close to the droplet surface which merge
into a +1 defect further from the surface [Figs. 5(c) and 5(d),
top and middle panels]. Beyond the point where the loop
terminates in the bulk, the director configuration is a skyrmion
[Figs. 5(c) and 5(d), bottom panel]. The difference between a
+1 defect and a skyrmion is that the magnitude of the order
goes to zero at the center of the former, whereas it remains
large and points out of the cross-sectional plane for the latter.

The details of the director field measured on planes perpen-
dicular to dislocation lines have been shown to vary between
extensile and contractile systems; twist-type configurations,
where the director points out of the cross-sectional plane, are
more common in extensile systems [65,66]. We quantify this
in terms of the twist angle β, defined as the angle between the
rotation vector � and the vector t̂ tangent to the disclination
line [Fig. 5(e)]. For +1/2 (−1/2) defects, � is parallel (an-
tiparallel) to t̂ and cos β = 1 (cos β = −1). The out-of-plane
twist component is maximal for cos β = 0. In Fig. 5(f) we plot
the distribution of cos β in extensile and contractile droplets,
showing clearly that twist sections of the disclination line are
more common in the extensile case.

The disclination line is responsible for active forces and
flows that differ in direction between extensile and contractile
droplets. Recall from Eq. (11) that the active force density
is −ζ∇ · Q, where ζ > 0 (ζ < 0) in extensile (contractile)
systems. Thus the force along the z axis is Fz = −ζ∂zQzz

(noting that the derivatives along perpendicular axes are zero
by symmetry). As Qzz decreases in the z direction, from a
positive value at the center of the skyrmion to zero at the
center of the defect, Fz is positive (negative) in extensile (con-
tractile) systems. Measuring the z components of the flows
[Fig. 5(g)] indeed shows that large flows are along +z in ex-
tensile droplets and −z in contractile droplets. A consequence
of this is that the disclination lines are shorter in extensile
systems than in contractile systems [Fig. 5(h)]. In Fig. S6

in the Supplemental Material [60] we display the average
velocity field parallel and perpendicular to the disclination
line inside the drop.

Stronger active flows alter the shape of the droplet. An
initially spherical extensile droplet deforms to an oblate
spheroid, contracting along the z axis [red stars in Fig. 5(a)].
This makes it easier for the two twist defects in the two
arms of the dislocation line to separate. A further increase in
extensile activity then leads to droplet breakup [blue circles
in Fig. 5(a)]. By contrast, for contractile activity, the +1/2
defects are more stable [65] and the disclination line pushes
the active fluid towards the skyrmion; as a result, the droplet
forms an arm that grows towards the skyrmion [green triangles
in Fig. 5(a)].

Similar shape changes are seen when we consider growing
drops for which the growth timescale τg = 1/kd = 2 × 105

is much larger than activity timescale τa = η/ζ ∼ 102. The
droplet growth is illustrated in Fig. 6 and Movies 5–7. As
before, extensile droplets grow to oblate shape. Contractile
droplets grow to prolate shape or, for lower surface tension,
form an arm in the direction of the disclination line. The
rotation and growth of the 3D contractile droplets is reminis-
cent of the unidirectional egg chamber elongation observed in
Drosophila [1]. For growth which is very rapid compared to
the active timescale, no rotation or droplet shape changes are
observed.

