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Odd Elastohydrodynamics: Non-Reciprocal Living Material in a Viscous Fluid
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Motility is a fundamental feature of living matter, encompassing single cells and collective behavior. Such
living systems are characterized by nonconservativity of energy and a large diversity of spatiotemporal patterns.
Thus, fundamental physical principles to formulate their behavior are not yet fully understood. This study
explores a violation of Newton’s third law in motile active agents, by considering non-reciprocal mechanical
interactions known as odd elasticity. By extending the description of odd elasticity to a nonlinear regime, we
present a general framework for the swimming dynamics of active elastic materials in low-Reynolds-number
fluids, such as wavelike patterns observed in eukaryotic cilia and flagella. We investigate the nonlocal interactions
within a swimmer using generalized material elasticity and apply these concepts to biological flagellar motion.
Through simple solvable models and the analysis of Chlamydomonas flagella waveforms and experimental data
for human sperm, we demonstrate the wide applicability of a nonlocal and non-reciprocal description of internal
interactions within living materials in viscous fluids, offering a unified framework for active and living matter
physics.
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I. INTRODUCTION

Motility is one of the main features of living matter, from a
single cell to a swarm of birds or a human crowd [1–3]. In the
last few decades, the dynamics of motile active agents, both
individual and collective behavior, have been intensively stud-
ied, giving rise to a rapidly expanding research field in physics
bridging nonequilibrium statistical physics, biophysics, and
continuum mechanics, now known as active matter and living
matter physics. A crucial feature of these systems is that inner
activity units convert energy into mechanical forces. In turn,
Newton’s third law may be violated when we regard it as an
open system, with its mechanical energy being injected from
microscopic active units. Therefore, the mechanical interac-
tions between the units can be non-reciprocal [4,5].

The concept of reciprocity is also widely used in con-
tinuum mechanics. Recently, violation of the Maxwell-Betti
reciprocity in elasticity has been discovered in an active sys-
tem, and termed odd elasticity [6–8]. The elastic matrix in the
constitutive stress-strain relation is then allowed to contain
nonsymmetric components, and it generates a self-sustained
propagating wave. Odd elasticity reflects the nonconservative
forces generated by microscopic active units and provides an
effective material constitutive relation for active and living
matter. This formulation was shown to effectively describe ac-
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tive locomotion as an autonomous system without controlled,
tuned actuation [9].

Motile agents at the cellular scale are usually immersed
in viscous fluids and are self-propelled by their deformation,
as seen in swimming microorganisms [10,11]. The motility
of microswimmers, a term used for active agents in a low-
Reynolds-number fluid, is, however, only possible when their
deformations are non-reciprocal, which is known as the scal-
lop theorem [11–13].

Recent theoretical studies on the swimming dynamics
of odd-elastic materials [14,15] revealed the relations be-
tween the violation of Maxwell-Betti reciprocity and the
non-reciprocal deformation for microswimming around an
equilibrium configuration, demonstrating that the swim-
ming velocity is proportional to the magnitude of odd
elasticity.

A traveling wave is a typical example of non-reciprocal
deformation ubiquitously observed in biological microswim-
mers. Indeed, many eukaryotic cells use a flexible slender
appendage, called a flagellum or cilium, for propulsion by
generating a wave. Examples include tail motions of sperm
cells and breaststrokes of Chlamydomonas green algae [16].
This evolutionarily conserved filament is actuated by inner
molecular motors in coordination, resulting in a periodic
traveling wave with a self-organized nature. The flagellar
whiplike motion is therefore regarded as a limit cycle oscil-
lator, and the generic form of flagellar swimming is provided
by Hopf bifurcation [17]. Recent theoretical and numeri-
cal studies using elaborate elastohydrodynamic models also
found the emergence of the various flagellar waveform pat-
terns via Hopf bifurcation [18–21]. Moreover, refinements
of videomicroscopy of biological flagella have enabled the
detailed analyses of waveforms, and found that the flagellar
shape dynamics are well described by a noisy limit cycle that
reflects internal activity [22–27].
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The self-sustained wave for an odd-elastic material, how-
ever, is insufficient to describe the flagellar waveform, because
the odd-elastic waves are dissipated rather than sustained by
the fluid viscosity, similar to the classical (passive) elastic
response in a viscous medium [28]. Hence, nonlinearity is re-
quired for an odd-elastic system to exhibit a stable limit cycle
[15], calling for a more general, nonlinear odd constitutive
relation to deal with biological flagellar swimming. In fact,
the importance of nonlinear odd elasticity has been reported
as a topical challenge within the field of active matter studies
[8].

The primary aim of this study is therefore to extend
the odd-elastic description of microswimmers to a nonlinear
regime to deal with stable periodic deformations, as seen in
biological flagellar motion. This theory, which we call odd
elastohydrodynamics, therefore provides a unified framework
for the study of nonlocal, non-reciprocal interactions of an
elastic material in a viscous fluid.

Using this generic formulation, we can access the interac-
tions inside an active elastic material, while these are masked
by fluid dynamic coupling when observing flagellar motion
under a microscope. To distinguish the non-reciprocal activity
from the passive elastic response, we introduce a new concept,
the odd-elastic modulus, as a spatial Fourier transform in an
extended space. The real and imaginary parts of this complex
function possess proper symmetry and characterize the recip-
rocal and non-reciprocal interactions, respectively.

The secondary aim of this study is then to apply our
theory to biological flagellar swimmers. By examining the
odd-elastic modulus based on simple mathematical models
and biological experimental data, we show the wide applica-
bility of a nonlocal and non-reciprocal description of internal
interactions within living materials.

The contents of this paper are summarized as follows. In
Sec. II, we provide a setup for the theoretical formulation of
odd elastohydrodynamics to describe an active elastic material
in a viscous fluid. We also discuss the connection between
Hopf bifurcation and nonlinear odd elasticity and express the
dynamics of a microswimmer undergoing periodic deforma-
tion. In Sec. III, we introduce the concept of the odd-elastic
modulus.

In Secs. IV and V, we apply our theory to understand the
inner mechanical interactions that biological flagellar motion
exhibit. To gain physical intuition regarding nonlocal, non-
reciprocal interactions encoded by nonlinear odd elasticity,
we start with simple and solvable models in Sec. IV. We
also discuss how the odd-elastic modulus captures the inner
interactions of these example models. In Sec. V, we numer-
ically investigate the extended bending modulus in model
flagellar waveforms for Chlamydomonas and sperm cells,
together with experimental data. With these, we propose a
new continuum description of living soft matter in a viscous
fluid by means of nonlinear odd elasticity. The discussion and
conclusions are provided in Sec. VI.

One of the advantages of the odd-elastic description of
activity is the application of the autonomous equations of
motion. These allow us to analyze some general features
of microswimming with periodic deformation, including the-
oretical formulas for the average swimming velocity. In
Appendix A, to complete our general theory of odd elastohy-

FIG. 1. Schematic of general odd-elastic microswimmer. This
example swimmer moves in a three-dimensional space (d = 3). The
position and rotation of the swimmer are represented by the relative
motions between the laboratory frame {ex, ey, ez} and the swimmer-
fixed frame {e(s)

x , e(s)
y , e(s)

z }. The shape of the swimmer is parametrized
by N shape variables σ = (σ1, . . . , σN ). In this schematic, we use
displacements of material units from equilibrium positions as the
shape variables. In typical linear elastic theory, a recovery force
is applied that is proportional to the displacement using a spring
constant, as indicated by k in this schematic. In the current study,
however, we generalize this elastic force to include internal actuation,
which is represented by odd elasticity.

drodynamics, we further extend our framework to encompass
fluctuations in shape gaits by internal actuation, following
biological observations of a noisy limit cycle in shape space.
Exploiting the autonomous structure of the odd-elastic formu-
lation and the gauge-field formulation for microswimming,
we investigate the effects of internal active noise on swimming
velocity. The role of odd elasticity is further discussed in terms
of nonequilibrium thermodynamics.

II. ODD ELASTOHYDRODYNAMICS
OF MICROSWIMMERS

A. Shape and deformation of a swimmer

To describe the motion of a deforming microswimmer in a
fluid, we need to specify the position and orientation together
with the instantaneous shape of the swimmer. In Fig. 1, we
present a schematic of a general elastic microswimmer. The
rigid body motion is defined by the translation and rotation
between the laboratory frame {e1, . . . , ed} and swimmer-fixed
frame {e(s)

1 , . . . , e(s)
d }. We assume that the swimmer moves in

a d-dimensional space, where d = 1, 2, or 3: d = 1 indicates
linear motion, d = 2 indicates planar motion, and d = 3 cor-
responds to general three-dimensional motion in space. The
origin of the swimmer-fixed frame is set to be the swimmer’s
position and is denoted by x = (x1, . . . , xd )T. The number of
angular degrees of freedom to specify the orientation in d-
dimensional space is d ′ = d (d − 1)/2. We let n be the number
of degrees of freedom for rigid motion, that is, n = d + d ′,
and introduce an n-dimensional vector to represent the posi-
tion and orientation as z0 = (x1, . . . , xd , θ1, . . . , θd ′ )T ∈ Rn.

