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Molecular Motors Enhance Microtubule Lattice Plasticity
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Microtubules are key structural elements of living cells that are crucial for cell division, intracellular trans-
port, and motility. Recent experiments have shown that microtubule-severing proteins and molecular motors
stimulate the direct and localized incorporation of free tubulin into the shaft. However, a mechanistic picture
of how microtubule-associated proteins affect the lattice is completely missing. Here we theoretically explore
a potential mechanism of lattice turnover stimulated by processive molecular motors in which a weak transient
destabilization of the lattice by the motor stepping promotes the formation of mobile vacancies. In the absence
of free tubulin the defect rapidly propagates, leading to a complete fracture. In the presence of free tubulin, the
motor walk induces a vacancy drift in the direction opposite of the motor walk. The drift is accompanied by the
direct and localized incorporation of free tubulin along the trajectory of the vacancy. Our results are consistent
with experiments and strongly suggest that a weak lattice-motor interaction is responsible for an augmented
microtubule shaft plasticity.
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I. INTRODUCTION

Microtubules (MTs) are self-organized polar tubelike poly-
mers and constitute a major component of the cytoskeleton.
They play a central role in cell division, intracellular trans-
port, and motility. MTs are dynamic dissipative structures,
which grow or shrink primarily by tubulin dimer addition or
removal at their extremities, labeled (+) and (−) ends. Their
nonequilibrium behavior results from the irreversible hydrol-
ysis of GTP tubulin into GDP tubulin upon polymerization [1]
and manifests itself as stochastic transitions between growth
and shrinkage phases, called dynamic instability [2–6]. The
dynamic instability of the MT tip has been a major focus
of MT research over the past 30 years. In contrast, the MT
shaft has been considered as an inert structure, due to the high
stability of the intact lattice far away from the extremities
[7]. However, an early experiment with end-stabilized MTs
by Dye et al. [8] clearly showed that the shaft may lose
and incorporate tubulin dimers directly. Later it was shown
that GTP dimers (or dimers in the GTP conformation) exist
outside of the cap region [9], without a clear picture of how
the GTP state could survive sufficiently long to be detectable
in the shaft. A very recent series of experiments revealed
that the shaft lattice exhibits a spontaneous dynamics, part of
which is linked to lattice dislocations [10,11]. Perturbing the
lattice externally via periodic weak mechanical forcing [12]
or the activity of MT-associated proteins, e.g., MT-severing
enzymes or molecular motors [13–16], has been shown to
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facilitate the localized incorporation of tubulin dimers from
the surrounding medium into the lattice. Furthermore, regions
of high curvature or regions in close contact either with a
surface or another microtubule could be sites of direct tubulin
exchange [17].

It has been shown experimentally and theoretically that
dislocations are preferential sites of lattice dynamics [11].
These structures are inherent in the lattice and are created dur-
ing the polymerization process. The same holds for recently
identified multiseam MTs [18], which entail the existence
of point defects of the size of a tubulin monomer. However,
the experimentally observed increase in shaft plasticity due
to severing enzymes and molecular motors [13–16] suggests
the nucleation of defects in the intact lattice. One obvious
possibility of de novo created sites of lattice exchange are
vacancies of the size of a single tubulin dimer. These point
defects have been identified by scanning force microscopy of
dynamic MTs [19] and it has already been speculated that
long-lived point defects may serve as a point of attack for
MT-severing enzymes [20]. A recent experiment suggests that
the combined walk of several kinesins is able remove tubulin
dimers from the lattice [21].