We now comment briefly on droplets that have a
smaller value of the elastic constant (KQ = 0.02 and Kφ =
0.02, 0.02 < |ζ | < 0.04). For these parameters, the disclina-
tion remains as a single line with cross sections that look
like +1 defects in the plane perpendicular to the disclination
line. The droplet shapes are more stable and the rotation is
accompanied by a self-propulsion due to the active flows
along z. As expected, extensile and contractile droplets move
in opposite directions with respect to the orientation of the
central disclination line. The more stable shape of the droplets
is caused by the stability of the +1 disclination line, which in
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FIG. 5. (a) Dynamical steady states of a 3D isotropic droplet. The pink background color indicates regions in which the droplet
spontaneously rotates. Increasing the magnitude of the activity from zero leads to spontaneous rotation. A further increase in the magnitude of
the activity in extensile droplets leads to the formation of an oblate ellipsoid. In contractile droplets, increasing activity leads to the formation
of arms. Both extensile and contractile droplets break up at high activities (only shown for the extensile case here). A two-dimensional phase
diagram as a function of activity ζ and surface tension coefficient Kφ is shown in Fig. S2(a) in Ref. [60]. (b) Snapshot of a 3D rotating droplet
with a stable disclination line. The blue dashed lines with arrows show the direction of rotation of the droplet. Disclination is color coded
by cos β, where β is the twist angle. The green line shows the skyrmion. (c) Director field in different cross sections along the disclination
line. The color shows the magnitude of the nematic order. (d) Schematic of the director field around the disclination line in the different cross
sections. The cyan points show the center of the defects. Due to the elastic interaction between different cross sections, the skyrmion has
the same handedness as the disclination line. (e) The vector around which the director rotates looping around a defect is shown by �. The
twist angle β is defined as the angle between � and the vector t̂ along the disclination line. (f) Distribution of cos β in extensile (top) and
contractile (bottom) droplets. Twist defects are more common in extensile systems. (g) Breakdown of apolar symmetry due to the positioning
of the disclination line on one side of the droplet leads to flows along the disclination line. The flows are along +z in the extensile system and
−z in the contractile case. (h) Distribution of the lengths of the disclination line in extensile and contractile systems. In extensile systems, the
disclination lines are shorter, as the active flows are in the +z direction. Here we use KQ = 0.05, Kφ = 0.02, and �0 = 20. (i) Distribution of
cos μ = t̂ · ν̂, where ν̂ shows the direction of the rotation axis.

a regime with larger elastic constant would form +1/2 and
twist-type sections that lead to chaotic flows.

Moreover, in the contractile case for larger activities
(−0.05 < ζ � −0.04) we observed a wave that propagates
along the disclination line [Fig. 6(d) and Movie 8]. This is
caused by the rotation of the two +1/2 defects in the cross
section around each other as also observed in two dimensions.

In extensile systems, +1/2 defects are not stable and twist
regions in the defect loops suppress the wave.

Finally, in this regime of small elasticity, for specific
values of the parameters (Kφ = 0.06 and −0.06 < ζ �
−0.04), we observe an unusual phase in which defect loops
form and move toward the rotation axis. This is shown in
Fig. 6(e).
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FIG. 6. (a) A growing extensile droplet forms a rotating oblate ellipsoid. (b) A growing contractile droplet forms a rotating prolate ellipsoid.
(c) For smaller values of surface tension (Kφ = 0.01), a contractile growing droplet forms an arm. (d) Snapshot of a droplet where a wave is
moving along the disclination line and corresponding director configuration in the yellow plane perpendicular to the disclination line showing
two +1/2 defects which rotate around each other. The background color shows the magnitude of the nematic order. (e) Snapshot showing
disclination loop creation. Disclination lines located at two sides of the droplet shoot disclination loops along its symmetry axis. Disclinations
are color coded by cos β, where β is the twist angle. The blue dashed lines with arrows show the direction of rotation of the droplets and the
black line shows the rotation axis. We use Kφ = 0.01 in (c). For all the other plots, we use a larger surface tension Kφ = 0.02. A phase diagram
as a function of activity ζ and surface tension coefficient Kφ is shown in Fig. S2(b) in Ref. [60].

V. LATTICE BOLTZMANN LENGTH SCALES
AND TIMESCALES

In this section, we list length scales and the timescales that
appear in the dynamics in Eqs. (1)–(10).

We assume that activity plays the dominant role in the
stress and that we can ignore the backflow terms that come
from free energy. An approximate value for the velocity u can
then be found from the Navier-Stokes equation (7) in the low-
Reynolds-number regime as u ∼ ζL/η, where L is a relevant
length scale in the problem. Using this as an approximation
for the velocity, we can find other relevant length scales and
timescales as presented in Table I.