We assume that the shape of the swimmer is parametrized
by N shape coordinates as σ = (σ1, . . . , σN )T ∈ RN . For the
shape coordinates, we employ, for example, displacements
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from the equilibria of the material units or relative angles
between neighboring material units. We will later introduce
generalized elastic forces and torques associated with the
shape coordinates (see also Fig. 1).

Let us denote representations in the swimmer-fixed co-
ordinates by superscript (s) and introduce the extended
coordinates vector z = (z(s)

0 ; σ ) ∈ Rn+N and its associated
velocity vector, ż = (ż(s)

0 ; σ̇) ∈ Rn+N , where the semicolon
indicates vertical concatenation and the dot symbol indicates
a time derivative. The velocity in the swimmer-fixed coordi-
nates ż(s)

0 is a physical quantity that is obtained from the force
and torque balance equations as explained below. The vector
z(s)

0 , computed by integrating ż(s)
0 , is introduced for later use

but does not represent a physical position or orientation when
d = 3 due to the noncommutative nature of the dynamics. We
set the origin of the shape coordinates, σ = 0, to be the equi-
librium configuration without any internal or external forces.

This description includes, in particular, several minimal
mathematical models of swimmers. For example, Najafi and
Golestanian’s three-sphere model [29–31] is a swimmer con-
sisting of three spheres connected in a straight line by two
rods and moving in one direction by changing the lengths
of the rods; thus, the degrees of freedom are (n, N ) = (1, 2).
Purcell’s three-link swimmer [12,32,33] is another minimal
model, which consists of three rods connected by two hinges
to form a snakelike robot, and can swim in a plane by chang-
ing the angles of the hinges. The degrees of freedom are
therefore (n, N ) = (3, 2) for this model. The shape parameters
are the lengths of two arms for the three-sphere model and the
two relative angles for the three-link swimmer.

B. Odd-elastohydrodynamic equations

The dynamics of a three-dimensional self-deforming elas-
tic object in a viscous fluid are well represented by the Stokes
equation:

η∇2u = ∇p, (1)

where the velocity field u satisfies the incompressibility con-
dition ∇ · u = 0. Here, p is the pressure field, and the viscosity
η is assumed to be constant. Due to the linearity of the Stokes
equations, the hydrodynamic forces and torques conjugate to
the extended coordinates, denoted symbolically by f hyd, are
proportional to the time derivative of the extended coordi-
nates. This linear relation is represented by a positive-definite
matrix, called a generalized grand resistance matrix M [34];
hence, f hyd = −Mż. Due to the negligible inertia, these forces
and torques are balanced by internal or external forces and
torques, which we denote by f and introduce below.

We now define an “elasticity” matrix (or equivalently an
elastic matrix) through a general stress-strain constitutive re-
lation as a function of the shape parameters, K(σ) ∈ RN×N ,
to represent all the internal forces and torques, including the
internal activity force as well as the ordinary passive elastic
response. To be more precise, this generalized elastic matrix is
defined by mapping from shape coordinates to internal forces
and torques, given by f = −K(σ )σ. This generalized elastic-
ity is reduced to that of an elastic spring when we take the
displacement of the material point for the shape coordinates
and to that of a torque spring (torsion spring) when we employ

the relative angle along a filament as the shape coordinates. At
the equilibrium configuration (σ = 0), the generalized elastic
force vanishes ( f = 0.) The nonsymmetric part may have
nonzero values, that is, K �= KT; this corresponds to odd elas-
ticity and effectively represents the nonconservative, internal
activity of the self-deforming material. If it is linearly odd
elastic, the elastic matrix K is a constant matrix, although
it is, in general, determined by the instantaneous shape of
the object. The balance equations for the forces and torque,
f hyd + f = 0, are therefore summarized in the following form
[15]:

−M(σ)ż = L(σ)z. (2)

Note that the matrix M only depends on the instantaneous
shape of the swimmer. The right-hand side of Eq. (2) repre-
sents a general elastic force, including both the passive elastic
response and internal actuation, and L is an (n + N ) × (n +
N ) matrix containing the elastic matrix K as Ln+α,n+β = Kαβ

with the other components being zero, namely, Li j = Liα =
Lα j = 0. Throughout this paper, we use roman indices such
as i, j = {1, . . . , n} for the translation and orientation of the
object, greek indices such as α, β = {1, . . . , N} for the shape
coordinates, and the Einstein summation convention for re-
peated indices.

By inverting the resistance matrix, we can decompose the
shape dynamics from the rigid body motion in the form

ż0 = −PKσ, σ̇ = −QKσ. (3)

The matrices P and Q are respectively given by Piα = Ni,n+α

and Qαβ = Nn+α,n+β , with N = M−1. Note that the second of
Eqs. (3) provides an autonomous dynamical system in shape
space, and the nonsymmetric part of the elastic matrix plays
the role of an internal actuation to drive the deformation. The
first equation determines the translation and rotation of the
swimmer and coincides with the equation of the kinematic
swimming problem, in which the shape gait is a given func-
tion.

C. Periodic swimming by nonlinear odd elasticity

We now consider a microswimmer undergoing a periodic
deformation with a particular focus on flagellarlike filament
dynamics. For eukaryotic flagella, internal molecular motors
synchronously actuate the elastic filament to generate a peri-
odic waveform. While the emergent waveform is obtained by
elastohydrodynamic mechanical coupling, the onset of wave
generation from a straight equilibrium configuration is well
formulated by a Hopf bifurcation [17,19,20,22].

To illustrate the limit cycle behavior in the shape space, we
reproduce in Fig. 2 the figures on human sperm swimming
from Ishimoto et al. [26], in which principal component anal-
ysis (PCA) was performed to reduce the dimensionality of the
flagellar waveform obtained from experimental observations.
The authors found that the flagellar waveforms are well rep-
resented by noisy limit cycle orbits in the two-dimensional
shape space spanned by the lowest PCA modes [Figs. 2(a)
and 2(b)]. The embedded limit cycle orbit was then extracted
and used to analyze the time-periodic swimming dynamics of
human sperm [Fig. 2(c)].
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FIG. 2. Human sperm swimming as an example of microswim-
mer with noisy limit cycle. (a) The lowest two principal component
analysis (PCA) modes were obtained from experimental data. The
horizontal axis indicates the normalized arclength along the flagel-
lum from the head-tail junction. (b) Projections of the shape onto the
two-dimensional PCA shape space. Each circle indicates the shape
at a different time. (c) Superposed snapshots of a swimming human
sperm with a time-periodic beat, obtained by a direct numerical
simulation of the Stokes equations. The waveform was extracted
from the experimental data for swimming human sperm as a limit
cycle in the two-dimensional PCA shape space. Figures reproduced
from Ref. [26] with permission under the Creative Commons license
[35].

To derive a generic description for such time-periodic
swimming, we employ the normal form of the Hopf bifurca-
tion, which may be written as [36]

dz

dt
= cz + b|z|2z, (4)

where z ∈ C. The parameters c and b are both complex num-
bers: c = λ + iω ∈ C and b = μ + iξ ∈ C with real-valued
parameters λ, ω, μ, and ξ . Let us introduce the apparent
shape space in which the shape dynamics are described by
the normal form (4) and denote the shape coordinates in this
shape space by q. The apparent shape coordinates do not
always coincide with the shape coordinates σ used in the
stress-strain relation. To distinguish σ from q, we now refer to
σ as intrinsic shape coordinates. We then assume the existence
of a transformation from the apparent shape coordinates to
the intrinsic shape coordinates given by a full-rank matrix
W ∈ RN×N , that is, σ = Wq. The matrix W may be obtained
by PCA and we will later examine detailed construction of the
matrix with some examples (Secs. IV and V).

From the normal form of Eq. (4), the dynamics in the
apparent shape space are separated into the limit cycle in
the q1-q2 space and the damping dynamics in the remaining
(N − 2) dimensions. Let us introduce the apparent elastic
matrix K̂ ∈ RN×N to distinguish the apparent elasticity from
the intrinsic elasticity K in Eq. (3), and write the dynamics in
the form

q̇ = −K̂q with K̂(q) =
(

K̂LC O
O K̂d

)
, (5)

where the two-dimensional nonlinear elastic matrix K̂LC ∈
R2×2 represents the limit cycle in Eq. (4), and the (N − 2)-
dimensional matrix K̂d ∈ R(N−2)×(N−2) in the right-bottom
block expresses the stable modes around the Hopf bifurcation.
All the eigenvalues of K̂d therefore have non-negative real
parts.

