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Cell neighbor exchanges play a critical role in regulating tissue fluidity during epithelial morphogenesis and
repair. In vivo, these neighbor exchanges are often hindered by the formation of transiently stable fourfold
vertices, which can develop into complex multicellular rosettes where five or more cell junctions meet. Despite
their importance, the mechanical origins of multicellular rosettes have remained elusive, and current cellular
models lack the ability to explain their formation and maintenance. Here we present a dynamic vertex model
of epithelial tissues with strain-dependent tension remodeling and mechanical memory dissipation. We show
that an increase in cell junction tension upon contraction and reduction in tension upon extension can stabilize
higher-order vertices, temporarily stalling cell rearrangements. On the other hand, inducing mechanical memory
dissipation via relaxation of junction strain and stress promotes the resolution of higher-order vertices, facilitating
cell neighbor exchanges. We demonstrate that by tuning the rates of tension remodeling and mechanical memory
dissipation, we can control topological transitions and tissue material properties, recapitulating complex cellular

topologies seen in developing organisms.

DOLI: 10.1103/PRXLife.1.023006

I. INTRODUCTION

Fluidization of epithelial tissues plays a vital role in
coordinating large-scale structural changes in early de-
velopment [1,2], wound healing [3], and collective cell
migration [4—6]. While multiple cell-level mechanisms con-
tribute to tissue fluidity, including cell migration, division,
and death [7], cell neighbor exchanges are one of the most
common drivers of tissue fluidity during morphogenesis [8,9].
During a neighbor exchange process occurring via a T1 tran-
sition, two cells in contact shrink their shared junction to a
single point, forming a fourfold vertex. This fourfold vertex
then extends into a new intercellular junction in a direction
orthogonal to the contracting junction. While neighbor ex-
change processes rely on the instability of fourfold vertices, in
vivo experiments showed that fourfold vertices can be stable
for long times in developing tissues [10-13]. In particular,
during axis elongation in Drosophila, vertices shared by four
or more cells (termed rosettes) could persist for up to 15—
40 min [11,13], stalling cell neighbor exchanges.

Experimental observations of controlled cell neighbor ex-
changes contrast with existing vertex models of epithelial
tissues [14,15], where stationary fourfold vertices do not nat-
urally arise and are energetically unstable [16]. Furthermore,
experiments showed that fourfold and higher-order vertices
often restore the original cell junction, resulting in a reversible
T1 process [12,13,17]. By contrast, most theoretical stud-
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ies treat the creation and resolution of fourfold vertices as
an instantaneous and unidirectional event triggered by junc-
tions contracting below a length threshold [18] or if neighbor
exchange is energetically favorable [19,20]. Others have engi-
neered the formation of higher-order vertices by ad hoc rules.
For instance, Farhadifar et al. [21,22] enforced the creation
of fourfold vertices by joining proximal threefold vertices
and stalling their subsequent resolution. On the other hand,
there have been recent theoretical efforts to understand the
impact of noninstantaneous resolution of fourfold vertices and
probabilistic T1 events [13,23-25]. However, these studies
imposed the stalling of T1 events by ad hoc rules and they
did not naturally arise from the underlying mechanics of the
tissue.

To explain the physical origin of fourfold vertex stability
and controlled T1 transitions in epithelial tissues, we extended
the existing framework of vertex models [14,15,21] to incor-
porate dynamic tension remodeling and mechanical memory
dissipation. In particular, the tension in intercellular junctions
evolves in time due to changes in junctional strain above a
threshold or in response to active fluctuations. We show that
tension remodeling and mechanical memory dissipation lead
to controlled cell neighbor exchanges such that T1 transi-
tions are stalled when they are not energetically favorable.
By tuning the rates of tension remodeling, we can control
the probability of reversible and irreversible T1 transitions,
as well as the timescale of stalling of fourfold vertices. While
the mechanical stability of higher-order vertices relies on the
ability of cellular junctions to remodel their tension in re-
sponse to strain, their resolution requires timely dissipation
of mechanical memory in the system. Therefore, transient
stabilization of n-fold vertices (n > 3) relies on mechanical
memory dissipation, which could occur via relaxation of junc-
tional tension, strain, or noise-induced tension fluctuations. In
addition to regulating tissue topology and cell morphologies,
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tension remodeling rates also control the emergent material
properties of the tissue. In particular, we show that by tuning
the rates of tension remodeling, epithelial tissues can tran-
sition between solid and fluidlike phases with tunable rates
of energy dissipation. Taken together, our theory and simula-
tions uncover the mechanical requirements for controlled T1
transitions in epithelial tissues and elucidate the mechanics
underlying solid-fluid transitions in epithelia.

