
PRX LIFE 1, 023005 (2023)

Information Bottleneck in Molecular Sensing

Marianne Bauer 1,2 and William Bialek 2,3

1Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft,
Van der Maasweg 9, 2629 HZ Delft, The Netherlands

2Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics,
Princeton University, Princeton, New Jersey 08544, USA

3Center for Studies in Physics and Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA

(Received 13 April 2023; accepted 24 October 2023; published 15 November 2023;
corrected 13 December 2023)

Information of relevance to the organism often is represented by the concentrations of particular molecules
inside a cell. As outside observers we can now measure these concentrations precisely, but the cell’s own
mechanisms must be noisier. We show that, in certain limits, there is a universal tradeoff between the information
capacity of these concentration measurements and the amount of relevant information that is captured, a version
of the information bottleneck problem. This universal tradeoff is confirmed, quantitatively, in an analysis of the
positional information encoded by the “gap genes” in the developing fly embryo.
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I. INTRODUCTION

In the physics laboratory, and in engineered devices, we are
used to information being represented by electrical or optical
signals. While the brain also uses electrical signaling, inside
living cells information often is represented by the concen-
trations of particular molecules. The absolute concentrations
of these molecules, and even their total number, can be quite
small. As a result there has been considerable interest in
understanding the physical limits to this molecular signaling
[1–9], the strategies that cells can use to maximize informa-
tion in the face of these limits [8,10–14], and the implications
for cellular function.

One approach to understanding signaling via molecular
concentrations is to explore increasingly realistic models of
the microscopic events [15–21]. Recently, we suggested a
different approach, in which we ask abstractly about the im-
plications of noise in the response, or more precisely about the
limited information capacity of the cell’s “measurements” of
concentration [22,23]. To formalize the problem, we imagine
that some relevant signal x is represented by the concen-
trations of K different molecules, which we write as g ≡
{g1, g2, . . . , gK}. The cell does not have access to the exact
values of g, but only to some variables that constitute inter-
mediates in the response. As an example, if the molecules act
by binding to particular sites along the cell’s DNA and thereby
regulating the expression of downstream genes, the intermedi-
ate variable might be the average occupancy of these binding
sites over some relevant time window, or the state of the
enhancers built out of groups of these binding sites [16,17,24].
Independent of molecular details, this intermediate variable
can carry only a limited amount of information about the real
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concentrations; in this sense it is a “compressed” representa-
tion [25], and we will refer to this representation as C.

Different mechanisms inside the cell will generate different
mappings g → C, and in general we expect this mapping to
be noisy, so it will be described by a probability distribution
P(C|g). What would be useful for the cell is to capture as
much information as possible about the relevant variable x,
subject to the constraint that the information about g is lim-
ited. This means that the best mapping g → C is one that
maximizes

U = I (C; x) − λI (C; g), (1)

where λ is a Lagrange multiplier to implement the constraint
on information about g. Here, I (C; x) is the mutual informa-
tion between C and x,

I (C; x) =
∫

dC
∫

dx P(C|x)P(x) log

[
P(C|x)

P(C)

]
, (2)

and I (C; g) is defined analogously. This optimization problem
is an example of the information bottleneck problem [26],
which arises in contexts ranging from text classification [27]
to the analysis of deep networks [28–30] and neural coding
[31,32].

Optimizing U will define a bounding curve, which shows
the minimum I (C; g) needed to reach a criterion level of
I (C; x). If the cell’s measurements of concentration become
more precise, then I (C; g) becomes larger, but since C de-
pends on g and not directly on x we always have I (C; x) �
I (g; x). The question is how close the cell can come to captur-
ing all this available information given limits on the precision
of its response.

II. SHARPENING THE QUESTION

The standard approach to solving the information bot-
tleneck problem involves the numerical solution of the
self-consistent equation that P(C|g) obeys [26]; to do so,
one assumes that C is discrete, so that the mapping g → C
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becomes a kind of clustering. There is a separate bounding
curve for each choice of the cardinality ||C||, and the full
structure emerges as we let ||C|| → ∞. We have applied this
approach to the representation of positional information by the
gap gene expression levels in the early fly embryo [22]. The
results showed, for example, that the optimal mappings for in-
dividual genes are close to an intuitive thresholding model, but
that optimal compression of multiple genes depends crucially
on combinatorial interactions among these molecules, as seen
experimentally, for example, in the regulation of the pair rule
genes by the gap genes. But this discussion seemed to depend
on details of the genetic network in the fly embryo, and missed
the possibility that there is something more universal about the
tradeoff between I (C; g) and I (C; x).