Here, we explore theoretically the role of point defects in
the MT shaft plasticity in the presence of molecular motors.
Thereby we employ the term “plasticity” to denote the re-
moval of tubulin dimers from the MT lattice or the integration
of tubulin dimers into the MT lattice far away from the MT
extremities. Our objective is to provide a first mechanistic
concept consistent with recent experiments on MT-motor in-
teractions [14–16]. To that end we employ a kinetic Monte
Carlo model and investigate (i) the kinetics of the formation
of point defects, (ii) the progression of the defect size until
complete MT fracture in the absence of free tubulin, and (iii)
the dynamics of point defects in the presence of free tubulin.
These processes will be studied in the absence and presence
of processive molecular motors, which transiently and locally
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FIG. 1. Schematic setup of the kinetic Monte Carlo model for the MT lattice and processive (+)-end directed molecular motors. (a) The
canonical lattice configuration with (+)-end directed processive motors. Vacant lattice sites are gray, GTP dimers are pink, and GDP dimers
are green. Dimers with strong contours are in the excited state as explained in the text. (b) Summary of the kinetic transitions of lattice dimers.
T (D) denotes GTP (GDP) dimers and V denotes vacant lattice sites. The subscript E denotes the excited state. The color code is as in (a).
(c) Summary of the kinetic transitions for molecular motors.

weakly destabilize the lattice as they walk along the lattice.
Since many details of the dynamic properties of the MT shaft
lattice are unknown, we are focusing on very basic processes
to recover the relevant length and time-scale of the MT shaft
dynamics that were observed experimentally.

II. MODEL

We use a simple and robust kinetic Monte Carlo model
to investigate the MT shaft dynamics in the presence of pro-
cessive molecular motors. The basic model setup and kinetic
transitions are schematically summarized in Fig. 1. Similar
types of kinetic Monte Carlo models have been used, e.g., to
study the microtubule tip dynamics [22–26], the dynamics of
dislocations in the MT shaft [11], and the dynamics of motors
walking along the lattice [27]. The model parameters (see Ta-
ble I) are comparable to values found in the literature and are
adapted to reproduce typical polymerization (∼2 µm min−1)
and depolymerization speeds (∼20 µm min−1) of the MT tip,
the dynamic instability of the MT (+) end (cf. Fig. 5), and
the typical motor speeds and run length for kinesin and yeast
dynein motors. Here, we specifically aim to study the creation
and dynamics of dimer vacancies in the presence of motors
using a basic set of kinetic transitions previously established
and amended by weak motor-lattice interactions

a. MT lattice structure. We model the canonical micro-
tubule lattice (13 protofilaments, three-start left-handed helix
[28,29]) as a square lattice on the scale of the dimer; i.e.,
each dimer has two longitudinal and two lateral neighbors as
previously introduced [11,22,24]. The lattice is periodic in a
direction perpendicular to the long axis of the microtubule
with an offset of 3/2 lattice sites to reproduce the seam
structure [see Fig. 1(a)]. Lattice sites can be either empty
or occupied by GTP-bound (T) or GDP-bound (D) dimers.
Dimers interact with other dimers on nearest-neighbor lattice

sites via attractive interactions, characterized by bond energies
�G1 and �G2 for longitudinal and lateral bonds, respectively.
Each dimer-dimer contact across the seam is counted with
a binding energy �G2/2; i.e., in the fully occupied lattice,
dimers at the seam have the same binding energy as dimers
in the bulk lattice. We assume that longitudinal bonds of T-T
contacts are further stabilized by the energy, �GT

1 [30–32].
We assume a lattice anisotropy in the binding energies of
�G1/�G2 = 2, that is, longitudinal contacts are twice as
stable as lateral contacts in the GDP lattice, consistent with
estimates obtained by kinetic modeling of the MT tip dynam-
ics [22] and molecular dynamics simulations [33].