II. VERTEX MODEL WITH TENSION REMODELING

A. Forces and equations of motion

To describe the dynamics of topological transitions in
confluent tissues, we use the framework of the vertex
model [14,21,26,27], where each cell is modeled as a two-
dimensional polygon, with edges representing the cell-cell
junctions and the vertices representing multicellular junctions.
The overdamped dynamics of vertices are determined by a
balance of forces between friction, cell elasticity, and active
forces acting at intercellular junctions. The position r; of
vertex i evolves in time as

dl',‘ 8Eel
! _ =< Fz-ic{, 1
M or, )

where u is the vertex friction coefficient, E =
> (K/2)(Ay — A2)? penalizes changes in the area A, of
cell o, with respect to its target value A%, and K is the
bulk elastic modulus. Active forces arise from actomyosin
contractility I', in the cell cortex and tension 7T at intercellular
junctions such that F¥*'=— Z<[j)(Ti_,- + Lalij)(91;;/0r;),
where T;; is the tension on an edge connecting vertices i
and j with length [;; [28,29]. Tension due to actomyosin
contractility is proportional to junction length, qualitatively
similar to perimeter-dependent contractility term in classical
vertex models [14]. This captures the positive-feedback effect
that myosin recruitment increases with increasing junction
length [30]. Note that the force due to ', could also be
interpreted as a conservative force arising from an energy
term ) Falizj/Z. . . . .

Several recent studies provided evidence that tension
in epithelial cell junctions is not static but a dynamic
quantity maintained by mechanochemical feedback pro-
cesses [17,28,31-36]. We therefore model junctional tension
as T;j(t) = Aj(t) + AA;;(t), where A;;(t) is the determin-
istic part of the tension and AA;;(¢) represents stochastic
fluctuations in tension. The dynamics of A;; is dependent
on the junctional strain &; = (I;; — l})j)/l?j, where lioj is the
junction rest length. Tension A;; evolves in time as

dA;;
= = el - i) —
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where the first term describes strain-dependent tension re-
modeling, as recently introduced by us [28] and tested
experimentally [31,32,37], and the second term describes ten-
sion relaxation to a mean value A, which occurs over a longer
characteristic timescale 7. Motivated by recent experiments
on single-junction mechanics [31,37], the rate of tension re-
modeling o (units of force per unit length per unit time) is

defined as
kC if Eij < —&

O{(E[j) = kE ifSij > &¢ (3)

0 otherwise,

where &, is a threshold strain for junction remodeling. With
positive kg and k¢, there is a negative-feedback effect such
that tension increases upon contraction at a rate k¢ and re-
duces upon stretch at a rate kg, consistent with experimental
observations [31,32,35]. The threshold strain is motivated by
optogenetics data on single-junction activation that show cel-
lular junctions only remodel their length above a threshold
contraction [28]. Tension remodeling above a critical strain
threshold allows for irreversible junction deformation for suf-
ficiently strong or sustained force [31].

Additionally, cellular junctions continuously relax strain
at a rate k; such that the junction rest length approaches the
current length as

dz’

= =l — 1), 4)
Strain relaxation via rest length remodeling [28,38,39] is
a natural consequence of turnover in strained actomyosin
networks [40], where deformed filaments are replaced by
unstrained ones. An important consequence of strain relax-
ation is that memory of prior deformations is erased over
a timescale kL_1 such that long periods of contractions can
remodel junctions only up to a limit, while pulsatile contrac-
tions with periods of rest enable irreversible deformations via
ratcheting [28,31].

Finally, tension fluctuations AA;; evolve according to an
Ornstein-Uhlenbeck process as [3,17]

dAA;; 1
= AN+ V202 [TE(0), )

where o is the fluctuation amplitude, &;;(¢) is a white Gaussian
noise satisfying (& ()&, (t")) = 8(t —1')8;m8n, and 7 is the
persistence time of tension fluctuations. Our model thus con-
siders three principal mechanisms for erasing the memory of
the prior mechanical state, via tension relaxation at a rate txl,
tension fluctuations of amplitude ¢, and continuous strain re-
laxation at a rate k; . As shown later, the transient stabilization
of higher-order vertices is crucially dependent on the ability

of tissues to dissipate mechanical memory.

B. Mechanical stability and viscoelasticity of cell junctions

We begin by examining the mechanical response of in-
dividual junctions to contractile forces. To do this, we
simplify the model by considering a one-dimensional vari-
ant of Egs. (1)-(4), neglecting any stochastic fluctuations
(as depicted in Fig. 1). This simplified model focuses on a
two-junction system with varying lengths, denoted by /;(¢)
and /,(), respectively. Each junction unit is comprised of an
elastic element with a spring constant k and natural length L,
connected in parallel to a dashpot with friction coefficient u
[Fig. 1(a)]. Additionally, an active elastic element with a rest
length l?’z and contractility ', is connected in parallel to the
dashpot and the spring. As previously described, the tension
in the junction is remodeled at a rate kz under contraction and
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FIG. 1. Junction stability and adaptive viscoelastic response.
(a) Schematic of a simplified two-junction model under active con-
traction. (b) Phase diagram in the (kg = k¢, ki, rgl) plane, showing
the critical surface separating stable and unstable regimes of the
system. Color, from blue to red, represents the value of kz. (c) and
(d) Dynamical response of junction (2) length, rest length, strain, and
tension A for (¢c) kg = kc = 0 and (d) kg = kc = 0.5. The parame-
ters in (b)—(d) are I', = 0.03, k;, = 1, and rg' = 0.03.

stretching, with an initial value of Ao and a rest length [° that
relaxes toward the current junction length with a rate k. In
our analysis, we assume fixed boundary conditions, allowing
only the middle vertex to move under applied forces.