Our goal is to uncover this (asymptotically) universal
tradeoff, which emerges in an intuitive limiting regime. This
has a direct physical meaning, discussed below, but it also
provides a solution to the information bottleneck problem
without requiring numerics, which can become challenging
with multiple, complex inputs. Perhaps the most similar an-
alytic approach has been to assume that P(x; g) is Gaussian
[33], but we find we can make progress more generally by
assuming that the solution to the problem P(C|g) is a narrow
Gaussian. This simplification is self-consistent if the signals
g are sufficiently informative about x, and if the relevant
mappings are sufficiently smooth, but we do not need to make
assumptions about the form of P(x; g).

To be concrete, we write the mean concentrations at each x
as 〈gμ〉x, which are smooth functions of x, and fluctuations
around these means are described by a covariance matrix
〈δgμδgν〉x. To be clear, we denote by 〈· · · 〉x an average over
fluctuations at fixed x, while 〈· · · 〉(x) denotes an average over
x. If 〈gμ〉x is smooth, it is reasonable to think that the com-
pressed variable C also will have a smooth relation to other
variables; this means that the moments of the distributions
P(C|g) and P(C|x) will be smooth. Further, although a sin-
gle measurement of concentration might be noisy, one can
imagine that the noise level is smaller if we think about the en-
coding of the relevant variable x. These observations suggest
that we search for optima in which C is a continuous variable,
and that at appropriate points we can take a small noise limit.
Concretely, let us assume that

P(C|g) = 1√
2πσ 2

C (g)
exp

(
− [C − C̄(g)]2

2σ 2
C (g)

)
, (3)

so that optimization of U now corresponds to finding the
optimal functions C̄(g) and σC (g).

III. UNIVERSALITY, ASYMPTOTICALLY

With the Gaussian approximation of Eq. (3) we can imme-
diately write [25,34]

I (C; g) = S(C) − 1
2

〈
log2

[
2πeσ 2

C (g)
]〉(g)

, (4)

where S(C) is the entropy of the variable C, the second term
the conditional entropy S(C|g), and 〈· · · 〉(g) denotes an aver-
age over the distribution of g. Importantly, S(C) is finite in the
limit of small noise, since C must be tied, even if implicitly,
to the relevant variable x. In particular, if the effective noise in

estimating x from g is small compared with the scale on which
the distribution P(x) varies, then this relationship becomes
nearly deterministic [10], and we can write

P(C) = P(x)

∣∣∣∣dC̄

dx

∣∣∣∣
−1

, (5)

S(C) = S(x) +
〈
log2

∣∣∣∣dC̄

dx

∣∣∣∣
〉(x)

, (6)

where the dependence of C̄ on x is through g,

dC̄

dx
=

∑
μ

d〈gμ〉x

dx

∂C̄

∂gμ

∣∣∣∣
g=〈g〉x

, (7)

again working in a small noise limit, and 〈· · · 〉(x) again de-
notes an average over the distribution of x.

To compute the information which C conveys about x,
I (C; x), we need the distribution

P(C|x) =
∫

dgP(C|g)P(g|x), (8)

which in general is complicated, but if noise is small we can
again make a Gaussian approximation. Then, we can expand
C̄, perform the integral over g, and obtain the variance of C
at fixed x; this variance has two components, one from the
variance at fixed g, and one from the (co)variance of g at fixed
x, 〈δgμδgν〉x:

〈(δC)2〉x = σ 2
C (g)

∣∣
g=〈g〉x

+ A(x), (9)

A(x) =
∑
μν

∂C̄

∂gμ

〈δgμδgν〉x
∂C̄

∂gν

∣∣∣∣
g=〈g〉x

. (10)

With this we have

I (C; x) = S(C) − 1
2 〈log2[2πe〈(δC)2〉x]〉(x), (11)

and all the ingredients needed to express the objective
function U .