After relabeling the parameters λ, ω, μ, and ξ in Eq. (5)
as ke, ko, kne, and kno with an additional minus sign, we may
write the components of K̂LC as

K̂LC
αβ = (ke + kner2)δαβ + (ko + knor2)εαβ (6)

for α, β ∈ {1, 2}. Here, δαβ is the Kronecker delta, εαβ is the
two-dimensional Levi-Cività permutation symbol, and r =
(q2

1 + q2
2 )1/2. With these terms, the dynamics in the apparent

shape coordinates are translated from the normal form of
the Hopf bifurcation into dynamics described by odd-elastic
interactions. The four parameters ke, ko, kne, and kno are then
interpreted as even linear elasticity, odd linear elasticity, even
nonlinear elasticity, and odd nonlinear elasticity, respectively.

In this section, we introduced the normal form for the limit
cycle in shape space, which then couples with hydrodynamics
to generate the net displacement, i.e., locomotion or swim-
ming. In this theoretical framework, the swimming dynamics
are fully described by an autonomous system. Hence, by
integrating this system over the cycle of shape deformation,
we may obtain a general formula for the average swimming
velocity for a small-amplitude swimmer [15,37].

The position and the orientation in d dimensions are rep-
resented by an element of the d-dimensional Euclidean group
SE(d ). We represent these by R ∈ Rn×n and the time evo-
lution is provided by its generator, A, via Ṙ = RA. With the
linearity of the Stokes equation, we may rewrite this generator
as A = Aαqα , and the third-rank tensor [Aα]i j = Ai jα is the
connection of the gauge group SE(d ). If the swimmer exhibits
a periodic motion with period Tc, the displacement and rota-
tion after one beat cycle are obtained by a loop integral in
shape space [37–39] as

R(T ) = R0P̄ exp

[∫ Tc

0
A(t ) dt

]
= R0P exp

[∮
Aα dqα

]
,

(7)

where we write R(t = 0) = R0 and introduce a path-ordering
operator P. The integral in the last term is performed over a
closed loop in shape space. After expanding for a small q up
to its quadratic term, the swimming velocity over one beat
cycle is obtained for a small-amplitude deformation by using
a fourth-rank tensor F , called the curvature of the gauge field,
as

Ai j = 1
2 Fi jαβqα q̇β, (8)

where the overline indicates the average over one deformation
cycle. Hence, the average swimming velocity is proportional
to the areal velocity enclosed by the limit cycle in shape
space. Using our odd-elastic representation, Eqs. (5) and (6),
the limit cycle exists only when ke < 0. Then, the swimming
formula can be computed as

Ai j = Fi j12

[
ko

2

|ke|
kne

+ kno

2

( |ke|
kne

)2
]
. (9)
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The terms on the right-hand side are proportional to the odd-
elastic coefficients. This equation generalizes the swimming
formula for an odd-elastic swimmer from the linear to the
nonlinear regime [15].

In addition, as observed in many biological systems, the
shape gait, or the coefficients for the odd elasticity in our
framework, temporally fluctuates. Furthermore, these active
fluctuations provide an important link to nonequilibrium sta-
tistical physics. Therefore, internal noise should be taken
into consideration to precisely evaluate locomotion. Thus, to
complete our theory, we thoroughly investigated the impact
of noise on the swimming velocity, extending the swimming
formula (9) for noisy limit cycles. The detailed calculations
can be found in Appendix A.

III. NONLOCAL, NON-RECIPROCAL INTERACTIONS
AND ODD-ELASTIC MODULUS

In this section, we focus on the interactions between the
units of active material undergoing periodic deformation in
a viscous fluid. To characterize its nonlocal, non-reciprocal
interactions, we introduce the concept of the odd-elastic mod-
ulus.

By changing the variables from q to σ, the intrinsic elastic
matrix can be derived from the apparent elastic matrix as

K = Q−1WK̂W−1. (10)

As already described, the elastic force or torque including
the passive and active elastic response is symbolically given
by

fα = −Kαβσβ. (11)

When considering the intrinsic shape coordinates, we usually
chose the displacement from the equilibrium for a material
unit and the relative distance or angle between neighboring
material units.

In the example of an odd three-sphere swimmer [14], the
intrinsic elastic matrix is given by

Kαβ = keδαβ + koεαβ, (12)

for α, β ∈ {1, 2}. For a Purcell swimmer with odd-elastic
hinges [15], the same intrinsic elastic matrix is considered,
where fi indicates the torque at the ith hinge and σi is the ith
relative angle between neighboring rods.

We further extend this form into an N × N matrix represen-
tation. A schematic is shown in Fig. 3(a), where the size of the
matrix is set to N = 10, with the colors indicating the values
of the matrix components, which are chosen arbitrarily for
illustration purposes. The off-diagonal components express
nonlocal interactions. The matrix is then decomposed into its
symmetric and antisymmetric parts, i.e., K = Ke + Ko. These
correspond to the even and odd elastic matrices, respectively,
and the antisymmetric matrix represents the non-reciprocal
interactions between the units of material.

Let us introduce the Lagrangian coordinate of the material
for a point with shape index α, which is denoted by position
sα ∈ Rd . For simplicity and later use, here we focus on a
one-dimensional elastic object such as a filament or rod, and
assume its length at rest to be �. For the Lagrangian coordi-
nates, we take an equally spaced arclength along the material

(a)

(b)

FIG. 3. Schematics of elastic matrix Kαβ and its continuum
representation κ̄ (s, s′) with decomposition into symmetric even
elasticity (reciprocal interaction) and antisymmetric odd elasticity
(non-reciprocal interaction), (a) K = Ke + Ko and (b) κ̄ = κ̄e + κ̄o.
The two-dimensional Fourier transform is associated with a two-
dimensional wave vector (νs, νs′ ). To characterize the non-reciprocal
nature of the interactions encoded in the intrinsic elasticity, we con-
sider the Fourier modes along the diagonal components and in the
perpendicular direction, respectively indicated by ν and ν̂ in the
schematics. The odd-elastic modulus, Eq. (18), is defined by
the Fourier modes in the ν̂ direction.

at rest and represent it by sα ∈ [0, �] with its separation being
�� = �/N . We then rewrite Eq. (11), representing the force or
torque acting on a material point with a Lagrange label sα , by
a nonlocal interaction represented by a kernel, κ (sα, sβ ), as

f (sα ) = −
∑

β

κ (sα, sβ )σ j (sβ ). (13)

For large N , it is also useful to consider a continuum repre-
sentation. By dividing both terms in Eq. (13) by the spatial
discretization, we obtain

f (sα )

��
= −

∑
β

κ (sα, sβ )

��

σ j (sβ )

��
��. (14)

Each term in Eq. (14) represents the density (quantity per unit
length): f̄ = f /�� and σ̄ = σ/�� are the force or torque per
unit length and the displacement per unit length, respectively,
whereas κ̄ = κ/�� is interpreted as an extension of the elastic
modulus.

In the continuum representation, as is usually considered,
we assume that these densities are well-behaved functions.
Hence, by replacing the summation with an integral, the con-
tinuous form in the large-N limit is obtained as

f̄ (s) = −
∫ �

0
κ̄ (s, s′)σ̄ (s′) ds′, (15)

where the integral is performed over the material.
A non-energy-conserving active material may possess non-

symmetric components in the elastic matrix (Kαβ �= Kβα), and
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this corresponds to non-reciprocity of nonlocal elastic interac-
tions:

κ̄ (s, s′) �= κ̄ (s′, s). (16)

As illustrated in Fig. 3(b), we then decompose the ker-
nel function into reciprocal (even) and non-reciprocal (odd)
components as κ̄ (s, s′) = κ̄e(s, s′) + κ̄o(s, s′). Note that the
non-reciprocity expressed by Eq. (16) refers to the breakdown
of the symmetry under the change of two material points,
(s, s′) �→ (s′, s), and differs from the reciprocity with respect
to the physical coordinates, (i, j) �→ ( j, i). The macroscopic
odd elasticity often refers to non-reciprocity in the physical
coordinates, while the odd-elastic modulus here refers to mi-
croscopic odd-elastic interactions [6,8].

To extract the non-reciprocal interactions encoded in the
kernel in Eqs. (13) and (15), we introduce a new physical
quantity. Let us first consider the two-dimensional Fourier
transform of the nonlocal elastic modulus in a space spanned
by s and s′. The transformation of κ̄ (s, s′) with a wave vector
(νs, νs′ ) is then given by

κ̃ (νs, νs′ ) =
∫∫

κ̄ (s, s′)e−i(νss+νs′ s′ ) ds ds′, (17)

where the integral is performed over the two Lagrangian co-
ordinates, i.e., (s, s′) ∈ [0, �] × [0, �].

To characterize the interactions between the units of mate-
rial, it is useful to decompose the wave vector into diagonal
and perpendicular components (see Fig. 3), rather than hor-
izontal and vertical components. The diagonal part of the
elastic matrix, along the ν direction in Fig. 3, represents
spatial variations of the ordinary elastic response, while the
off-diagonal parts represent nonlocal interactions. To char-
acterize this nonlocal behavior, we consider the wave vector
along the ν̂ direction in Fig. 3, which is perpendicular to the
diagonal direction, given by νs + νs′ = 0.