To examine the mechanical stability of these junctions
under applied forces, we derive a linearized system of equa-
tions for a perturbation §X = (8T'y, 8T'2, 810, 819, 81;) around
the steady state as §X = ASX. The §X follows the dynamics
described in Egs. (1)-(4), with the elastic energy given by
Eq = 5(L — 1))* + £(L — L)>. We nondimensionalize force
scales by kL, length scales by L, and timescales by u/k,
setting k = L = p = 1. In this particular analysis, we assume
that &, = 0 such that even the slightest perturbation would
induce junction tension remodeling at a rate kr. We then
numerically diagonalize the stability matrix A for different
values of the rates k; (rest length relaxation), 1/7, (tension
relaxation), and kg (tension remodeling). We find that the
system is stable (maximum eigenvalue of A < 0) in the ab-
sence of tension remodeling. However, it becomes unstable at
a critical value of kg = kj;, where k}. increases in conjunction
with both k; and 1/t, [Fig. 1(b)]. Physically, this instability
would manifest as junction collapse.

The one-dimensional junction model reveals adaptive
viscoelastic properties that are essential for understanding
tissue-level mechanical response. In addition to elasticity and
dissipation through friction, cell junctions have additional
sources of dissipation through tension remodeling, tension
relaxation, and strain relaxation. We therefore seek to analyze
the viscoelastic response of individual junctions by perform-
ing a load-controlled tension test. Specifically, we apply a
constant tension f in the middle vertex, for a time period
of 5(u/k) [Figs. 1(c) and 1(d)], and monitor the dynamics
of tension and length in junction 2, both with [Fig. 1(c)]
and without tension remodeling [Fig. 1(d)]. In the absence
of tension remodeling (kg = k¢ = 0), we obtain f = (1 +

2T )&, + d&,/dt, with &, = I,(t) — 1. Hence, the system be-
haves like a Kelvin-Voigt viscoelastic solid. When kg > 0
the response during load is amplified, while the unloading
behavior is dependent on tension relaxation rate tXl. For
1/t5 < w/k, the relaxation during unloading is slow, leading
to a steady state with a longer equilibrium junction length
l, > L[Fig. 1(d)]. For 1/t < wu/k, we observe an undershoot
in the length dynamics /5(¢) during recovery from load (fig-
ure not shown). For 1/t > wu/k, the system responds like a
Kelvin-Voigt viscoelastic solid.

C. Implementation of T1 transitions

With the model mechanics defined above, we now turn to
describing the dynamics governing T1 topological transitions.
To simulate a T1 transition, when a junction connected by two
threefold vertices becomes shorter than a threshold length /7,
one of the vertices is removed while the other is transformed
into a fourfold vertex, sustained by four shoulder junctions.
During this process, each shoulder junction gains one-fourth
of the deleted junction tension and conserves it until the
fourfold vertex is resolved [41]. The latter is motivated by
experimental observations of myosin II accumulation around
junctions proximal to fourfold vertices [17]. We then create
a new junction of length [y, = 1.5/7; and tension Apixn ~
Ao + Talyin and attempt to resolve the fourfold vertex in two
different directions, one along the original contracting junc-
tion (resulting in reversible T1) and the other approximately
orthogonal to it (leading to neighbor exchange), as exper-
imentally observed [10,17]. To decide the final resolution
configuration we follow an approach previously introduced
in Ref. [16]. If the force between the vertices of the newly
created junction is attractive, then the fourfold vertex is con-
sidered stable and the T1 transition is stalled. Otherwise, the
fourfold vertex is resolved in the direction with the largest
separation force [16,17,42], resulting in reversible or irre-
versible T1 transitions (see the Supplemental Material [43] for
details). As discussed later, the specific choice of T1 transition
parameters, such as Apin and Iy, as well as the choice of
tension resetting rule does not influence our main conclusions
on the formation and stability of fourfold vertices.

Higher-order vertex formation and resolution

The rules for fourfold vertex formation, as described above,
can also be applied to the merging of a stable n-fold and a
threefold vertex, allowing the possibility of an (n + 1)-fold
vertex in the tissue. During the creation of such an (n + 1)-
fold vertex, each shoulder junction gains 1/(n 4 1)th of the
tension of the deleted junction, as in the n = 3 case previously
described. However, a more general idea of the resolution
directions is needed. Here we propose that an (n + 1)-fold
vertex can be resolved into an n-fold and a threefold vertex in
n + 1 possible directions given by (R —r,11)/|R% — 1,41/,
where RY is the center of one («) of the n+ 1 cells sur-
rounding the (n + 1)-fold vertex with position r,,;. See the
Supplemental Material [43] for further details on n-fold ver-
tices, Fig. S2 [43], and Movie 4 for a simulated tissue in which
threefold, fourfold, and fivefold vertices are allowed. In the
rest of this paper, we allow for only threefold and fourfold
vertices.
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FIG. 2. Delayed T1 transitions and intercalation dynamics in re-
modeling tissues. (a) Representative section of a simulated epithelial
tissue with tension remodeling (kc/k; = 0.2 and kg /kp, = 0.17) at
t ~ 6 h. Red circles represent fourfold vertices and colored cell edges
represent the total tension, in units of Ag. (b) Normalized junction
length (top) and tension (bottom), as a function of time relative to
the fourfold vertex creation, for instantaneous and delayed T1 events.
(c) Histogram of the stalling time for delayed irreversible T1 (blue)
and delayed reversible T1 (red) events.