b. Basic MT lattice transitions. We consider the following
transitions: free GTP dimers can polymerize into a lattice
structure, bound GTP dimers can depolymerize from the lat-
tice or hydrolyze into GDP dimers, and bound GDP dimers
can depolymerize from the lattice [Fig. 1(b)]. GTP dimers
attach to a vacant lattice site with rate constant kon, if at
least one neighboring lattice site is occupied by a dimer. We
assume an infinite reservoir of free GTP-tubulin dimers at
concentration c. We do not consider the attachment of GDP
dimers; i.e., for free tubulin the exchange GDP → GTP is
rapid compared to dimer attachment. Dimers detach from
the lattice with rate constant koff depending on their lattice
environment (for details see the Appendix):

koff = k∗
off e

β(�Gb+δ−�G∗ ), (1)

where β−1 = kBT is the thermal energy, �Gb denotes the
binding energy (upon transferring a free dimer from the solu-
tion into the lattice), δ denotes a (weak, transient) contribution
due to lattice-motor interactions, and �G∗ denotes the binding
energy at the microtubule tip with a GTP cap (i.e., the binding
energy of a GTP dimer with one lateral and one longitudi-
nal GTP-dimer neighbor). k∗

off denotes the reference off-rate
constant for a dimer with binding energy �Gb = �G∗ (see
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Table I). It defines the timescale τ = (k∗
off )−1 ≈ 1 s, which has

been obtained by calibrating the tip dynamics with experimen-
tally measured velocities of MT growth and shrinkage.

GTP dimers are irreversibly hydrolyzed into GDP dimers
by the rate constant kh if their hydrolyzable β subunit is in
contact with the α subunit of another dimer, that is, if the
longitudinal lattice site in the direction of the microtubule (+)
end is occupied [34].

One key assumption, relevant only for the MT shaft, is
a steric hindrance for GTP dimers to integrate or leave the
GDP lattice, if all four neighboring lattice sites are occupied
by dimers and if the two lateral neighbors are GDP dimers.
Here we follow the observationthat the more extended (in the
direction of the protofilament) conformation of GTP dimers
compared to GDP dimers [30,35] prevents the integration
or removal of a GTP dimer in a GDP-lattice environment,
comparable to stacked LEGO bricks. This mechanism has
no consequences for the dynamics of the microtubule tip;
however, it has far-reaching consequences for the microtubule
shaft: once a GDP dimer has left its GDP-lattice environment
and created a point defect, this point defect cannot be closed
immediately by integrating a free GTP-tubulin dimer from the
solution. We will investigate the consequences of this effect
extensively in the Results section.

c. Transitions of molecular motors. The driven transport
of molecular motors along protofilaments has been studied
in detail before (see, e.g., the review in Ref. [36]). Here, we
used a motor dynamics described by a totally asymmetric sim-
ple exclusion process (TASEP) supplemented by attachment
and detachment processes as studied, e.g., in Refs. [27,37].
The relevant kinetic transitions for motors are summarized
in Fig. 1(c). Here we consider two types of motors, fast
kinesinlike (+)-end directed motors [38,39] and more slow
yeast-dynein-like (−)-end directed motors [40–42]. Molecu-
lar motors can bind to two adjacent unoccupied tubulin dimers
along the same protofilament with rate constant k+ and may
detach from the microtubule, when bound to two dimers,
with rate constant k− or, when bound to one dimer, with
rate constant kE

− = θk− [43]. Here we assume a fast motor
detachment with θ = 100. Lattice bound motors step along
the microtubule in a single direction (i.e., kinesin towards the
(+) end, dyneins towards the (−) end) with rate constant kw,
if the next lattice site in the stepping direction in not occupied
by another motor. We only allow motors to step forward if
their front head (in the walking direction) is bound to a dimer.
If a motor is bound to the lattice by a single dimer (i.e., the
second head occupies a vacancy) the underlying dimer may
detach from the lattice (with koff), taking thereby the motor
with it.

d. Motor-lattice interactions. We consider two types of
lattice-motor interactions:

(i) Two tubulin dimers which are bound to the same motor
are not authorized to leave the lattice.

(ii) The irreversible motor step along the protofilament
transiently “excites” the underlying tubulin lattice, inducing
a slightly less stable (“excited”) conformation; i.e., tubulin
dimers (situated under the front head of a bound motor)
are excited by the motor walk with rate constant kw by the
weak energy increment δ [see Eq. (1)] and relax back to
the “ground” state with the rate constant kr. The excitation

reaction represents the crucial coupling mechanism between
the motor walk and the underlying MT lattice.