By plugging this relation into Eq. (17) and introducing ν̂ =
(νs − νs′ )/2, we can obtain a complex function,

κ̃ (ν̂) =
∫∫

κ̄ (s, s′)e−iν̂(s−s′ ) ds ds′, (18)

which we hereafter call the odd-elastic modulus. The physical
meaning of this quantity becomes clearer when the kernel
function is decomposed into reciprocal and non-reciprocal
components, which are symmetric and antisymmetric, respec-
tively, with respect to the exchange of two material points
(s, s′) �→ (s′, s) as

κ̄e(s, s′) = κ̄e(s′, s) and κ̄o(s, s′) = −κ̄o(s′, s). (19)

Substituting this decomposition into Eq. (18), we have κ̃ (ν̂) =
κ̃e(ν̂) + κ̃o(ν̂) with

κ̃e =
∫∫

κ̄e(s, s′)e−iν̂(s−s′ ) dsds′, (20)

κ̃o =
∫∫

κ̄o(s, s′)e−iν̂(s−s′ ) dsds′. (21)

From the relations in Eq. (19), we find that κ̃e is a real
function, whereas κ̃o is a pure imaginary function. Hence, the
newly introduced odd-elastic modulus allows us to character-
ize reciprocal and non-reciprocal interactions using their real
and imaginary components.

(a)

(b)

FIG. 4. Schematics of example models for intrinsic elasticity.
(a) One-dimensional sphere-spring system. Spheres of radius a are
connected by linear springs. (b) Elastic filament immersed in a vis-
cous fluid. Assuming a small-amplitude deformation from a straight
line, we parametrize the filament shape by the height h.

The odd-elastic modulus κ̃ is equivalent to the Fourier
spectrum if the elastic interactions only depend on s − s′. By
definition, it is readily found that the real part of the odd-
elastic modulus is an even function of ν̂, and this represents
the even elasticity, characterizing the nonlocal, reciprocal
elastic interactions. The imaginary part, in contrast, encodes
the odd elasticity and nonlocal, non-reciprocal elastic interac-
tions, and is an odd function of ν̂.

In later sections, we will examine an active elastic filament,
where fα in Eq. (11) indicates the torque and σβ encodes the
relative angle as in the case of the Purcell swimmer. Then, the
density κ̄ (s, s′) represents an extension of the bending mod-
ulus, while σ̄ (s′) corresponds to the local curvature. In this
case, we will call the odd-elastic modulus κ̃ an odd-bending
modulus, because it generalizes the linear relation between the
torque and local curvature of the filament.

IV. ODD-ELASTIC MODULUS FOR ACTIVE FILAMENTS

In the previous sections, we examined the properties of a
general odd-elastic material around the Hopf bifurcation. In
the following sections, focusing on one-dimensional active
filaments such as the flagella of Chlamydomonas and sperm
cells, we will exploit this framework to analyze the intrinsic
elastic interactions that result in a limit cycle oscillation in the
apparent shape space. We therefore assume that the swimmer
shape gait is a known function obtained, for instance, from
experimental observations.

A. One-dimensional elastic sphere-spring system

To gain insights into the nonlocal, non-reciprocal interac-
tions inside an elastic material, we start with a solvable one-
dimensional model. Our first example is a one-dimensional
sphere-spring system, where N spheres of radius a are con-
nected by elastic springs and form a one-dimensional array as
schematically shown in Fig. 4(a). The system is immersed in a
viscous medium with viscosity η, and each sphere experiences
viscous drag with a drag coefficient γ = 6πaη, whereas we
neglect the viscous drag on the elastic springs. We use the
Lagrangian label for the sphere, sα , which corresponds to the
position of a sphere at rest. We assume a periodic bound-
ary condition, sN+1 = s1, and the material points are equally
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spaced with discretization, �� = �/N , where � is the total
length of the spatial period of the problem.

Let ζα be the displacement of the sphere labeled by α as
the shape variable σα . We first consider a local elastic inter-
action using elastic springs with a spring constant k between
neighboring spheres. The equation of motion is then given by

mζ̈α = −γ ζ̇α + k(ζα+1 − 2ζα + ζα−1). (22)

In the large-N limit, its continuous representation can be ob-
tained, where we take the �� → 0 limit with the mass density
m̄ = m/��, drag per unit length γ̄ = γ /�� and k̄ = k�� kept
constant. This argument leads to the well-known continuum
equation for the displacement field ζ (s, t ) via

m̄
∂2ζ

∂t2
= −γ̄

∂ζ

∂t
+ k̄

∂2ζ

∂s2
. (23)

What we examine by odd-elastic modulus takes a different
approach; we specify the interactions for a given wave pattern,
rather than deriving differential equations from local micro-
scopic interactions. Hence, instead of Eq. (22), we consider
a general nonlocal elastic force given by Eq. (11), and our
nonlocal sphere-spring system as

mζ̈α = −γ ζ̇α − Kαβζβ. (24)

We then solve Kαβ for a given wave pattern ζα (sα, t ).
We first consider the frictionless case, where γ = 0. Our

goal here is to calculate the kernel function Kαβ that sustains a
given traveling wave. To do so, we consider a traveling wave
pattern with wavenumber ν and angular frequency ω as

ζα = A sin(νsα − ωt ) (25)

with an arbitrary amplitude A. Then, we set an orthogonal
basis W = (w(1),w(2), . . .), such that w(1)

α = sin(νsα ) and
w(2)

α = cos(νsα ). Through direct calculations of ζα and ζ̈α and
comparison of both terms in Eq. (24), we readily obtain

K = mω2W

⎛
⎝1

1
O

⎞
⎠WT, (26)

where the symbol in the bottom right block O indicates that
nondesignated components are all zero. This leads to a matrix
representation of the nonlocal elasticity,

Kαβ = mω2 cos[ν(sα − sβ )]. (27)

The continuum representation is obtained by taking the large-
N limit, with the mass density m̄ (mass per unit length) kept
constant, as

κ̄ (s, s′) = m̄ω2 cos[ν(s − s′)]. (28)

Here, the scaling κ̄ = κ/�� is different from that used for
Eq. (23), where k̄ = k�� is assumed to be constant.

The wavenumber of the propagating wave is selective in
the nonlocal sphere-spring system, which is qualitatively dif-
ferent from wave equation (24), where the interactions are
local and waves with an arbitrary frequency may propagate.
These differences become clearer when we solve the nonlo-
cal sphere-spring system using the kernel representation of
Eq. (27).

To do so, we first consider a time-frequency Fourier
transform, ζα (t ) = ∫

ξα (p)e−ipt d p, where ξα (p) is a Fourier
component with frequency p. We then have

ω2W

⎛
⎝1

1
O

⎞
⎠WTξ(p) = p2ξ(p), (29)

which forms an eigenvalue problem. This may be exactly
solved and the inverse Fourier transform leads to a general
solution, given by

ζα = c1 sin(νsα − ωt + ϕ1)

+ c2 cos(νsα − ωt + ϕ2) +
N∑

α=3

cαw(k)
α , (30)

with constants ϕ1, ϕ2 and cα (α = 1, . . . , N ) determined
by initial conditions. As the final term in Eq. (30) is
a time-independent constant, only a sinusoidal wave with
wavenumber ν can propagate, and thus the wave pattern is
robust against disturbance.

We then consider the same oscillatory behavior for the
overdamped limit of the dynamics in Eq. (24), that is, m = 0.
Due to viscous drag, to sustain the traveling wave, we need
to inject some energy into the system. We therefore expect
that the elastic representation of Kαβ should contain non-
reciprocal, odd components.

Using an analysis similar to that for the frictionless dynam-
ics above, we then have

K = γωW

⎛
⎝ 1

−1
O

⎞
⎠WT, (31)

yielding the matrix representation,

Kαβ = γω sin[ν(sα − sβ )]. (32)

The continuum representation is also obtained using similar
arguments as

κ̄ (s, s′) = γ̄ ω sin[ν(s − s′)], (33)

where the drag per unit length γ̄ = γ /�l is assumed to be
constant in the large-N limit.

For overdamped dynamics (m = 0), the elastic interactions
are nonlocal, as in the previous case, but no longer recipro-
cal. The matrix form, Eq. (32), not only selects a specific
wavenumber but also sustains the associated traveling wave
by the non-reciprocal components. Moreover, the elasticity is
purely odd in the sense that the matrix is antisymmetric, that
is, K = −KT and κ̄ (s, s′) = −κ̄ (s′, s).

In the underdamped case with nonzero m and γ , the re-
sults are the sum of the even and odd terms. The necessity
for energy injection is consistent with the existence of the
odd elasticity in the interactions, and the injected energy is
dissipated by the viscosity of the medium.

The odd-elastic moduli for the frictionless system and the
overdamped system are simply calculated from the Fourier
transform of Eqs. (28) and (33) as

κ̃ (ν̂) = m̄ω2

2
[δ(ν̂ − ν) + δ(ν̂ + ν)] (34)
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and

κ̃ (ν̂) = iγ̄ ω

2
[δ(ν̂ − ν) − δ(ν̂ + ν)], (35)

respectively, where ν is the wavenumber for a given wave
pattern in Eq. (25) and δ(x) is again the Dirac delta function.
κ̃ is a real, even function in the frictionless system, while it is
a purely imaginary, odd function in the overdamped system.
The wavenumber of the traveling wave is clearly captured by
the singular peaks.