II1. RESULTS

A. Tension remodeling controls T1 transitions

To characterize the role of tension remodeling on T1
transitions, we first simulate a disordered tissue comprising
approximately 500 cells in a box with periodic boundary
conditions, as in [44]. In simulations, we nondimensional-
ize force scales by K(A2)3/ 2, length scales by \/14»2, and
timescales by M/KAg, setting K = 1, (Ag) =1,and u =0.2
(approximately 28 s), where (- - -) represents the population
average. The initial state of the simulations is characterized
by having zero initial junction strain (/;; = lg), (li(}) ~ 0.62,
and (A;;) = Ap = 0.1, which is also the mean value for the
tension of a newly created junction (see the Supplemental Ma-
terial [43], Fig. S1). We let the tissue evolve from an energy
relaxed state with chosen values of active contractility I,
active fluctuations of amplitude o, threshold strain ¢, = 0.1,
and strain relaxation rate k;, with different values for the
tension remodeling rates kr and kc. A representative tissue
snapshot is shown in Fig. 2(a), for a particular simulation
using k¢ /k;, = 0.2 and kg /k;, = 0.17, which displays multiple
(transiently stable) fourfold vertices (red circles) representing
stalled T1 transitions (Movie 1).

Four different types of dynamics are observed during T1
processes [see Fig. 2(b) and Movie 1]: instantaneous irre-
versible T1 events, delayed irreversible T1 events with a
stalled fourfold vertex, instantaneous reversible events, and
delayed reversible T1 events. In all these cases, tension in-
creases during contraction prior to fourfold vertex formation,
as a consequence of tension remodeling. Subsequently, ten-
sion decreases via remodeling after the fourfold vertex is

(a) —(b) - :
& [ No remodeling o1l.6 Without noise
.0 [ Remodeling 2
§o3 $14
5 c  |®
= 212 f.¢sa
© S| wdd
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- © II I
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b S [)
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Normalized junction length Normalized junction length

FIG. 3. Tension remodeling promotes asymmetric length distri-
bution. (a) Histogram of junction length at steady state, for a tissue
with remodeling (blue, kc/k;, = 0.2 and kg /k;, = 0.17) and without
remodeling (black, kc = kg = 0). (b) Correlation between total junc-
tion tension (normalized) and junction length (normalized) in tissues
with (blue) and without (black) junction remodeling. The orange
data points show the positive correlation between deterministic ten-
sion (i.e., junction tension without the fluctuating part) and junction
length, in the absence of junctional tension remodeling. Error bars
represent 1 standard error of mean.

resolved into an extending junction [Fig. 2(b)]. Tension re-
modeling can decrease the local tensions in stretched shoulder
junctions, promoting fourfold stabilization. Specifically, a
stalled fourfold vertex arises when fiourfold = (fi — £;) - £;; <
2 Avirn, Where £;; = (r; —r;)/Ir; —r;| and f; and f; are the
forces acting on the two tricelullar vertices i and j created in
the attempt of fourfold vertex resolution. These forces arise
from tensions in the shoulder junctions as well as pressures in
the neighboring cells resisting changes in the cell area. When
the local tension increases due to strain-driven remodeling or
contractility, vertex stability is lost, resulting in a delayed T1
or a delayed reversible event [Fig. 2(b)]. Figure 2(c) shows
the distribution of stalling times for both reversible and ir-
reversible T1 events, suggesting that some fourfold vertices
can be resolved nearly instantaneously, while others can re-
main stalled for longer periods. Without tension remodeling
(kg = k¢ = 0), we recover the standard vertex model where
T1 transitions occur instantaneously and fourfold vertices
are unstable (Movie 2 ). For negative values of the tension
remodeling rates, we obtain a model of positive feedback
between tension and strain, where T1 transitions are observed
to occur instantaneously (see the Supplemental Material [43],
Fig. S3).

The dynamics of the model tissue with tension remod-
eling, as characterized in Fig. 2 (Movie 1), settles into a
fluctuating steady state with an asymmetric distribution of
junction length [Fig. 3(a)], as observed in mature Drosophila
epithelium [17]. Furthermore, a negative correlation is ob-
served between junction length and tension in the fluctuating
steady state [Fig. 3(b)], analogous to the negative correlation
between junction length and myosin intensity seen experi-
mentally [17,45]. By contrast, without tension remodeling
(kg = k¢ = 0), the junction length distribution is symmetric
[Fig. 3(a)]. In this case, junction length is positively corre-
lated with the deterministic part of the tension (Ag + I'al;j)
[orange dots in Fig. 3(b)]. However, this positive correla-
tion is lost when we consider the total junction tension,
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including the fluctuating part, since the amplitude of the ten-
sion fluctuations (o) is comparable to (I';/;;) [black dots in
Fig. 3(b)].

B. Stability of fourfold vertices

During a T1 transition, the fourfold vertex can be tran-
siently stable if the tension in the extending shoulder junctions
is low compared to the tension in the newly created junction.
This can be achieved via tension remodeling in the extending
shoulder junctions, controlled by the rate kz. To understand
how kg affects vertex stability, we study an effective mean-
field model consisting of symmetric cell junctions embedded
in an effective elastic medium (see the Supplemental Mate-
rial [43], Fig. S4). We activate contraction in chosen junctions
by increasing I',. During this process, the contracting (ex-
tending) junctions increase (decrease) their tension at a rate
ke (kg). We find that if Bkg > k¢, the global tissue tension
decreases, promoting mechanical stability of the fourfold ver-
tex, where B is the ratio of the total length gained by the
extending junctions to the total length lost by the contracting
junctions.