We notice that U is a local functional of C̄(g) and σ 2
C (g),

so we can use the calculus of variations in a familiar way. Op-
timizing with respect to σ 2

C (g) is especially straightforward,
and we find, using Eqs. (4), (6), and (11),

∂U
∂σ 2

C (g)
= 0 (12)

⇒ σ 2
C (g)

∣∣
g=〈g〉x

= λ

1 − λ
A(x), (13)

with A from Eq. (10). This makes sense, since it tells us that
the precision of encoding g in C should be related to the scale
of the fluctuations in g when the relevant variable x is fixed.
At this optimum we have

I (C; g) = S(x) − 1

2

〈
log2

[
2πe

B(x)

λ

1 − λ

]〉(x)

(14)

I (C; x) = S(x) − 1

2

〈
log2

[
2πe

B(x)

1

1 − λ

]〉(x)

, (15)

with B = (1/A)[dC̄/dx]2. If we can maximize B(x) locally at
each x, then we will have optimized U . In what follows we
simplify notation by leaving out the explicit x dependences,
and understand that functions of g are all evaluated at 〈g〉x.
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Before continuing with the general case, we can anticipate
the universal tradeoff by considering the simpler case where
there is only one variable g. Then,

A = A1 =
∣∣∣∣dC̄

dg

∣∣∣∣
2

〈(δg)2〉, (16)

B = B1 = 1

A1

∣∣∣∣dC̄

dx

∣∣∣∣
2

. (17)

Since we are working in the limit where noise is small,

dC̄

dx
= dC̄

dg
· d〈g〉x

dx
(18)

⇒ B = 1

〈(δg)2〉
∣∣∣∣d〈g〉x

dx

∣∣∣∣
2

= 1

σ 2
x (g)

, (19)

where in the last step we recognize σx as the error bar in
estimating x from the vector of concentration g [35,36]; this
identification itself is correct only in the low-noise limit. Sub-
stituting into Eq. (14), we have

I (C; g) = S(x) − 1

2

〈
log2

[
2πeσ 2

x (g)
λ

1 − λ

]〉(x)

, (20)

and we identify the mutual information between g and x,

I (g; x) = S(x) − 1
2

〈
log2

[
2πeσ 2

x (g)
]〉(x)

. (21)

This allows us to write

⇒ I (C; g) = I (g; x) − 1

2
log2

(
λ

1 − λ

)
. (22)

Similarly, we find

I (C; x) = I (g; x) − 1

2
log2

(
1

1 − λ

)
. (23)

Thus, the optimized I (g; x) and I (C; x) that form the bounding
curve of the information bottleneck problem are related to one
another in a way that is independent of the detailed structure
of the problem, as encoded in the distribution P(g; x). Perhaps
surprisingly, we will see that with multiple variables we arrive
at the same answer by optimizing the function C̄(g).

Returning to the general case, we have seen that optimizing
U is equivalent to optimizing B, where

B = 1

A

⎡
⎣∑

μ

∂C̄

∂gμ

d〈gμ〉x

dx

⎤
⎦

2

, (24)

with A from Eq. (10). If we shift C̄(g) → C̄(g) + δC̄(g), then
B → B + δB, where

δB = 2

A

∑
μ

Vμ

∂C̄

∂gμ

,

Vμ = −B
∑

ν

∂C̄

∂gν

〈δgνδgμ〉x +
[∑

ν

∂C̄

∂gν

d〈gν〉x

dx

]
d〈gμ〉x

dx
.

(25)

Because we need to know functions of g only along the one-
dimensional trajectory g = 〈g〉x, we have enough freedom for

∂C̄/∂gμ to be an arbitrary vector. Thus to find an extremum
δB = 0 we need Vμ = 0, which we can rewrite as

√
AB

d〈gμ〉x

dx
= B

∑
ν

〈δgμδgν〉x
∂C̄

∂gν

⇒ ∂C̄

∂gν

=
√

A

B

∑
μ

[(〈δgδg〉x )−1]νμ

d〈gμ〉x

dx
. (26)

This yields a simple expression for B,

B =
∑
μν

d〈gμ〉x

dx
[(〈δgδg〉x )−1]μν

d〈gν〉x

dx
(27)

= 1

σ 2
x (g)

, (28)

where σx(g) now is the error bar in estimating x from the entire
vector of concentrations g [35,36].