In summary, the sphere-spring example shows that the
odd-elastic modulus captures the internal mechanisms that
robustly and selectively sustain a given wave pattern. More-
over, by considering its real and imaginary parts, we can
distinguish the conservative, reciprocal elastic force from the
non-reciprocal force, the latter of which is associated with the
energy input required in a dissipative environment.

B. Small-amplitude elastohydrodynamic filament

As a second example of the use of the intrinsic nonlocal
elastic matrix, we examine the small-amplitude dynamics of
an active filament at low Reynolds number. This is one of the
simplest cases in elastohydrodynamics and has been studied
with regard to various aspects of filament dynamics in viscous
fluid for more than half a century [21,40–42]. In particular, the
model in this section is known to be generic near the critical
point of the instability [17].

As shown schematically in Fig. 4(b), we consider an in-
finitely long filament and let h(x, t ) be the height of the elastic
filament from the x axis, with its projection to the x axis. We
impose a periodic boundary condition with a spatial period
of � and discretize it by N equally spaced points as in the
previous example. The Lagrange label for the filament is taken
by a projection onto the x axis so that we have sα = xα . The
shape variables are therefore the local height, σα = h(xα ).
Under the assumption of a small-amplitude oscillation, the
continuous limit of the elastohydrodynamics of the filament
follows a partial differential equation given by [17,43]

ξ⊥
∂h

∂t
= −κ

∂4h

∂s4
+ ∂ f

∂s
, (36)

where ξ⊥ is the perpendicular drag coefficient per unit length
for a slender filament, κ is the bending modulus, and f (s, t ) is
the pairwise force acting on the filament per unit length.

In elastohydrodynamics studies, the driving force f (s, t ) is
often a given function; otherwise, finer models for molecular
activity are required to describe the dynamics of f (s, t ). In
contrast, here, we remove the driving force term from Eq. (36)
and consider instead a nonlocal, non-reciprocal bending mod-
ulus, via

ξ⊥
∂h

∂t
= −

∫ ∞

−∞
κ̄ (s, s′)

∂4h

∂s4
(s′) ds′, (37)

that will effectively play the role of driving actuation. We
then again examine the kernel function κ̄ (s, s′) that produces a
sinusoidal traveling wave h(s, t ) = A sin(νs − ωt ). To sustain
this wave, through calculations similar to those given above,
we obtain the nonlocal elastic kernel as

κ̄ (s, s′) = ξ⊥ω

ν4
sin[ν(s − s′)]. (38)

FIG. 5. Schematic of coarse-grained representation of elastic fil-
ament and typical dynamics in q1-q2 shape space. We represent the
flagellum by N + 1 rods of length ��, which are connected at each
end by elastic hinges. The shape configuration is then specified by
the relative angles between neighboring rods, denoted by σα (α =
1, 2, . . . , N). The rotation of the filament is described by the angle
between the horizontal axis and the first rod denoted by θ . Inset:
The shape gait is given by the autonomous system and we show its
typical trajectory in the q1-q2 shape space. The flagellar waveform
approaches a periodic pattern described by the stable limit cycle,
after starting from the initial point near the origin.

As in the overdamped case of the sphere-spring system, this is
non-reciprocal and purely odd in terms of the exchange of the
positions, while no even components emerge.

Although we use a continuum equation in this example, we
can start from its discrete version, where the relative angles
between neighboring angles are used as shape parameters.
This formulation is used in the next section to deal with
more general elastohydrodynamic interactions, such as finite-
amplitude flagellar waveforms, where we perform numerical
estimations.

V. ODD-ELASTIC MODULUS FOR BIOLOGICAL
SWIMMERS

In this section, to further clarify intrinsic nonlocal interac-
tions in flagellar swimming, we investigate finite-amplitude
biological models of flagellar waveforms in a representative
sperm cell and Chlamydomonas beat, in addition to experi-
mental data for human sperm flagella provided by Ishimoto
et al. [26].

The elastic properties of a flagellum are often modeled as
an Euler-Bernoulli beam, in which the local elastic moments
are proportional to the local curvature of the filament. To
generate the flagellum wave, as seen in the small-amplitude
example, we require internal actuation in the flagellar model.
Our theory of odd elastohydrodynamics developed in Sec. II,
however, incorporates the internal actuation as nonlocal gen-
eralized elasticity, together with the passive elastic response.
In this section, we numerically examine the intrinsic elasticity
of a swimming filament by analyzing the given limit cycle
dynamics in shape space (see the inset of Fig. 5).

A. Numerical methods

To implement the flagellar elastohydrodynamics, we model
the swimming flagellum as a slender filament moving in
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FIG. 6. Flagellar waveforms and odd-bending modulus along circle with radius r = √
q2

1 + q2
2 in two-dimensional shape space for

sinusoidal flagellum with wavenumber ν/2π = 1.5: (a) superposed waveforms for a swimming flagellum during one beat cycle with its
left end initially located at (x, y) = (0, 0), (b) r = 0 at the origin, (c) r = 1 on the limit cycle orbit, and (d) r = 1.5 outside the limit cycle.
In each panel, the real and imaginary parts are shown by the blue broken curve and the red dotted curve, respectively. The stable limit cycle
corresponds to a circle of radius r = 1.

a plane and represent its dynamics by the linkages model
[44], where N + 1 rods of length �� are connected at each
end by elastic hinges to form a single filament. The shape
configuration is then specified by the relative angles between
neighboring rods, denoted by σα (α = 1, 2, . . . , N ; Fig. 5).
These relative angles are discretized representations of the lo-
cal curvature, and for a passive elastic filament, a linear elastic
torque is applied at each hinge. Here, however, we generalize
this torque to nonlocal, nonlinear interactions, analogous to
the dynamics of Eq. (5).

The shape gait of the filament is described by a stable limit
cycle in the q1-q2 apparent shape space (inset of Fig. 5). To
transform the two representations between σ and q, let us
introduce w(α) as the lowest N PCA modes obtained either
from data generated through a mathematical model or experi-
mental data. The number of intrinsic shape coordinates should
be smaller than the PCA modes Nflag in the original data. We
then expand the intrinsic shape coordinates in the PCA modes
w(α) as σ = qαw(α) or σ = Wq in a matrix form, where W =
(w(1),w(2), . . . ,w(N ) ) ∈ O(N ) form an orthonormal basis of
the shape space. To apply our theory, we consider the flagellar
waveforms described by Eqs. (5) and (6), and assume the form
of the damping modes appearing in the right-bottom block in
Eq. (5), given by K̂d = kdIN−2, where kd is a non-negative
constant and IN−2 is the (N − 2)-dimensional identity matrix.

When the flagellar waveform possesses nonzero time-
averaged curvature, σ0, this part cannot be captured by the
PCA modes. The odd-elastic representation of Eq. (3) is there-
fore extended to the form

σ̇ = −QWK̂WT(σ − σ0). (39)

Also, this change affects the factor r2 in Eq. (6) as

r2 = (w(1) · (σ − σ0))2 + (w(2) · (σ − σ0))2. (40)

In the following examples, we consider a freely swim-
ming sperm flagellum in Secs. V B and V D, and a clamped
Chlamydomonas flagellum in Sec. V C. We neglect the sperm
head and Chlamydomonas cell body in these examples in
order to showcase the odd-bending modulus for different wave
patterns. The elastohydrodynamic coupling, represented by
the matrix Q, is numerically computed by the coarse-grained
method based on resistive force theory [44], for which we
used N = 80 links.

B. Sinusoidal flagellum model

We start with a representation used as a simple but canoni-
cal model of a sperm flagellum [45], where the local curvature,
or relative angle in the discretized model, at the arclength
sα ∈ [0, �] is given by a sinusoidal function in the form

σα = C1 sin(νsα − ωt ). (41)

Here, the constants C1, ν, and ω are the curvature amplitude,
wavenumber, and beat angular frequency, respectively. This
simple sinusoidal function is not only theoretically useful, but
is also representative of many sperm flagella of marine species
[27,46]. Here, as a reasonable choice to match the flagellar
waveforms, we set ν = 3π . The corresponding swimming
dynamics are shown in Fig. 6(a).

We then nondimensionalize the system. We employ the
flagellar length for the unit of the length scale (� = 1). The
linear odd elasticity ko is identical to the phase velocity and
hence characterizes the timescale of the beat cycle, and we set
ko = 1. After we fix the length scale and timescale, the only
remaining physical unit is the force scale. We use the elastic
force as the unit for the force scale by setting ke = 1. There
is, therefore, one dimensionless parameter remaining in the
system that characterizes the ratio between the timescales for
the elastic and viscous responses, and it is known as the sperm
number, Sp = �(ξ⊥ko/|ke|)1/4 [44], once we set kne = 1 to fix
the value C1 and the radius of the limit cycle. We also find
from Eq. (41) that kno = kd = 0.