To further investigate the role of tension remodeling on T1
transitions, we perform numerical simulations using different
values of the tension remodeling rates k¢ /k;, and kg /k;, in the
range [0.02,0.23] (Fig. 3). From fits to experimental data on
single-junction deformations, it is determined that k¢ /k; ~
0.14 [28,31] and kg /k; ~ 0.12 [32]. We find that the tension
remodeling rates control the rate of T1 transitions as well
as the probability of delayed T1 transitions. For very small
values of kg and k¢, the tissue is in a quiescent state, where
T1 events are scarce (fewer than 10~* per junction per minute)
and occur instantaneously [Fig. 3(a)]. Due to the lack of
appreciable tension remodeling in the quiescent state, tension
in the shoulders of an intercalating junction is approximately
Ay, with negligible resistive pressure in the surrounding cells
since A, ~ Ag. As aresult, frourfold Temains larger than 2 A i,
making the fourfold vertex unstable. For larger values of k¢
and kg, irreversible and reversible T1 events are mainly driven
by tension remodeling, inducing wider pressure distributions
(Fig. S5 [43]) and higher rates of T1 events [Fig. 4(a)]. In this
parameter regime, frourfold depends on both tensions and pres-
sures in the surrounding cells. Since the tension remodeling
dynamics is fast compared to pressure relaxation, pressurelike
forces make frourford larger in the original direction of con-
traction, turning the reversible T1 events more probable. In
the presence of tension remodeling, T1 events either occur
instantaneously or are delayed, with probabilities given in
Fig. 4(b). The probabilities of delayed events, and hence the
presence of stalled fourfold vertices, depend strongly on kg,
as predicted analytically. Fourfold stability increases for large
kg and small k¢, reaching stalling times of 5 min on average
(Fig. S6 [43]), consistent with experimental data [13].

It is important to note that the phase diagrams for the
T1 rate per junction, probability of delayed T1 transitions
(Fig. 4), and the probability distributions of T1 stalling times
remain qualitatively the same for different choices of strain
threshold parameter €., length of newly created junctions /yip,
and tension resetting rules upon T1 transitions (see the Sup-
plemental Material [43], Figs. S7— S12).
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FIG. 4. Junction tension remodeling regulates T1 transition rates.
(a) Rates of T1 (left) and reversible (right) transitions for different
values of kg/k;, and k¢ /k.. Solid lines represent 10~ T1 events
per junction per minute. (b) Probability of delayed irreversible T1
transitions (left) and reversible T1 events (right) for different values
of kg /k;, and k¢ /k;.. Dashed line represents 1% probability.

C. Mechanical memory dissipation promotes T1 transitions

Our study so far demonstrates that tension remodeling rates
control the probability of T1 events as well as the stability
of fourfold vertices. Since higher-order vertices appear tran-
siently in living tissues [11-13,17], we wondered what tissue
properties would regulate the lifetime of fourfold vertices. To
that end, we found that T1 stalling time increases with both
the inverse of the noise magnitude 1/o0 and the timescale
of stress relaxation t5 (see Figs. 5, S13, and S14 [43]). On
the contrary, the rate of T1 events increases with o [3,17,46]

(b) fourfold lifetime [min]

—
(V)
-~

fourfold lifetime [min]

® 150
©
£ Transiently~ S i
% stable fourfold Stfabl‘:f 9’:{ 100
é VRS ourfold vertices
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&j vertices vertices 0

10 30 50 70 5 10 15 20

1/0 (Memory) -~ TA (Memory)

FIG. 5. Mechanical memory dissipation promotes T1 transitions.
The maximum lifetime of fourfold vertices is plotted as a function of
tension remodeling rate k¢ /k;, (with kc = kg) and the regulators of
mechanical memory: (a) inverse of noise amplitude 1/0 (with 74 =
10) and (b) tension relaxation timescale 7, (with 1/0 = 50). The
dashed contour represents a 100-min lifetime. Below the solid line,
there are fewer than 10~3 fourfold vertices resolved per junction per
minute.
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FIG. 6. Transient stability of fourfold vertices relies on mechanical memory dissipation. (a) Permanently stable fourfold vertices per cell,
for an active tissue with kc = 0.1 and kg = 0.2 and for different parameters controlling mechanical memory dissipation, in the following
order (from left to right): (i) original simulation with all modes of memory dissipation, with finite o, k; # 0, and rgl # 0; (ii) no tension
fluctuations, with o = 0, k;, # 0, and 1'1(1 # 0; (iii) no tension relaxation, with finite o, k, # 0, and r;l = 0; (iv) no tension fluctuations and
tension relaxation, with o = 0, k;, # 0, and r;l = 0; and (v) no strain relaxation, with finite o', k;, = 0, and 1';1 # 0. (b) Tissue configurations
showing the steady-state morphology (at approximately 350 min), where red solid circles represent fourfold vertices that have been stable for
more than 100 min by the end of each simulation. Simulations with strain relaxation consider k;, = 1. (c) Number of delayed T1 events vs time,
corresponding to the simulated tissues shown in (b). Each horizontal line represents the creation of a fourfold vertex. Black lines represent
fourfold vertices that are resolved through the simulation (at the time highlighted by a black dot), over a timescale longer than 6 s. Red lines
that finish in an empty edge-colored red circle represent fourfold vertices that are not resolved during the simulation.