As in the case of one variable, we identify the information
that the concentrations g provide about x,

I (g; x) = S(x) − 1
2

〈
log2

[
2πeσ 2

x (g)
]〉(g)

. (29)

Finally, putting the different terms together we recover, anal-
ogously to Eqs. (22) and (23),

I (C; x) = I (g; x) − 1

2
log2

(
1

1 − λ

)
, (30)

I (C; g) = I (g; x) − 1

2
log2

(
λ

1 − λ

)
. (31)

These equations imply that with 0 < λ < 1, the information
I (C; x) that is captured about the relevant variable is less than
the available information I (g; x), as it must be. As λ → 0
this gap closes, but at the expense of requiring an increasing
information capacity in the mapping g → C. Taken together,
Eqs. (30) and (31) define the bounding curve in the informa-
tion plane, as shown in Fig 1.

The result in Eqs. (30) and (31) is surprising, because
all details of the underlying system have disappeared. This
asymptotically universal bounding curve suggests there is a
tradeoff between the capacity of the cell to measure the con-
centration of signaling molecules and the resulting ability to
capture relevant information, independent of molecular mech-
anisms, at least in some regime. Are real cells in this regime?

IV. THE EARLY FLY EMBRYO

The gap genes form a network that is crucial to the early
events of fly development [37,38]. These four genes take in-
puts from primary maternal morphogens and in turn drive the
striped patterns of pair-rule gene expression. The local con-
centrations of gap gene proteins provide enough information
to specify position to ∼1% accuracy along the anterior-
posterior axis, and this is the precision with which the stripes
are positioned [35,39,40]. The algorithm that achieves optimal
readout of this positional information predicts, quantitatively,
the distortions of the pair-rule stripes in mutant flies where
individual maternal inputs are deleted [41].

The concentrations of the gap gene proteins (g) encode
information about position (x), providing an example of the
problem we have been discussing. This positional information
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(a) (b) (c)

FIG. 1. (a) The four gap genes Hb, Kr, Kni, and Gt are expressed in varying concentrations g along the anterior-posterior axis of the fly
embryo x [41]; L ∼ 0.5 mm. Mean profiles 〈gi〉x in solid lines, shading shows standard deviations

√〈(δgi )2〉x . (b) The information plane I (C; x)
vs I (C; g) for optimized C when g is each of the four gap gene proteins separately, some exemplary pairs, or all gap gene proteins together;
computations follow the methods of Ref. [22]. (c) Collapse of the data onto the universal information tradeoff, as predicted from Eqs. (30) and
(31), in black. In these coordinates, both I (C; x) and I (C; g) are measured relative to the maximum available positional information, I (g; x).

is important to the organism, as nuclei must make distinct
cell-fate decisions in their further development; I (g; x) bounds
the (log) number of distinct cell fate decisions can be placed
in a reliable relation to position. Figure 1(a) shows the means
and standard deviations of g as a function of x. With four
gap genes, we can analyze the information that they carry
individually, or in groups. To test the predictions of our theory
we need to compare with the full numerical solution of the
bottleneck problem in each of these cases.

We emphasize that the solution of the full information
bottleneck problem is determined by the joint distribution
P(g, x), which must be estimated from experiment. Thus,
while it emerges as the solution of an optimization problem,
the true bounding curve in the plane I (C; x) vs I (C; g) is a
property of the data, and should be seen as a experimental
result that we can compare to the theory developed here.
Following previous analyses [35,41], we make use of experi-
ments that measure the concentrations g at each point x in a
large number of embryos. We approximate P(g|x) as Gaus-
sian, and estimate 〈gμ〉x and 〈δgμδgν〉x in a small window of
time ∼42 min into nuclear cycle 14. The mapping P(C|g) that
optimizes U is the solution of the self–consistent equation [26]

P(C|g) = P(C)