A characterization of the steady-state behavior of motors
(density, flux) and the fractions of excited and ground-state
dimers, φe and φg, depending on the ratio of motor attachment
and detachment rate constants μ = k+/k− and the ratio of mo-
tor stepping rate constant and lattice relaxation rate constant
ν = kw/kr can be found in Fig. 6.

III. RESULTS

In the following we will fix the majority of the parameters
(see Table I) and analyze the MT lattice depending on the
motor density on the MT and the lattice excitation δ. We will
focus on “fast” kinesin motors and present some additional
results for “slow” dyneins.

A. Creation of point defects

When a motor walks along a perfect lattice (i.e., no point
defect present along the protofilament), at each step an un-
derlying tubulin dimer is weakly destabilized by the energy
penalty δ. In the following we will explore this effect on the
initial creation of a point defect (a single missing dimer or
vacancy) and, vice versa, the effect of the existence of a point
defect on the motor walk and the consequence for the lattice
stability in the vicinity of the defect.

Figure 2(a) shows the fraction of excited and ground-state
dimers which can potentially leave the lattice (i.e., they are not
sterically blocked by a bound motor) for fast motors (kinesins)
depending on the steady-state density of motors on the lattice.
The fractions can be roughly estimated using the mean-field
approach by [27]

φe = (1 − 2ρ)
J

J + kr
, (2)

φg = (1 − 2ρ)
kr

J + kr
, (3)

where ρ denotes the steady-state density of motor front heads
and

J = kwρ
1 − 2ρ

1 − ρ
(4)

denotes the steady-state motor flux. The mean-field estimates
[dashed lines in Fig. 2(a)] are slightly off the numerical
results which is probably a consequence of the localized ap-
pearance of excited dimers and the strong correlations with
the motor positions. For low motor densities the fraction of
“excited” dimers is increasing at the expense of the fraction
of “ground-state” dimers. However, for high motor densities,
both fractions of excited and ground-state dimers are de-
creasing. The behavior reflects the jamming of motors (which
reduces excitation of dimers) and the blocking of dimers from
leaving the lattice by the bound motors.

If motors encounter a point defect, the steady-state motor
density is perturbed since motors cannot walk “over” the point
defect and have to detach [see Fig. 2(b)]. For fast motor
detachment at the defect, the motor occupation of dimers in
the vicinity (upstream and downstream) of the point defect is
lower than in the intact lattice. Since we are not considering
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FIG. 2. Effect of motor walk (fast motors) on the stability of the MT shaft in the absence of free tubulin. (a) Quasi-steady-state fractions of
excited (φe) and ground-state dimers (φg) in the intact lattice depending on the steady-state density of motors, ρ. In the legend, “mf” indicates
the mean-field estimate as given in Eqs. (2) and (3). (b) Quasi-steady-state probabilities to find a motor front head in the vicinity of a point
defect located at the dimer position i = 0 for various steady-state motor densities ρ far away from the defect as indicated in the legend. The
motors walk into the positive x direction. (c) Quasi-steady-state fractions of excited and ground-state dimers at a lattice position adjacent to
the point defect (upstream). The legend is as in (a). (d) Effective off-rate constant for the creation of a vacancy (normalized by the off-rate
constant of the unperturbed lattice) depending on the motor density ρ for various values of the lattice excitation δ as indicated in the legend.
(e) Effective off-rate constant for a tubulin dimer upstream of a vacancy (normalized by the off-rate constant of the unperturbed lattice)
depending on the motor density ρ of the unperturbed lattice for various values of the lattice excitation δ as indicated in the legend in (d). The
(very small) error bars in (d) and (e) correspond to the standard error of the mean (SEM). The axis label “motor density ρ” in (c) and (e)
indicates the motor density which would be reached in the intact lattice. Remaining parameters are kw = 100τ−1, k− = 1τ−1, and as given in
Table I.