and decreases with 7, (Figs. S13 and S14 [43]). For low or
no noise (o = 0), tension fluctuations are diminished with
fourfold vertices being present for more than 100 min [see
Figs. 5(a) and 6(c) and Movie 3]. Interestingly, for very high
o (limit of no mechanical memory), tissues can reach certain
geometrical configurations that allow the existence of stalled
fourfold vertices even in the absence of tension remodeling
[Fig. 5(a)]. However, in such instances the stalling time cannot
be dynamically controlled. For intermediate levels of noise,
active tension remodeling induces fourfold vertex formation
with controllable lifetime. Additionally, without tension relax-
ation (tp = 00) or strain relaxation (k; = 0), tissues develop
permanently stable fourfold vertices (Fig. 6). In particular, for
the cases k;, = 0 and {ry = 00, 0 = 0}, the system quickly
gets stuck in geometrical configurations with a high density
of stable fourfold vertices. Our model also leads to me-
chanical memory dissipation via tension resetting during a
fourfold vertex resolution into threefold vertices. We find that
a persistent-tension rule during a T1 transition also leads to
permanently stable fourfold vertices (see Fig. S15 [43]), as
seen experimentally in Drosophila (pupal wing) lacking the
tumor suppressor PTEN [45].

Thus, transiently stable fourfold vertices, defined by
having stalling times shorter than 100 min, require two fun-
damental ingredients (Fig. 5): (i) a negative feedback between
junctional tension and strain (tension decreases with increas-
ing strain) and (ii) mechanical memory dissipation via strain
relaxation (k; # 0), tension relaxation (finite 7, ), and noise-
induced fluctuations (intermediate 1/07). While there are other
recent models with tension-strain feedback [29,30,41,47],
those do not concurrently satisfy the above two specific

criteria for tension remodeling and mechanical memory dissi-
pation and therefore cannot capture transiently stable fourfold
vertices (see Sec. IV).

D. Tension remodeling rates control tissue material properties

Tension remodeling rates not only control the kinetics of
T1 transitions and tissue topology, but also regulate tissue
material properties. To characterize mechanical properties at
the tissue level, we first examine the effects of junction remod-
eling on average tissue tension, since low tension is associated
with fluidlike tissues whereas high tension promotes solid-
ity [3,48]. To this end, we compute the mean change in tissue
tension from an initial steady state, as a function of the tension
remodeling rates kg and k¢ [Fig. 7(a)]. Here the initial state is
chosen as the steady state of the tissue with a constant mean
junctional tension (A) = A and zero junctional strain. There-
fore, any changes in mean tissue tension would reflect the
effects of junction tension remodeling, resulting in junction
length variations.

We find that the mean tension change is negative in
the parameter space with nonzero probabilities of delayed
T1 transitions [Fig. 4(b)], suggesting a loss of tissue
rigidity. The white solid line in Fig. 7(a) represents the
phase boundary obtained from simulations, where the mean
tissue tension does not change. For small (kg, kc), the
phase boundary follows the line kp = k¢ (black solid),
as predicted by the mean-field model in a system con-
serving the total junction length (see the Supplemental
Material [43]). For large (kg, kc), the phase boundary in-
creases in slope, as predicted in a system increasing its
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FIG. 7. Emergent tissue mechanics from cell junction remodel-
ing. (a) Colormap of mean tension change (in units of Ag) at steady
state of the remodeled tissue, as a function of kz/k; and kc/k;.
Black (white) curves correspond to numerical results obtained with
the effective medium models (simulations), representing no change
in tension. The black dashed curve shows 2k; = k- and the black
solid curve kp = kc. (b) Diffusion coefficient D as a function of
kg /ky, and kc/kr.. The white curve represents D = 107#[(A%)? /min].
(c) Mean cell shape index g as a function of the tension remodeling
rates. The white curve represents g = 3.81. The cyan dashed line
in (b) and (c) represents the prediction of the mean-field model,
with fitted effective medium stiffness k = 0.09. (d) Phase diagram
showing transitions between solid (blue) and fluid (red) states of the
tissue, with the white solid curve representing the phase boundary.
Below the white dashed curve in the fluid phase, stable fourfold and
higher-order vertices are prevalent.

total junction length. In a two-dimensional mean-field model,
consisting of five symmetric cell junctions subject to an
increase in total junction length (see the Supplemental Ma-
terial [43]), the predicted phase boundary is 2kr = k¢ (black
dashed line). To directly test the role of tension remodeling on
tissue mechanical properties, we perform finite shear simu-
lations (Fig. S16 [43]). These simulations reveal that tissues
with high-tension remodeling, exhibiting transiently stable
fourfold vertices and a negative mean tension change, are
associated with an enhanced rate of energy and stress release.
From the measurements of changes in tissue tension, we find
that tissues with smaller values of kz and k- maintain a con-
stant mean tension [Fig. 7(a)], with very low rates of neighbor
exchange [Fig. 4(a)], characteristic of an arrested state. To
quantify cell movement, we measure the mean-square dis-
placements of the cell centers (Supplemental Material [43])
to compute the average diffusivity D of cells [Fig. 7(b)]. We
find that cells with smaller values of (kg, kc) do not diffuse
significantly (D < 10™*), representing solidlike tissues with
mostly hexagonal cell shapes. Diffusivity increases with kg
and k¢ such that the tissue is liquidlike when (kg + kc)/kr

is larger than a critical value [Fig. 7(b)]. Interestingly, tissues
possessing higher-order vertices are fluidlike with a high cell
diffusivity [Fig. 7(b)].