As a typical parameter for swimming sperm flagella, we set
Sp = 3 and compute the odd-bending modulus obtained from
the intrinsic elastic matrix. Due to the nonlinear nature of the
elasticity, the odd-bending modulus generally depends on the
instantaneous configuration. Nonetheless, due to the rotational
symmetry of the dynamics in shape space, the odd-bending
modulus is almost constant along a circle with a constant

radius r =
√

q2
1 + q2

2.
In Figs. 6(b)–6(d), we plot the odd-bending modulus at

r = 0, and its average over circles of radius r = 1 and 1.5,
where r = 1 corresponds to the stable limit cycle orbit. The
odd-bending modulus for the straight configuration (r = 0)
possesses a negative bending modulus in its reciprocal part
around ν̃/2π = ±1.5 [Fig. 6(b)], indicating that the wave
pattern emerges as an instability for the straight rod. The
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FIG. 7. Flagellar waveforms and odd-bending modulus along
stable limit cycle for Chlamydomonas model with proximal end
clamped at (x, y) = (0, 0). (a) Superposed waveforms during one
beat cycle. (b) Real and imaginary parts of the odd-bending modulus.

non-reciprocal part also has a peak around ν̃/2π = ±1.5, and
this corresponds to the wave traveling along the flagellum.

On the limit cycle orbit [Fig. 6(c)], remarkably, the real
part of the odd-bending modulus almost vanishes and the
non-reciprocal interactions are dominant, as observed in the
overdamped sphere-spring system described in Sec. IV. When
the orbit moves outside the limit cycle, as in Fig. 6(d), due
to the nonlinearity, the even elasticity is enhanced for the
wavenumber ν̃/2π ≈ ±1.5, while the non-reciprocal inter-
actions that cause the flagellar wave to propagate are also
strengthened.

C. Chlamydomonas flagellum model

We now proceed to another type of simple model, re-
producing a Chlamydomonas flagellum, which is one of the
most studied flagella beat patterns and characterized by its
asymmetric ciliary beat pattern. According to Geyer et al.
[47], the local curvature of the C. reinhardtii flagellum is well
represented by a simple function,

σα = C0 + C1 sin(νsα − ωt ), (42)

as in the previous model, but with a nonzero constant C0 for
the mean curvature. We set C0 = −1/40, ν = 2π , kne = 25/4,
and the sperm number Sp = 1 for a biologically reasonable
waveform, as plotted in Fig. 7(a). Other parameters are the
same as in Sec. V B. Here, we clamped the proximal end of
the Chlamydomonas flagellum at (x, y) = (0, 0) and neglected
the cell body and the other flagellum for simplicity. In comput-
ing the elastohydrodynamics, we further imposed the clamped
boundary condition by removing the rows for the rigid body
motion in Eq. (2).

The resulting odd-bending modulus averaged over the limit
cycle is plotted in Fig. 7(b). In this asymmetric beat pat-
tern, the even part of the nonlocal elastic interactions remains
nonzero and takes both positive and negative signs with peaks
at ν̂/2π ≈ 0.5 and ν̂/2π ≈ 1.5, respectively. In contrast,
the peak for the non-reciprocal interactions coincides with
the wavenumber of the flagellar waveform, indicating that
the odd elasticity drives the wave as nonconservational inter-
nal actuation.

D. Human sperm flagellum model

We now proceed to analyze human sperm data for our
active elastic filament. Here, we approximate the limit cycle

FIG. 8. Flagellar waveforms and odd-bending modulus along
stable limit cycle in data-driven human sperm model. (a) Superposed
waveforms for a simulated sperm flagellum during one beat cycle
with its left end initially located at (x, y) = (0, 0). (b) Real and
imaginary parts of the odd-bending modulus.

orbit as a unit circle in the two-dimensional flagellar PCA
space using Eq. (5) by expanding the shape variable using
the flagellar PCA modes. The parameters used in this sec-
tion are the same as those used in Sec. V B, except that we
use a nonzero value of kd = 0.1 to ensure the existence of
a stable limit cycle in the N-dimensional shape space. The
free swimming behavior is shown in Fig. 8(a) as superposed
snapshots of the flagellum.

As in the previous examples, we plot the odd-bending mod-
ulus averaged over the limit cycle in Fig. 8(b). The reciprocal
interactions represented as the real part of the odd-bending
modulus can take both positive and negative values depending
on the wavenumber ν̂. The peaks around ν̂ ≈ 0 indicate the
local passive elastic response of the flagellum. The negative
reciprocal elasticity has a peak around a wavenumber ν̂/2π ≈
2, where the peaks for the non-reciprocal elastic interactions
are also located. This are similar to the generation of the wave
as a Hopf instability, as shown in Fig. 6(b). These observa-
tions, therefore, imply the following mechanical balance. The
internal activity, shown by the peak in the odd elasticity and
negative even elasticity, generates a flagellar wave, which is
relaxed by the passive elasticity characterized by a local even
elastic response.

VI. DISCUSSION AND CONCLUSIONS

In this study, to formulate the dynamics of a living mate-
rial in a viscous fluid, we investigated a general description
of swimming under a periodic limit cycle oscillation by ex-
tending the concept of odd elasticity to a nonlinear regime.
By means of a change of basis from intrinsic to apparent
shape coordinates, we reduced the shape dynamics to the
normal form of a Hopf bifurcation, which is in turn mapped
to nonlinear odd elasticity. This formulation, which we refer
to as odd elastohydrodynamics, then enables us to access the
internal nonlocal, non-reciprocal interactions in the intrinsic
shape space. Furthermore, to characterize the internal activity
as well as the passive elastic response, we introduced a new
concept, the odd-elastic modulus, defined by a spatial Fourier
transform in an extended space. Of note, this odd-elastic mod-
ulus is distinct from the widely used complex modulus or
dynamic modulus defined in frequency Fourier space [34].

With the help of the autonomous odd-elastic dynamics
of an active system, we were able to examine the general
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aspects of microswimmer dynamics. Furthermore, in the Ap-
pendixes, we examine in detail the effects of noise from the
swimming gait on the swimming performance by extending
the well-known swimming formula that provides the average
swimming velocity to a general noisy limit cycle. By cal-
culating the probabilistic areal velocity in shape space, we
found that the effect of noise on the odd elasticity is negligibly
small in a small-deformation regime. Further analysis of the
noisy limit cycle in the shape space allowed us to bridge
the entropy production and work done by the odd elasticity
in the nonlinear regime, and making it consistent with the
physical interpretation that the internal actuation inside the
elastic material is described by odd elasticity.

Then, we applied our theory to the analysis of the internal
interactions of living organisms, focusing on flagellar swim-
ming. From solvable simple models to biological flagellar
waveforms for Chlamydomonas and sperm cells, we studied
the odd-bending modulus to decipher the nonlocal, non-
reciprocal inner interactions within the material. In particular,
we found that the swimmers can possess negative reciprocal
even elasticity at some spatial frequencies, indicating mechan-
ical instability by internal actuation. The imaginary part of the
odd-bending modulus is the material non-reciprocal response
and corresponds to the odd elasticity, which represents the
speed of the generated flagellar wave.

For the limit cycle, we found that the even elasticity
ceases for some simple models, suggesting a simple nonlinear
description of the material. To illustrate its usefulness in a bi-
ological context, we further analyzed the intrinsic odd-elastic
response by using Chlamydomonas and human sperm flagella
models, deciphering nonlocal elastic interactions in biological
flagella.

It is useful to point out that the current description of active
elastic material includes elastohydrodynamic coupling with
the outer viscous environment. We have in turn expanded the
notion of odd elasticity as a stress-strain linear relation to
an effective material constitutive relation that deals with the
activity, elasticity, and fluid dynamics. In this paper, we have
assumed a circular trajectory in the apparent shape space as a
limit cycle. However, by definition, the odd-elastic modulus
can be calculated for any closed loop, indicating potential
applicability to a wide range of biological data.

Not limited to a one-dimensional filament, our methodol-
ogy is applicable to higher-dimensional materials such as ac-
tive elastic membranes and bulk dynamics. The odd response
of materials has also been examined in terms of odd viscosity
and odd viscoelasticity [8,48,49], and natural extensions of
the current methods to these odd materials may be expressed
as a viscoelastic force representation, f = −Kσ − Jσ̇, where
odd viscosity is encoded by a nonsymmetric matrix J cou-
pled to the rate of deformation. Extension to an active elastic
matrix in a viscoelastic medium is also an interesting future
direction, where it is necessary to numerically calculate the
hydrodynamic force Q from the viscoelastic fluid equation.