sidestepping motors, the motor flux on protofilaments adja-
cent to the point defect is not affected. Figure 2(c) shows the
fraction of excited and ground-state dimers which can poten-
tially leave the lattice immediately upstream and downstream
(with respect to the walking direction of motors) to the point
defect depending on the steady-state density of motors. Here
we denote by steady-state motor density ρ the corresponding
density on the intact lattice without defects and which is
reached for dimers far away upstream or downstream from
the lattice. Upstream of the point defect, the fraction of ex-
cited dimers is increasing monotonously with the steady-state
motor density. The fast detachment of the motors at the defect
guarantees a finite motor flux even at jamming conditions far
away from the defect. The motors barely affect the lattice

immediately downstream of the vacancy, since the motor den-
sity is here close to zero.

The weak destabilization of a tubulin dimer by the motor
walk and the steric blocking of dimers by the presence of
motors modify the rate constant koff for the dimer to detach
from the lattice and to create a point defect. Since excitation
and relaxation processes and the motor walk are fast compared
to the residence time of dimers in the full lattice we can
estimate the impact of the motor walk on the lattice using a
quasi-steady-state assumption

koff,eff = koff (�Gb)[φeeβδ + φg], (5)

where koff denotes the dimer off-rate constant in the absence
of motors; φe and φg are determined by the motor speed kw and
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the lattice relaxation rate constant kr. Figure 2(d) shows the
effective rate constant of dimer removal koff,eff/koff depending
on the steady-state motor density for kinesin motors and a
fast lattice relaxation (kw/kr = 10, implying that at low motor
density each motor walks with a trail of ten excited dimers
in its wake) for various values of the motor-inflicted tubulin
dimer destabilization values δ. Motors, which do not desta-
bilize the lattice (δ = 0), have a slightly stabilizing effect,
due to sterically blocking the dimers from leaving the lattice.
However, a small transient perturbation of the lattice as small
as δ = 3kBT leads to a tenfold increase in the off-rate constant
for moderate motor lattice occupations of ρ = 0.1 (note that
ρ = 0.5 indicates a lattice completely saturated with motors,
each attached with two heads to two adjacent dimers).

Using slower walking dynein motors and maintaining a
fast lattice relaxation (kw/kr = 1) we obtain qualitatively the
same results; however, higher energy penalties δ are needed
to produce the same effect as fast walking motors, since the
density of excited dimers is lower (see Fig. 7). Interestingly,
for slow motors, the effect of the motor walk on the off-rate
constant of dimers located upstream of the vacancy is stronger
than on the off-rate constant of dimers located in the intact
lattice [cf. Figs. 7(d) and 7(e)]. Note that we do not consider
side- or backstepping of motors. This assumption is valid for
kinesin 1 [44–46]. In contrast, dyneins are known to side- and
backstep frequently (10–20 % of steps are side or back steps
[40,42,44]), which may quantitatively affect the motor flow
and therefore the excitation of dimers. However, simulations
for slow motors with 20% backward steps show only minor
differences in the excitation state of dimers in the absence and
presence of defects [cf. Figs. 7(a) and 7(c)].

Once a point defect has been created, its effects on the
microtubule lattice dynamics are twofold:

(i) Neighboring dimers are missing a lateral or longitudi-
nal neighbor and therefore dimer detachment is accelerated.

(ii) The point defect serves as an obstacle for the mo-
tor walk, altering the quasi-steady-state value of φe and φg

and consequently the effective off-rate constant of dimers
upstream of the defect, while the dimers downstream of the
defect are depleted of motors.