In vertex models describing isotropic tissues, fluidity is
related to the observed cell shape index g [4,48,49], defined
as the mean ratio between the perimeter and the square root of
the cell area. A fluid-solid phase transition occurs at ¢ = 3.81
such that the tissue is solidlike for g < 3.81. The rigidity
transition is related to the mechanical stability of junctions,
which occurs in the mean-field theory when (k¢ + kg )/2k;, is
smaller than the effective medium stiffness k [dashed line in
Figs. 7(b) and 7(c); see the Supplemental Material [43]]. From
our simulations we obtain excellent agreement between the
contours D = 10~ and q = 3.81 [white curves in Figs. 7(b)
and 7(c)]. Our theory thus relates the fluidity of confluent
tissues and their emergent topology to the rates of tension
remodeling k¢ and kg (Fig. 7). In particular, we find that
fourfold and higher-order vertices can become stable in fluid
tissues if Bkg > kc (B > 1) such that asymmetric tension
remodeling reduces mean tissue tension.

E. Tension remodeling regulates the geometry of cell packing

In addition to controlling the frequency and timescale of T1
transitions, and tissue material properties, tension remodeling
also influences the geometry of cell packing in epithelia. To
characterize the cell packing geometries, we measure the frac-
tion of cells in different polygon classes, characterized by their
number of sides. Figure 8 shows the distribution of the number
of polygon sides for different values of (kc/kz, kg /kr), along
with the polygon sidedness for tissues with no tension re-
modeling (white bars). In tissues without tension remodeling,
only pentagons, hexagons, and heptagons are observed in the
ground state of the vertex model. We find that increasing
kg in a solid tissue increases the number of hexagonal cell
shapes while decreasing the relative numbers of pentagons
and heptagons. The behavior is similar to what was obtained
in Ref. [17], when increasing the mean line tension in the cell
edges. On the other hand, when increasing kg in a fluid tissue,
the numbers of hexagons and heptagons decrease, while pen-
tagons increase in number. In fluid tissues, triangles, squares,
octagonal, and nonagonal cell shapes are also observed as kg
is increased.

Experimental data demonstrate the presence of di-
verse polygonal cell shapes, ranging from triangles to
nonagons, in various tissues such as the larval wing disc
of Drosophila [21,50], tail epidermis of Xenopus [50], and
the epidermis of Hydra [50]. However, the origin of these
irregular cell packing geometries, whether arising from cell
divisions, anisotropic forces within the tissue, active tension
remodeling, or a combination thereof, remains inconclusive.
Here we establish that tension remodeling alone is sufficient
to induce irregularities in cell packing. Future investigations
that integrate cell divisions with tension remodeling and
anisotropy will provide quantitative insights into the relative
contributions of each of these factors in governing cell pack-
ing geometry in disordered epithelia.
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FIG. 8. Tension remodeling influences the geometry of cell packing. The mean frequency of polygon sidedness in tissues with (a)—
(¢) ke /kr = 0.08 and (d)—(f) kc/k. = 0.20 is plotted as a function of kg /k., considering 20 random initial seeds for each simulation. White
bars in (a) and (d) show the distribution of polygon sidedness in tissues without tension remodeling (kg = k¢ = 0). Error bars in (b), (c), (e),

and (f) represent +1 standard deviation.

IV. DISCUSSION

One common assumption in existing cell-based models of
epithelial tissues is that epithelia resemble foamlike networks,
consisting of bicellular junctions that connect tricellular ver-
tices [14,15,21]. More complex structures, such as rosettes,
where four or more junctions meet, are widely observed in
vivo [11-13,17] but are not stable structures in existing vertex
models. In this paper we provided the first theoretical model
for the spontaneous emergence of stable higher-order vertices
and elucidated the underlying physical principles that regulate
their assembly and lifetime. In particular, we identified two
general physical principles that are necessary and sufficient
for the formation and transient stability of higher-order ver-
tices: (i) strain-dependent tension remodeling (specifically, a
negative feedback between tension and strain) and (ii) me-
chanical memory dissipation. First, we showed that the ability
of cellular junctions to actively decrease tension under ex-
tension and increase tension under contraction promotes the
formation of fourfold vertices that are precursors to T1 tran-
sitions. The model for strain-dependent tension remodeling
was derived from recent studies on single-junction mechan-
ics [28,31]. Second, the relaxation of mechanical strain,
tension, and noise-induced fluctuations enables the dissipa-
tion of mechanical memory over time, which is necessary
for the timely resolution of fourfold vertices. Resolution of
fourfold vertices can occur instantaneously or noninstanta-
neously, resulting in reversible or irreversible T1 transitions.
In particular, T1 resolution or stalling time increases with both
1/0 and 7, . For very small values of tension remodeling rates,
we found that the classical vertex model results are recovered,
where fourfold vertices are unstable and resolved through T1
events.