Z (g, λ)
exp

[
−1

λ

∫
dxP(x|g) ln

(
P(x|g)

P(x|C)

)]
,

where Z is a normalization constant. To solve this numerically
we assume that C is a discrete variable. For each cardinal-
ity ||C|| we find a curve of I (C; x) vs I (C; g), and the true
bounding curve is obtained at large ||C|| [42]; details are in
the supplement to Ref. [22]. Figure 1(b) shows the optimal
I (C; x) vs I (C; g) for the numerically optimized P(C|g) with
λ varying along the curves. We emphasize that any molecular
mechanism by which the embryo responds to the concentra-
tions g must fall on a point below the bounding curve.

Figure 1(c) shows that these curves collapse when shifted
by the mutual information I (g; x), as predicted in Eqs. (22)
and (23). Notice that these shifts vary by up to ∼2.5 bits
across the different groups. We see that these real examples
follow the predictions of the universal tradeoff (in black) quite
accurately.

Our theory predicts that the universal tradeoff is true
asymptotically, which means that it does not provide an upper

(or lower) bound for the data. If we look at the gap genes
individually, there are regions along the x axis where the
small noise approximation fails, and we expect deviations
from the predicted behavior; it is perhaps surprising that these
deviations [points versus line in Fig. 1(c)] are so small. One of
the important features of these data is that as we include more
of the gap genes in our analysis the effective positional noise
becomes uniformly small along the full length of the embryo
[35,41]. Thus the predictions of a universal tradeoff should be
most accurate in the case of all four genes, and this is what we
see.

To explore the applicability of our universal tradeoff, we
generate artificial data that is a perturbation of the real data
from the fly embryo. Specifically we hold the means 〈gi〉x

fixed and vary the structure of the noise, then analyze the
tradeoff between I (C; x) and I (C; g) in Fig. 2. We perform
this analysis both for all four genes together [Fig. 2(a)] and
for Hb alone [Fig. 2(b)].

(a) (b)

FIG. 2. Applicability of the universal tradeoff. We generated
modified gene expression profiles, inspired by all genes (a) and
Hb alone (b), but changed the noise profiles. The IB compression
from the observed expression data in the fly embryo are shown
in gray in both panels. Light blue and light brown [only in (b)]
corresponds to increasing the naturally observed noise three and 20
times, respectively; for the latter the IB curve in rescaled units is no
longer captured by the universal tradeoff. A randomized noise profile
(multiplied at each x by a random number up to 9) lowers the IB
curve below the tradeoff. Small, uniform noise [〈(δgi )2〉 = (0.03)2]
shows perfect alignment with the optimal compression for Hb and
perfect alignment with our universal tradeoff for all genes.
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We expect our tradeoff to be valid when data means are
monotonic and smooth, and when the noise is smooth and
small compared to changes in the mean. For the data inspired
by all four genes, a smooth and small noise profile matches
the tradeoff exactly [Fig. 2(a)]. On the other hand, threefold
increases in natural noise as well as a randomly chosen, het-
erogeneous noise profile push the IB curves below the real
data and our universal tradeoff.

For the case of a single gene (Hb), deviations from the
universal tradeoff are larger in the real data and persist even
when we lower the noise level [Fig. 2(b)]. As expected, devi-
ations are even larger if we increase the noise level by a large
factor, and have the opposite sign if we replace the observed
noise levels with a random function of x. We conclude that
our tradeoff is valid asymptotically and relies on the smooth,
small-noise regime.

V. IMPLICATIONS

The fact that a real system follows the universal tradeoff
in Eqs. (22) and (23) invites us to consider the implications.
We notice that the theoretical prediction is close to being a
line of unit slope, I (C; x) ∼ I (C; g), ending in saturation at
I (C; x) = I (g; x). We can never have I (C; x) > I (C; g), and it
is interesting that, under fairly general conditions, it is possi-
ble to approach this maximal efficiency of I (C; x) ∼ I (C; g):
If noisy mechanisms can keep only I bits of information about
the signaling molecule concentrations, then it is possible for
all of these I bits to be relevant for the organism, even when
the mappings among signals are complicated, as in the pattern
of gap gene expression versus position. This proximity of
the information bottleneck solution to the bound I (C; x) �
I (C; g) is not true in general [43], and in many problems
I (C; x) diverges from I (C; g) already close to the origin. We
can see how close this tradeoff is to the diagonal I (C; x) =
I (C; g) by calculating I (C; x) at the point I (C; g) = I (g, x);
from Eq. (23) this happens at λ = 0.5, where Eq. (22) predicts
that I (C; x) = I (g, x) − 0.5 bits. Thus, in the regime we are
considering, sensors with “just enough” capacity to transmit
all the information provided by the signaling molecules can
come close to deploying all this capacity for the relevant
information.