It is apparent that there is no separation of length scales,
and as a result, the phase diagram cannot be explained in
terms of one or two dimensionless numbers. There is however
a separation between the growth timescale τg and the active
timescale τa as τg � τa. As a result, the role of the growth
in the dynamics is to add extra material over long times, thus
making it possible for the active flows to form instabilities.

Although parameters that appear in Table I are of the same
order of magnitude, many of these parameters disappear in the
linearized equations, and the formation of the nematic order
due to the activity can be predicted by a dimensionless number

found in Eq. (14). In an infinitely large system (q ∼ 0), the
dimensionless number is equal to ζλ/Aγ η.

VI. COMPARING PARAMETER VALUES
TO EXPERIMENTS

The nematohydrodynamic equations follow from sym-
metry arguments and obtaining quantitative values for the

TABLE I. Length scales and timescales of Eqs. (1)–(7).

Length scale Definition

Defect length scale �Q = √
KQ/A ∼ 3

Nematic length scale �c = √
KQ/C ∼ 4

Active length scale �ζ = √
KQγ η/λζ ∼ 3

Interface length scale �φ = √
Kφ/A ∼ 1

Advection length �φζ = (�φKφη/ζλ)1/4 ∼ 2

Timescale Definition

Active timescale τa = η/ζλ ∼ 103

Growth timescale τg = 1/kd ∼ 106
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TABLE II. Comparison of parameter values from simulations
and experiments.

Variable Simulations Microtubule suspension

ρuL/η 10−3–10−4 0
λ 0.7 0.37–0.93
ζ/η 10−3�t−1 0.02–0.5 s−1

γA 3 × 10−4�t−1 0.04–0.16 s−1

equation parameters for any given experimental system is
challenging. However, recent machine-learning approaches
have started to investigate the dynamics of living systems
using coupled partial differential equations [50,67,68]. In
Ref. [50] a machine-learning approach was used to predict
the equations of the nematic tensor and velocity field in an
active microtubule motor protein suspension from experimen-
tal data. The parameters they found showed that the dynamics
can indeed be described by the nematohydrodynamic equa-
tions at low Reynolds number with a positive activity ζ > 0, a
nonzero flow-aligning parameter λ > 0, and with an isotropic
ground state, as in the model we use here. They also found
the ratio between activity and viscosity for different concen-
trations of ATP. A comparison between the parameters in our
simulations and those extracted from the experiments is given
in Table II.

The parameters used in the simulations are in lattice Boltz-
mann units. To map to physical units, we need a physical
reference scale for three independent lattice Boltzmann pa-
rameters, such as lattice spacing �x, time step �t , and
viscosity η [69]. Table I suggests that if we choose �t to be in
the interval 0.002 s � �t � 0.01 s, our system is in the same
range of parameters as in the experiments. For this choice of
time step �t , the total time of our simulations is between 2
and 9 h.

Another recent paper has used compliant elastic inclusions
in an active tubulin-kinesin suspension to directly measure
the magnitude of the activity, viscosity, and elastic constant
to be ζ ∼ (0.2–2) × 10−7 Pa m, η ∼ (4–10) × 10−6 Pa s m,
and KQ ∼ (4–10) × 10−16 N m, respectively [70]. Using a
temporal grid �t ∼ 0.01 s, a force scale �F ∼ 100 pN, and
a spatial grid scale �x ∼ 10 µm, the parameters used in our
simulations are ζ ∼ 10−7 Pa m, η ∼ 10−6 Pa s m, and KQ ∼
10−16–10−17 N m, which matches well with the measurements
in these experiments.

Given this mapping to physical units, our simulations
show that rotation can appear in droplets with �0 < 70LB =
700 µm. For larger droplets, when surface tension is suffi-
ciently large to keep the droplet shape stable, active turbulence
appears and suppresses the spontaneous rotation. Indeed, ex-
periments on active microtubule kinesin motor suspensions
confined to a circular boundary have reported a similar crit-
ical radius of l0 ∼ 800 µm, above which spontaneous rotation
stops and active turbulence forms [71].