Our modified version of the vertex model treats each
junction as an independent entity, in contrast to the clas-
sical vertex model with a perimeter-dependent contractility
term. This distinction is particularly significant because the
cell perimeter-dependent model introduces nonlocal tensions
in newly formed junctions following a T1 transition, which
depends on the shapes of the two adjacent cells. While
there is no experimental evidence supporting this nonlocal
tension term, its inclusion in the model can result in stabi-
lization of fourfold vertices under specific initial conditions
of cell shapes, assuming they follow similar force-dependent
rules for the formation and resolution of fourfold vertices,
as in our model. However, the existence of these four-
fold vertices is reliant on the choice of initial geometrical
conditions.

In recent years, many studies have delved into the profound
impact of mechanical feedback on epithelial tissue dynam-
ics [29,30,41,47]. These include studies that considered a
positive-feedback between tension and strain [30,41,47,51,52]
or a negative-feedback between tension and strain akin to our
model [28,29,32,37]. However, none of these models fulfill
the combined requirements of negative-feedback-based ten-
sion remodeling and memory dissipation, thus falling short in
capturing the transient stability of higher-order vertices within
epithelial tissues. In the active tension network model intro-
duced by Noll et al. [47] and later developed by Gustafson
et al. [30], tissue dynamics is governed by tension remodeling
without elastic restoring elastic forces. Opposite to our work,
the authors considered that tension increased in elongated
junctions and decreased in contracted junctions, which was
necessary to ensure mechanical stability in the absence of
elastic restoring forces. Under such rules, fourfold vertices
cannot be stabilized as the net pulling force in the extending
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shoulder junctions would always exceed the force between
two proximal tricellular vertices. On the other hand, Krajnc
et al. [29] considered physical rules for active tension remod-
eling similar to those of Staddon et al. [28], but did not include
mechanisms for strain relaxation that we found to be neces-
sary to avoid permanently stable fourfold vertices (see Fig. 6).
A recent study by Sknepnek et al. [41] implemented specific
rules for mechanosensitive myosin dynamics that regulated
cell junction tension. In contrast to our model, Sknepnek
et al. found that the tension in the shoulder junctions of a
contracting junction increases, which promotes the instability
of the fourfold vertices as argued by us. Second, Sknepnek
et al. did not consider relaxation and remodeling of passive
tensions in the vertex model. In the absence of total tension
relaxation, permanently stable fourfold vertices would arise
(see Fig. 6).

We showed that by tuning the values of the tension re-
modeling rates k¢ and kg, the tissue can be driven through
two distinct phase transitions. First, the model predicts a
rigidity crossover if (k¢ + kg)/k; is smaller than a critical
value, which corresponds to a mean observed cell shape
index of 3.81. Below the rigidity threshold, T1 events are
scarce and tissues are highly ordered, with a high fraction
of hexagonal cells, followed by smaller fractions of pen-
tagons and heptagons. Increasing the tension remodeling rates
above the rigidity threshold leads to an increase in T1 events,
with a wider distribution of polygon sides (from triangles to
nonagons) and an asymmetric distribution of junction length,
as seen in experimental data [17]. Our model thus belongs
to a broader class of vertex models with universal rigidity
features as suggested in Ref. [49]. Second, our model predicts
a transition in tissue topology from unstable to stable fourfold
vertices in the fluid phase. In this phase, mechanical stability
is reached with a lower value of mean tension, and there is
asymmetry in the rates of tension remodeling in response to
junction contraction and extension. Stable fourfold vertices
can also lead to the formation of even higher-order vertices, as

shown in Movie 4, where we allowed up to fivefold vertices.
It is important to recall that our model assumes an isotropic
tissue. In anisotropic tissues cell shape may not be a direct
proxy for fluidity [53]. This could explain the presence of
stable fourfold vertices in tissues with isotropic cell shapes
(low shape index) as the Drosophila pupal wing [10].

Previous studies have enforced the creation of fourfold
and higher-order vertices in canonical vertex models [23] and
imposed ad hoc rules for the stalling of T1 events [13,24,25].
For instance, Finegan et al. [13] implemented probabilities
for successful T1 resolution and imposed the no resolution
of rosettes, while Das er al. [24] and Erdemeci-Tandogan
and Manning [25] introduced clocks for T1 transitions. In
our model, the stability of higher-order vertices is naturally
linked to the mechanical state of the tissue; in particular,
they arise in low-tension tissues. Interestingly, an increase
in the mean tension in this model does not imply a more
solidlike tissue. Instead, high-tension systems are obtained in
tissues with high rates of instantaneous T1 events (Supple-
mental Material [43]), inducing cellular motion through these
topological rearrangements and increasing diffusion, making
the tissue more fluidlike. It has been previously reported that
the presence of higher-order vertices leads to rigidification of
tissues [23]. While we did not directly evaluate shear modulus
of the tissue, we found that the presence of stalled fourfold
vertices reduces the rate of instantaneous cell neighbor ex-
changes (Fig. S17 [43]). In addition, the mechanical stability
of fourfold vertices demands a liquidlike tissue with low over-
all tension. This implies there are many T1 events occurring
in the presence of stable fourfold vertices, as observed during
Drosophila axis elongation [13].
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