The current methodology is also applicable to wet ac-
tive matter systems, as these extended descriptions of active
materials could be useful for simplifying the modeling of elas-
tohydrodynamic interactions between cells. These modeling
methods will therefore contribute to a better understanding of
the underlying principles of collective behavior, in particular

when elastohydrodynamics play an essential role, as reported
for sperm population dynamics [50,51]. Furthermore, mi-
croswimmers change their swimming pattern in response to
the external environment, such as mammalian spermatozoa
before and after capacitation [52,53], marine sperm cells in
chemoattractant gradients [46,54], phototactic algae such as
Chlamydomonas and Volvox under a light source [55,56],
and ciliates in response to mechanical stimuli [57–59]. Our
description of odd elasticity will therefore enable unified
comparisons for such diverse waveform morphologies of mi-
croswimmers to characterize the differences among species
and individual cells.
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APPENDIX A: SWIMMING WITH NOISY LIMIT CYCLE

In this Appendix, to complete the general theory of odd
elastohydrodynamics in the presence of noise caused by
internal actuation, we first extend the swimming formula for
the average swimming velocity to a temporally fluctuating
swimming gait, following biological observations of a
noisy limit cycle in shape space. Using the gauge-field
formulation for microswimming, we investigate the effects of
internal active noise on swimming velocity. The role of odd
elasticity is then further discussed in terms of nonequilibrium
thermodynamics.

1. Swimming with probability current

We now consider the swimming formula in Eq. (8) in a
statistical sense [15]. With a bracket indicating an ensemble
average, the average swimming formula becomes

〈A〉 = 1
2 Fi jαβ〈qα q̇β〉 = Tr(FJ), (A1)

where the trace is taken over the shape components. The anti-
symmetric matrix J is the probabilistic areal velocity matrix,
given by

Jαβ =
〈 ∮

qα dqβ

〉
. (A2)

In the two-dimensional shape space, this statistical swimming
formula (A1) simply reads as

〈Ai j〉 = 2Fi j12J (A3)

if we write Jαβ = Jεαβ . The swimming speed in the form
of a gauge potential is proportional to the probabilistic areal
velocity J .

023002-11



ISHIMOTO, MOREAU, AND YASUDA PRX LIFE 1, 023002 (2023)

To examine the effects of a noisy shape gait on the
swimming velocity, we therefore need to evaluate the
value of J by introducing stochastic dynamics in shape
space.

We consider an N-dimensional autonomous system in the
apparent shape space (5) with Gaussian white noise, given
by stochastic differential equations (SDEs) in the sense of
Stratonovich in the form

dqα

dt
= fα (q) + Gαβ (q)ζβ (t ), (A4)

where the noise has a zero-mean normal Gaussian form; that
is, 〈ζi(t )〉 = 0 and 〈ζα (t )ζβ (0)〉 = δαβδ(t ) with δ(t ) denot-
ing the Dirac delta function. The function fα corresponds
to the generalized force and torque in the apparent shape
coordinates and is provided by Eq. (5) as fα = −K̂αβqβ . The
diffusion tensor is introduced as D = (1/2)GGT and is sym-
metric and positive definite by definition. The corresponding
Fokker-Planck equation for the probability distribution func-
tion P(q, t ) and the probability current j(q, t ) is

∂P

∂t
+ ∇ · j = 0, (A5)

which is explicitly given in the sense of Stratonovich by

∂P

∂t
= − ∂

∂qα

[
fαP − 1

2

(
Gαγ

∂

∂qβ

(Gβγ P)

)]
, (A6)

where j is provided by the terms in the bracket on the right-
hand side of Eq. (A6).

For brevity, we here only consider the dynamics in the two-
dimensional q1-q2 shape space on which the stable limit cycle
is located. This simplification is equivalent to the assump-
tion of Kd = 0 in Eq. (5). When we relax this assumption
to include N − 2 stable modes, the swimming formula in
Eq. (A3) is calculated as the sum of contributions from other
dimensions as discussed in detail in Appendix C of Ishimoto
et al. [15]. We may then write the noise tensor G as

G = gr (r)
√

2Dr er ⊗ er + rgθ (r)
√

2Dθ eθ ⊗ eθ , (A7)

with the unit bases denoted by er and eθ for the radial and
angle directions, respectively. The dynamics of Eq. (A4),
represented in Cartesian apparent shape coordinates, is then
reduced to a set of equations in polar coordinates, in the sense
of Stratonovich, as

dr

dt
= fr (r) + gr (r)

√
2Drζr,

dθ

dt
= fθ (r) + gθ (r)

√
2Dθ ζθ . (A8)

Here, the suffixes r and θ indicate the radial and angle
coordinates, respectively, and the zero-mean noise satisfies
the relation 〈ζa(t )ζb(0)〉 = δabδ(t ) for a, b ∈ {r, θ}. We then
rewrite the probability current j in polar coordinates as

j =
[

( fr (r) + Drgr (r)g′
r (r))P − Dr

∂

∂r
([gr (r)]2P)

]
er

+
[

r fθ (r)P − Dθ

∂

∂θ
(rgθ (r)P)

]
eθ , (A9)

yielding the Fokker-Planck equation (A6) in the form

∂P

∂t
= − ∂

∂r

[
( fr + Drgrg′

r )P − Dr
∂

∂r

(
g2

rP
)]

− fθ
∂P

∂θ
+ Dθgθ

∂2P

∂θ2
, (A10)

where the prime symbol denotes the derivative with respect to
r. From the rotational symmetry of system (A8), the steady
distribution Pst is independent of the angle coordinate. By
using the boundary condition for the steady distribution sat-
isfying a zero distribution at infinity, we obtain the following
relation for the steady distribution, after once integrating over
r:

( fr (r) + Drgr (r)g′
r (r))Pst − Dr

d

dr
({gr (r)}2Pst ) = 0. (A11)

The steady distribution is then formally solved as

Pst(r) = Nst

gr (r)
exp

[∫ r fr (x)

Dr{gr (x)}2
dx

]
, (A12)

where Nst is the normalization factor. Note that the steady dis-
tribution is known to be unique [60] and here it is independent
of both the angle coordinates and odd elasticity because of the
form fr = −ker − kner3. For a steady distribution, the proba-
bility current j [Eq. (A9)] possesses only angular components
due to condition (A11), leading to the form

jst = r fθ (r)Pst(r)eθ , (A13)

with fθ (r) = ko + knor2 in our dynamics. The nonvanishing
probability current characterizes the violation of the detailed
balance or the non-reciprocity of the nonequilibrium system,
and has been studied from several perspectives, such as irre-
versible circulation [61], curl flux [62,63], and non-reciprocity
[64,65].

To calculate the value of J , we use the internal noise model
proposed by Ma et al. [22] based on experimental observation
of bull sperm. Their study found that the fluctuating sperm
flagellar waveforms were well described by the SDE model
with multiplicative white noise given by

gr = r and gθ = 1, (A14)

where Dr and Dθ correspond to the diffusion constant in the
amplitude and angle coordinates, respectively. This noise term
in Eq. (A14) is obtained from additive noise in the (linear)
even and odd elastic constants ke and kne by the transfor-
mations ke �→ ko + √

2Dr ζr (t ) and ko �→ ke + √
2Dθ ζθ (t ) in

the deterministic dynamics of Eq. (5) [66]. Because ke and ko

represent the amplitude and phase speed of the limit cycle, re-
spectively, the noise strengths Dr and Dθ therefore correspond
to the amplitude and angle diffusion.

The detailed form of the steady solution depends on the
sign of ke [66]. Indeed, when ke � 0, the origin is stable
and the possible steady solution is simply the Dirac delta
distribution at the origin,

Pst(r) = 1

π
δ(r). (A15)

In the case with ke < 0, however, the origin is unstable and a
steady limit cycle emerges, leading to a steady distribution in
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FIG. 9. Steady probability distribution and probabilistic current
for system with noisy limit cycle with biologically relevant multi-
plicative noise. Parameters are set as ke = −1, kne = 1, ko = 1, kno =
1, and Dr = 0.3. (a) Steady distribution function with a volcano
shape. The distribution function has a degenerate peak and reaches
zero at the origin and infinity. The function is normalized so that
the integrated probability becomes unity. (b) Distribution function
projected onto the q1-q2 plane and superposed with probabilistic
current vectors. The circular current has a maximum strength around
the peak of the distribution.

the form

Pst = Nstr
|ke |
Dr

−1 exp

[
− kne

2Dr
r2

]
(A16)

with a normalization prefactor Nst. This probability function
vanishes at the origin when the noise is sufficiently small,
Dr < |ke|, whereas the distribution becomes singular at the
origin once the magnitude of the noise is increased to Dr >

|ke|. From the steady distribution with |ke| > Dr , as plotted
in Fig. 9(a), it can be seen that for the volcanolike func-
tion, the maximum values are located on a circle of radius
r∗ = √

(|ke| − Dr )/kne, which monotonically decreases as the
diffusion Dr increases.

Note that the distribution in Eq. (A15) is always possible
because the origin is a stationary solution of the stochastic
system with our choice of noise [Eq. (A14)]. The resulting
steady distribution is therefore obtained by the summation of
Eqs. (A15) and (A16), with their weights depending on the
initial distribution.