Since spontaneous rotation has been observed in many
experiments on epithelial colonies, we now compare our pa-
rameters with relevant measurements in epithelial systems.
In Ref. [72] a viscous active fluid model, similar to ours,
along with simultaneous measurements of local stresses and

velocities of an epithelial layer has been used to estimate the
shear viscosity η ∼ 1–10 Pa s m. A typical order of magnitude
of the contractile stresses for a 2D actomyosin system is of
the order of ζ ∼ 5 × 10−3 Pa m [73], for a thickness about
the cell size (i.e., h ∼ 5 µm). This value is comparable to
the typical traction stress of adhesive cells [74]. Assuming
similar values for epithelial layers, the activity to shear vis-
cosity ratio of epithelial layers can be estimated as ζ/η ∼
10−4–10−3 s−1. The effect of the elasticity of the epithelial
cells in the dynamics of their orientation has been estimated
in Ref. [75] to be of the order of γ KQ ∼ 10−14 m2/s. A
mapping between the lattice Boltzmann units and epithe-
lial cell colonies (20 s < �t < 200 s, 10 µm < �x < 28 µm,
and 5 × 10−6 N < �F < 1.4 × 10−5 N) leads to a critical
radius 700 µm < �c

0 < 2 × 103 µm above which spontaneous
rotation stops. These calculations show that epithelial cells
can rotate in much larger circular colonies than microtubule
kinesin motor droplets. In agreement with this result, sponta-
neous rotation has been observed in gigantic millimeter-scale
epithelial colonies in Ref. [12].

VII. DISCUSSION

We have solved the equations of active nematohydrody-
namics to investigate the spontaneous rotation of unconfined
droplets in both two and three dimensions. We worked in a
regime where the passive material has an isotropic director
field and nematic ordering is a consequence of active flows.
To check this in experiments, one can measure the magnitude
of the nematic order in the absence of activity. Indeed, it
has been observed that activity can lead to the formation of
nematic order in otherwise isotropic cell monolayers [38,39].
Formation of the nematic order by active flows has also been
observed in microtubule and kinesin suspensions [49].

The activity leads to spontaneous rotation in 2D droplets.
Using linear stability analysis, we showed that the critical
activity needed for the formation of order and collective mo-
tion scales linearly with KQ/�2

0, where KQ and �0 are the
elastic constant and the radius of the droplet, respectively.
The rotation is caused by a chiral +1 defect, which can split
into a chiral configuration of two +1/2 defects [28,71]. De-
creasing surface tension or increasing activity leads to droplet
elongation and then hole formation and a rotating annulus.
The parameters for which the hole forms depend strongly on
the initial conditions. Our simulations predict that typically
a droplet with surface tension kφ ∼ 10−17–10−16 N m, ac-
tivity ζ ∼ 10−7 Pa m, and flow-aligning parameter λ ∼ 0.7
becomes unstable and forms a hole when the radius of the
droplet is �0 ∼ 700 µm.

Many experiments have observed the rotation of small cell
colonies. At confluent but low densities, confined C2C12 my-
oblasts self-organized into spiral defect configurations with
persistent rotation [7]. Heinrich et al. [12] observed rotation
in circular colonies, also of epithelial cells with a spiral +1
defect at the center; in this paper, a polar model was used to
explain the experimental data. Formation of spiral +1 defects
and rotation has also been observed in sea urchin eggs where
microtubules order to form spiral +1 defects which drive
cytoplasmic flows [8,76]. Rotation has also been observed in
confined confluent MDCK epithelial cells [77] and in growing
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colonies of T84 cells, as long as the colonies were small and
approximately circular [11]. In the latter case, the results were
interpreted in terms of an active nematic model.