Therefore, a point defect affects the nearest-neighbor
dimers in three different ways. Lateral dimers [top and bottom
neighbors to the defect in Fig. 1(c)] experience an unperturbed
motor flow and may leave the lattice with an effective off-rate
constant given by Eq. (5) with the dimer fractions φg and
φe as given in Fig. 2(a). Longitudinal neighbors upstream
of the point defect [left neighbor to the defect in Fig. 1(c)]
leave the lattice with an effective off-rate constant given by
Eq. (5) with the dimer fractions φg and φe as given in Fig. 2(c).
Longitudinal neighbors downstream of the point defect [right
neighbor to the defect in Fig. 1(c)] are barely affected by
the presence of motors and detach from the lattice with the
off-rate constant given by Eq. (5) with φg ≈ 1 and φe ≈ 0.

B. Microtubule fracture in the absence of free tubulin

In the absence of free tubulin a point defect will lead to
the loss of more dimers and a hole will expand longitudinally
and laterally along the shaft, until the MT breaks completely
(i.e., the hole spans over all 13 protofilaments of the MT). We

define as the time to fracture the time between the creation of
a single vacancy and the moment the MT separates into two
distinct parts. Similarly we define the length of fracture as the
longitudinal extension of the hole at the moment of complete
MT fracture.

Due to the lattice anisotropy (longitudinal bonds are as-
sumed to be stronger than lateral bonds), the damaged region
will predominantly expand in a longitudinal direction.

Using a total typical lattice binding energy of �Gb =
−45kBT [22] and a MT length of 10 µm corresponding to
the approximate length of MTs used in fracture experiments
[14], the typical time for the creation of a point defect is
of the order of 10 min in the absence of motors and drops,
for example, to 3 min in the presence of kinesin motors
[ρ = 0.15, δ = 2 kBT ; see Fig. 3(a)]. Figure 3(b) shows the
time to fracture (after creation of a single vacancy) in the
presence of fast motors with various energy penalties δ. In
the absence of motors, the time to fracture is about 3.5 min.
At δ = 0 motors are stabilizing the lattice and the time to
fracture increases compared to the motor-free case. How-
ever, a small energy penalty (δ = 2kBT ) decreases the time
to fracture significantly at low motor densities. However, the
dependence is nonmonotonous; i.e., at high motor densities
the time to fracture is again increasing. Figure 3(c) shows the
length of the damaged region in the shaft at fracture. In the
absence of motors the typical damage size at fracture is about
6 µm. In the presence of motors, at δ = 0 the fracture length
increases monotonously, i.e., the damage spreads faster in the
longitudinal direction than in the lateral direction, compared
to the case without motors. A small energy penalty δ leads at
low motor densities to a small decrease of the fracture length;
at high motor densities the fracture length increases. Overall,
the energy penalty δ does not much affect the damage size
at fracture. The numerical results (time to fracture, size of
damage at fracture) are comparable to experiments (see Fig. 2
in Ref. [14], Supplemental Fig. 4 in Ref. [11]).

Typically in experiments, the effect of motors on the MT
stability of end-stabilized MTs in the absence of free tubu-
lin is presented as survival curves, i.e., the fraction of MTs
present depending on time. In these experiments, various ef-
fects contribute to the MT destruction besides the nucleation
of point defects in the intact shaft. For example, the loss of the
stabilizing cap and the subsequent rapid MT depolymerization
is a major cause of MT destruction. For pedagogical reasons,
although the cap loss is not described in our model, Fig. 3(d)
shows survival curves of MTs of 10 µm length in the presence
of fast walking motors with an energy penalty δ = 2kBT for
various motor densities. At low motor densities the curves
shift to the left; i.e., motors lead to a faster destruction of MTs
as observed experimentally in Ref. [14]. However, at high
motor densities MTs have the same stability as in the absence
of motors, reflecting the nonmonotonous behavior already
evident in Fig. 3(b). Note that the typical time of survival is
given by the convoluted sum of the probability distributions
for the vacancy nucleation and the increase of the defect size
up to complete fracture. Putting in numbers, in the absence
of motors, the nucleation time for a vacancy in 10-µm-long
MTs in the absence of motors is ≈ 1