Let us assume ke < 0 and that the initial distribution does
not contain the r = 0 state. Then, the steady distribution can
be further expressed with an explicit form of the normalization
factor Nst, given by

Nst =
√

2

π

⎛
⎝

√
kne

2Dr

⎞
⎠

|ke |
Dr

−1/
�

( |ke|
2Dr

)
, (A17)

where �(x) in the denominator indicates the gamma function.
Then, the steady-state probability current jst in Eq. (A13)
possesses a nonzero value. The plots in Fig. 9(b) show
the rotational probability current superposed on the two-
dimensional projection of the probability distribution. The
size of j has a maximum value on a circle, which roughly
overlaps with the ridge of the distribution function. Also, we

can calculate J as

J =
〈 ∮

q1 dq2

〉
= ko

2
〈r2〉 + kno

2
〈r4〉

= ko

2

|ke|
kne

+ kno

2

|ke|
kne

( |ke|
kne

+ 2Dr

kne

)
. (A18)

The first term is proportional to the linear odd elasticity ko

and is equivalent to the deterministic case. The noise effects
only appear in the nonlinear odd-elastic term and increase (de-
crease) by amplifying the noise magnitude for kno > 0 (kno <

0), although the nonlinear effects are subdominant compared
with the linear odd-elastic term. Note that this dependence
is a characteristic feature of the noise form in Eq. (A14),
and the stochastic model with simple additive noise provides
qualitatively similar results for a small-noise case but different
results in general (see Appendix B for details).

The nonzero probability current due to the noisy limit cycle
is generated only by the odd parts of the elasticity matrix,
and from the swimming formula (A3), the average swimming
velocity is also proportional to the size of the odd elasticity.
When ke > 0, however, the steady probability distribution
shrinks to the origin and the steady-state probability current
vanishes, yielding an average swimming velocity of zero.
Moreover, the noise effect does not appear in the dominant
linear odd-elastic term, indicating that the fluctuating shape
gait does not impact swimming under the noisy limit cycle.
However, the effects of noise depend on the stochastic model,
and some qualitative differences are discussed in Appendix B.

In summary, the autonomous odd-elastic dynamics of an
active system and the gauge-field formulation of microswim-
ming enable us to examine the effects of noise due to the
swimming gait on the swimming performance. Notably, we
have found that the effect of noise on the odd elasticity is
negligibly small in a small-deformation regime.

2. Non-reciprocity, irreversibility, and entropy production

To conclude the general theory of odd elastohydrodynam-
ics, we now examine the irreversible stochastic dynamics
driven by the odd elasticity from the point of view of ther-
modynamics. The nonzero probability current is due to the
violation of the detailed balance, and this can be character-
ized by a nonzero (positive) entropy production rate in the
nonequilibrium statistical physics [67]. The averaged entropy
production rate, ėp, is defined by using nonequilibrium en-
tropy S = ∫ ∞

−∞
∫ ∞
−∞ Pst log Pst dq1 dq2, the average rate of heat

Q̇, and the system temperature T as

ėp := Ṡ − Q̇

T
, (A19)

which is, in general, non-negative by the thermodynamic law.
For the Langevin system given by Eq. (A4), the entropy pro-
duction rate is provided by [68]

ėp = 〈
vαD−1

αβvβ

〉
, (A20)

where v is the probabilistic velocity for the steady state
defined as v = jst/Pst, hence, in our problem, simply v =
r fθ (r)eθ from Eq. (A13). By directly calculating the diffusion
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tensor via Eq. (A7), we obtain

ėp = 1

Dθ

〈
f 2
θ

〉
, (A21)

which can be calculated, with fθ (r) = ko + knor2, as

ėp = 1

Dθ

[
(ko)2 + 2kokno |ke|

kne
+ (kno)2

( |ke|
kne

+ 2Dr

kne

)]

(A22)

for ke < 0 by using the steady-state distribution and
Eqs. (A16) and (A17). When ke � 0, we obtain ėp =
(ko)2/Dθ .

These results confirm that the average entropy production
rate is generated only by the odd elasticity, which agrees with
the physical interpretation of the odd elasticity as an internal
nonconservative activity. The average work done by the elastic
force is also calculated using

Ẇ = −
〈 ∮

K̂αβqβ dqα

〉
= 〈

f 2
θ

〉
. (A23)

We note that the even elasticity is represented by a potential
force and does not contribute to the average work. Comparing
Eqs. (A21) and (A23) shows that the second law of thermo-
dynamics reads as ėp = Ẇ /kBT , with the Boltzmann constant
kB. We thus have

Dθ = kBT, (A24)

which is consistent with the generalized fluctuating dissipa-
tion theorem for nonequilibrium systems [69].

Of note, the nonequilibrium thermodynamic relations dis-
cussed in this section are based on the dynamics in the shape
space (A4), or more precisely, the dynamics of Eqs. (5) and
(6) with additional noise. The entropy production rate and the
associated heat production for the full system should account
for the non-reciprocal swimming motion in the physical space
and the energy dissipation in the fluid.

Nonetheless, our analysis of the noisy limit cycle in shape
space bridges the entropy production and work done by the
odd elasticity in the nonlinear regime, being consistent with
the physical interpretation that actuation inside the elastic
material is described by odd elasticity.

APPENDIX B: PROBABILITY CURRENT WITH SIMPLE
ADDITIVE NOISE

In this Appendix, to complement the results of the biolog-
ically relevant multiplicative noise posited in Appendix A 1,
we discuss the probabilistic areal velocity for the additive
Gaussian noise in Eq. (A7). The form of the noise (A7) is
given by the setting Gαβ = √

2D δαβ .
The formal solution (A12) then provides the steady proba-

bility distribution [70]

Pst(r) = Nst exp

[
− ke

2D
r2 − kne

4D
r4

]
, (B1)

where the normalization factor Nst is obtained by a direct
integral of

∫ ∞
−∞

∫ ∞
−∞ Pst dq1dq2 = 1 as

Nst = 1

π
exp

(
− (ke)2

4Dkne

)/√
πD

kne
erfc

(
ke

2
√

Dkne

)
, (B2)

where erfc(x) is the complementary error function.
The exponential form in Eq. (B1) represents the fourth-

order potential associated with the nonlinear odd elasticity,
and the steady distribution function is unimodal when ke > 0,
whereas it becomes crater shaped with a degenerate maximum
on a circle with radius r∗ = (|ke|/kne)1/2 when ke < 0.

As in Eq. (A18), we can calculate the probabilistic areal
velocity via

J = ko

2
〈r2〉 + kno

2
〈r4〉 =: Jo + Jno, (B3)

which we separated into two terms for subsequent analyses.
After some calculations, we can express the linear odd-

elastic contribution, Jo = (ko/2)〈r2〉, as

Jo = ko

2

(
2πD

kne
Nst − ke

kne

)
. (B4)

Note that Nst is a non-negative function of D. For example,
when ke = 0, it becomes Nst =

√
kne/[π3D]. To understand

the effects of noise, we need to examine the behavior of
DNst, and we found that this quantity monotonically increases
with D. Indeed, by the asymptotic expression for a small
x = 4Dkne/(ke)2 > 0,

√
xe−1/x

erfc(1/
√

x)
= √

π

(
1 + x

2
− x2

2

)
+ O(x3), (B5)

2πD

kne
Nst − ke

kne
= ke

2kne
(x − x2) + O(x3), (B6)

and we obtain an asymptotic behavior for small noise as

Jo = ko

ke
D + O(D2) when ke > 0. (B7)

When ke < 0, using the asymptotic behavior for small
x > 0,

√
xe−1/x

erfc(−1/
√

x)
= 1

2
e−1/x (

√
x + O(x7/2)), (B8)

and we can obtain

Jo � kno

2

|ke|
ke

when ke < 0 (B9)

with an exponentially small error.
We found that the average 〈r2〉 monotonically increases

with D, irrespective of the sign of ke. The magnitude of the
probabilistic areal velocity is therefore proportional to the odd
elasticity ke and increases as the size of the noise increases,
although the overall sign is determined by the sign of ke. This
noise dependence is different from that for the multiplicative
noise case, although the noise effect is exponentially small for
little noise.

By similar calculations, we can obtain the proba-
bilistic areal velocity from the nonlinear odd elasticity,
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Jno = (kno/2)〈r4〉, as

Jno = kno

2

[
2D

kne
−

(
ke

kne

)(
2πD

kne
Nst − ke

kne

)]
. (B10)

By a similar asymptotic analysis, by using expression (B5),
we obtain Jno for small D when ke > 0 as

Jno = 2kno

(ke)2
D2 + O(D3) when ke > 0, (B11)

which is positive for small D and monotonically increases
(if kno > 0) as diffusion is enhanced. When ke < 0, again
using the asymptotic (B8), the probabilistic areal velocity is
obtained for small D as

Jno � kno

2

[
2D

kne
+

(
ke

kne

)2
]

when ke < 0, (B12)

with an exponentially small error.
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