In addition to cell and bacterial colonies, rotation can also
be observed in biofilaments and motor protein suspensions
[36,76,78,79]. In particular, in agreement with our results,
in Ref. [80] a microtubule and kinesin motor suspension in-
side an annulus was studied and it was shown that when the
anchoring strength is low, microtubules form a spiral con-
figuration with a nonzero but constant velocity. We predict
that starting from a low motor concentration and increasing
the concentration could lead to a transition from an isotropic
phase where microtubules point in a random direction to a
spiral configuration with a director that has an angle θ ∼ 45◦
from the radial direction and finally to a configuration with
θ > 45◦ (see Fig. S3).

Finally, the formation of a hole and rotating annulus has
also been observed in bacterial suspensions in low concentra-
tion where the passive interaction (excluded volume) does not
lead to nematic order [14]. Since bacteria are extensile (ζ > 0)
and elongated (λ > 0), it is very likely that the formation of
rotation and a hole is caused by the same mechanism we
introduced here. This could be confirmed by measuring the
activity, elastic constant, surface tension, and droplet size in
these experiments and comparing them with our values.

Our simulations predict that the activity also leads to the
formation of nematic order and unidirectional rotation in three
dimensions. In three dimensions, a disclination line is formed
which loops from the surface into the bulk and back to the
surface and defines the axis of rotation. Beyond the point
where the disclination loops back, the rotation axis is marked
by a skyrmion.

In extensile systems, the disclination line has large twist
sections, and cross sections with +1 defect configurations are
less favored. As a result, the two arms of the disclination line
increase their distance apart and the droplet elongates perpen-
dicular to the disclination line. In contractile systems, on the
other hand, +1/2 defects in disclination line cross sections are
more stable and the disclination line has stable sections with
charge +1 in the planes perpendicular to the disclination line.
We showed that activity leads to formation of flows along the
disclination line. These tend to lengthen the disclination line
in contractile systems and shrink it in extensile systems. As a
result of this and the different director configurations, exten-
sile droplets tend to form oblate ellipsoids whereas contractile
droplets tend to elongate along the rotation axis.

In three dimensions, spontaneous persistent rotation has
been observed in several biological contexts. Small spherical

tissues rotate, an effect often termed coherent angular motion
in the literature. Palamidessi et al. [81] observed rotation in
cancer spheroids of radius ∼100 µm and Brandstätter et al.
[3] in spheroids of similar dimensions consisting of human
mammary cells.

Persistent rotation has also been observed in several exper-
iments on epithelial spheres. Epithelial gland morphogenesis,
where cylindrical branches transform into spherical alveoli
during growth, is a morphogenetic transition that is accom-
panied by rotation of the emerging alveoli [82]. Epithelial
spheres in pancreas-derived organoids also exhibit persistent
rotation. Similarly to our model, the rotation is caused by
spontaneous chiral symmetry breaking [83], suggesting the
absence of boundary-imposed topological charge.

When MDCK cells proliferate in a gel, they first form a
spherical cluster and then a cyst that consists of cells at the
boundary of the sphere [84,85]. Active K-RAS induces rota-
tion in the cell cluster and β-catenin plays an important role in
the rotation of the cyst. The epithelial cell layer that lines the
Drosophila egg chamber also rotates during development [1],
possibly to align fibril-like structures in the basement mem-
brane surrounding the egg and to promote egg elongation. In
Ref. [84] it was shown that Fat2 and Lar signaling promotes
epithelial motility and leads to rotation in the Drosophila fol-
licular epithelium. To compare the mechanism of the rotation
with our simulations, it would be interesting to study cell
elongation and nematic order in the presence and absence of
these signals.