On the other hand, it is worth emphasizing that no real
mechanism can extract all of the information that is available
about x from a perfect measurement of g. If the available
information is I , then to get within ε bits Eq. (23) tells

us that we need a mechanism with capacity I (C; g) ∼ I −
(1/2) log2(2ε ln 2), where we expand the logarithm in Eq. (31)
in λ ≈ 2ε ln 2 at small ε. If the cell needs to make a binary de-
cision, then making errors with probability q causes an infor-
mation loss ε which is just the entropy of these errors. At small
q this entropy is ε ∼ q log2(e/q) bits. This means, for exam-
ple, that if the initial signals g are just sufficient to provide one
bit of information, the cell would need to read these signals
with ∼2.5 bits of accuracy in order to keep errors below q ∼
1%. The requirements are even more stringent if we imagine
that the initial signal g is processed through several layers. The
perhaps surprising conclusion is that mechanisms with one bit
of information capacity are not sufficient for cells to make re-
liable binary decisions. More generally, cells must sense con-
centrations with mechanisms that have nearly 2 bits more ca-
pacity than the relevant information that they need to extract.

VI. CONCLUSION

In conclusion, we have derived a universal tradeoff be-
tween I (C; x) and I (C; g) in the limit where mappings are
smooth and the effective noise level is small. This provides
analytic control over the information bottleneck problem in
a regime that is different from the case where P(g; x) is
Gaussian [33]. Importantly, we find that for the encoding
of positional information by transcription factors in the fly
embryo, our universal tradeoff captures the results from full
numerical optimization very well. We can think of the com-
pressed variable C as representing the state of the enhancers
that respond directly to the transcription factors and determine
the expression of “downstream” genes. The universal tradeoff
gives us a path to analytic understanding of the information
capacity that these enhancers must achieve in order to extract
the limited information available about the ultimate body plan
of the organism [22,23].
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[12] G. Tkačik and A. M. Walczak, Information transmission in ge-
netic regulatory networks: A review, J. Phys.: Condens. Matter
23, 153102 (2011).

[13] E. D. Siggia and M. Vergassola, Decisions on the fly in cellu-
lar sensory systems, Proc. Natl. Acad. Sci. USA 110, E3704
(2013).

[14] N. B. Becker, A. Mugler, and P. R. ten Wolde, Optimal pre-
diction by cellular signaling networks, Phys. Rev. Lett. 115,
258103 (2015).

[15] G. K. Ackers, A. D. Johnson, and M. A. Shea, Quantitative
model for gene regulation by λ phage repressor, Proc. Natl.
Acad. Sci. USA 79, 1129 (1982).

[16] M. Ptashne and A. Gann, Genes and Signals (Cold Spring
Harbor Press, New York, 2002).

[17] L. Bintu, N. E. Buchler, H. G. Garcia, U. Geraland, T. Hwa,
J. Kondev, and R. Phillips, Transcriptional regulation by the
numbers: Models, Curr. Opin. Genet. Dev. 15, 116 (2005).

[18] D. Hnisz, K. Shrinivas, R. A. Young, A. K. Chakraborty, and
P. A. Sharp, A phase separation model for transcriptional con-
trol, Cell 169, 13 (2017).

[19] M. Morrison, M. Razo-Mejia, and R. Phillips, Reconciling
kinetic and thermodynamic models of bacterial transcription,
PLoS Comput. Biol. 17, e1008572 (2021).

[20] B. Zoller, T. Gregor, and G. Tkačik, Eukaryotic gene regula-
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