There are still many questions about both the physical
description of the rotations and possible biological advantages
they confer. It would be of interest to look experimentally
for the changes in shape and hole formation in 2D colonies,
predicted here, which are most likely to be observed in
highly active cellular systems or active filaments and bacterial
suspensions that form an isotropic phase in the absence of ac-
tivity. Our numerical results suggest that it is easier to observe
a stable hole if the experiments start with a circular colony (or
suspension of active filaments or bacteria) that initially has a
hole, as in this regime the stable hole is accessible over a larger
parameter span. In 3D experiments with rotating colonies, it
would be interesting to measure and compare experimental
values of activity, elasticity, and flow aligning parameter with
the ones predicted by our model.

ACKNOWLEDGMENT

M.R.N. acknowledges support from Clarendon Fund
Scholarships.

[1] M. Cetera, R.-S. Juan, R. Guillermina, P. W. Oakes, L.
Lewellyn, M. J. Fairchild, G. Tanentzapf, M. L. Gardel, and
S. Horne-Badovinac, Epithelial rotation promotes the global
alignment of contractile actin bundles during Drosophila egg
chamber elongation, Nat. Commun. 5, 5511 (2014).

[2] J. Gerhart, M. Danilchik, T. Doniach, S. Roberts, B. Rowning,
and R. Stewart, Cortical rotation of the Xenopus egg: Con-
sequences for the anteroposterior pattern of embryonic dorsal
development, Development 107, 37 (1989).

[3] T. Brandstätter, D. B. Brückner, Y. L. Han, R. Alert, M. Guo,
and C. P. Broedersz, Curvature induces active velocity waves in
rotating spherical tissues, Nat. Commun. 14, 1643 (2023).

[4] K. Tanner, H. Mori, R. Mroue, A. Bruni-Cardoso, and M. J.
Bissell, Coherent angular motion in the establishment of the
multicellular architecture of glandular tissues, Proc. Natl. Acad.
Sci. USA 109, 1973 (2012).

[5] A. S. Chin, K. E. Worley, P. Ray, G. Kaur, J. Fan, and L. Q.
Wan, Epithelial cell chirality revealed by three-dimensional

023008-10

https://doi.org/10.1038/ncomms6511
https://doi.org/10.1242/dev.107.Supplement.37
https://doi.org/10.1038/s41467-023-37054-2
https://doi.org/10.1073/pnas.1119578109


SPONTANEOUS ROTATION OF ACTIVE DROPLETS IN … PRX LIFE 1, 023008 (2023)

spontaneous rotation, Proc. Natl. Acad. Sci. USA 115, 12188
(2018).

[6] H. Wang, S. Lacoche, L. Huang, B. Xue, and S. K.
Muthuswamy, Rotational motion during three-dimensional
morphogenesis of mammary epithelial acini relates to laminin
matrix assembly, Proc. Natl. Acad. Sci. USA 110, 163 (2013).

[7] P. Guillamat, C. Blanch-Mercader, G. Pernollet, K. Kruse, and
A. Roux, Integer topological defects organize stresses driving
tissue morphogenesis, Nat. Mater. 21, 588 (2022).

[8] K. Suzuki, M. Miyazaki, J. Takagi, T. Itabashi, and S.-I.
Ishiwata, Spatial confinement of active microtubule networks
induces large-scale rotational cytoplasmic flow, Proc. Natl.
Acad. Sci. USA 114, 2922 (2017).

[9] H. Wioland, F. G. Woodhouse, J. Dunkel, J. O. Kessler, and
R. E. Goldstein, Confinement stabilizes a bacterial suspension
into a spiral vortex, Phys. Rev. Lett. 110, 268102 (2013).

[10] W. Chen, N. Mani, H. Karani, H. Li, S. Mani, and J. X. Tang,
Confinement discerns swarmers from planktonic bacteria, Elife
10, e64176 (2021).

[11] F. Ascione, S. Caserta, S. Esposito, V. R. Villella, L. Maiuri,
M. R. Nejad, A. Doostmohammadi, J. M. Yeomans, and S.
Guido, Collective rotational motion of freely expanding T84 ep-
ithelial cell colonies, J. R. Soc. Interface 20, 20220719 (2023).

[12] M. A. Heinrich, R. Alert, J. M. LaChance, T. J. Zajdel, A.
Košmrlj, and D. J. Cohen, Size-dependent patterns of cell pro-
liferation and migration in freely-expanding epithelia, Elife 9,
e58945 (2020).

[13] F. J. Segerer, F. Thüroff, A. Piera Alberola, E. Frey, and J. O.
Rädler, Emergence and persistence of collective cell migration
on small circular micropatterns, Phys. Rev. Lett. 114, 228102
(2015).

[14] D. Nakane, S. Odaka, K. Suzuki, and T. Nishizaka, Large-
scale vortices with dynamic rotation emerged from monolayer
collective motion of gliding Flavobacteria, J. Bacteriol. 203,
e0007321 (2021).

[15] H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E.
Goldstein, H. Löwen, and J. M. Yeomans, Meso-scale turbu-
lence in living fluids, Proc. Natl. Acad. Sci. USA 109, 14308
(2012).

[16] K. Thijssen, M. R. Nejad, and J. M. Yeomans, Role of friction
in multidefect ordering, Phys. Rev. Lett. 125, 218004 (2020).

[17] T. H. Tan, A. Mietke, J. Li, Y. Chen, H. Higinbotham, P. J.
Foster, S. Gokhale, J. Dunkel, and N. Fakhri, Selection mech-
anism at the onset of active turbulence, Nature (London) 607,
1476 (2022).

[18] F. Vafa and L. Mahadevan, Active nematic defects and epithelial
morphogenesis, Phys. Rev. Lett. 129, 098102 (2022).

[19] H. Xu, M. R. Nejad, J. M. Yeomans, and Y. Wu, Geometrical
control of interface patterning underlies active matter invasion,
Proc. Natl. Acad. Sci. USA 120, e2219708120 (2023).

[20] E. Lushi, H. Wioland, and R. E. Goldstein, Fluid flows
created by swimming bacteria drive self-organization in con-
fined suspensions, Proc. Natl. Acad. Sci. USA 111, 9733
(2014).

[21] B. Liebchen and D. Levis, Collective behavior of chiral active
matter: Pattern formation and enhanced flocking, Phys. Rev.
Lett. 119, 058002 (2017).

[22] B. Liebchen and D. Levis, Chiral active matter, Europhys. Lett.
139, 67001 (2022).

[23] D. Vahabli and T. Vicsek, Emergence of synchronised rotations
in dense active matter with disorder, Commun. Phys. 6, 56
(2023).

[24] S. Lo Vecchio, O. Pertz, M. Szopos, L. Navoret,
and D. Riveline, Spontaneous rotations in epithelia
as an interplay between cell polarity and boundaries,
bioRxiv:10.1101/2021.11.11.468187.

[25] S. Jain, V. M. L. Cachoux, G. H. N. S. Narayana, S. de Beco,
J. D’Alessandro, V. Cellerin, T. Chen, M. L. Heuzé, P. Marcq,
R.-M. Mège et al., The role of single-cell mechanical behaviour
and polarity in driving collective cell migration, Nat. Phys. 16,
802 (2020).

[26] K. Copenhagen, G. Malet-Engra, W. Yu, G. Scita, N. Gov, and
A. Gopinathan, Frustration-induced phases in migrating cell
clusters, Sci. Adv. 4, eaar8483 (2018).

[27] M. M. Norton, A. Baskaran, A. Opathalage, B. Langeslay, S.
Fraden, A. Baskaran, and M. F. Hagan, Insensitivity of ac-
tive nematic liquid crystal dynamics to topological constraints,
Phys. Rev. E 97, 012702 (2018).

[28] F. G. Woodhouse and R. E. Goldstein, Spontaneous circulation
of confined active suspensions, Phys. Rev. Lett. 109, 168105
(2012).

[29] K. Kruse, J. F. Joanny, F. Jülicher, J. Prost, and K. Sekimoto,
Asters, vortices, and rotating spirals in active gels of polar
filaments, Phys. Rev. Lett. 92, 078101 (2004).
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