0.009 1
µm min ×10 µm

= 11 min

[Fig. 3(a), the point where all curves cross the ordinate].
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FIG. 3. Effect of motor walk on the fracture of the MT shaft. (a) Effective rate constant for the creation of a vacancy per micrometer MT
length depending on the motor density ρ for various values of the lattice excitation δ for fast motors as indicated in the legend. The (small)
error bars represent the SEM. (b) Time to fracture and (c) length of damaged region at fracture after the creation of a vacancy depending on
the motor density ρ for various values of the lattice excitation δ for fast motors as indicated in the legend in (a). The error bars represent the
standard deviation (SD). (d) Survival curves of MTs (of 10 µm length) for various values of the motor density ρ for δ = 2kBT for fast motors.
Kymographs of the fracture process in (e) the absence of motors and [(f), (g)] the presence of (+)- and (−)-end directed motors. Shown is
the position along the MT (vertical axis) versus time (horizontal axis). The color code corresponds to the number of fractured protofilaments.
Simulations were started with a point defect in the center of the MT on protofilament 6 (opposite of the seam). The direction of motor walk is
indicated by the white arrows. Remaining parameters are (f) kw = 100τ−1, k− = 1τ−1, ρ = 0.1, δ = 2kBT and (g) kw = 10τ−1, k− = 0.1τ−1,
ρ = 0.05, δ = 4kBT and as given in Table I.

The typical time for the damaged region to spread across all
protofilaments is about 3.5 min [Fig. 3(b)]. Summing up gives
a typical time of survival of 14.5 min, which corresponds to
the magenta curve in Fig. 3(d). Doing the same calculation
for a motor density of ρ = 0.1 and a penalty of δ = 2kBT we
have a typical vacancy nucleation time of ≈ 1

0.03 1
µm min ×10 µm

=
3.3 min and a time to complete fracture of about 1.2 min,
which gives a typical survival time of 4.5 min corresponding
to the orange curve in Fig. 3(d).

Finally, Fig. 3(e) shows three kymographs of MT fracture
in the absence and presence of motors. In the absence of
motors, the damage spreads symmetrically in the longitudinal
direction. Defect growth in the longitudinal direction is faster
than in the lateral direction. The defect growth speed in the
longitudinal direction increases with the size of damage in

the lateral direction. When the last intact protofilament loses
a dimer, fracture is complete. In the presence of (+)-end
directed motors the most obvious effect is that the damage
spreads faster towards the (−) end than the (+) end, since
motors walking towards the point defect are destabilizing
the dimers upstream to the existing damage. The downstream
side of the damage is not affected by the motors [i.e., the frac-
tion of excited dimers downstream of the damage is vanishing
due to a depletion of motors in this region; see Figs. 2(b) and
2(c)]. The difference between the upstream and downstream
front propagation of the defect is shown in more detail in
Fig. 8. Note also the difference in the timescale on which frac-
ture occurs; for the chosen example motors accelerate fracture
two- to threefold compared to the case without motors. In
the presence of (−)-end directed motors the damage spreads

013012-6



MOLECULAR MOTORS ENHANCE MICROTUBULE … PRX LIFE 1, 013012 (2023)

faster towards the (+) end than the (-) end. For completeness,
Fig. 9 shows the equivalent of Figs. 3(a)–3(c) for slowly
walking (−)-end directed motors.

In a final set of calculations we have studied the dynamics
of a point defect in the presence of free tubulin dimers at high
concentration.

C. Vacancy dynamics in the presence of free tubulin dimers

In the absence of any steric constraints in the lattice, a
single point defect will be occupied by a newly incorporated
dimer with a typical time τon = (konc)−1 = 0.05 s (for a con-
centration of free tubulin c = 20 µM and the kon rate constant
given in Table I). Conversely, a GDP dimer sitting next to a
vacancy in a longitudinal direction will leave the lattice with
a typical time τoff = [k∗

offe
β(�G1+2�G2−�G∗ )]−1 = 3.3 s � τon

(see Table I). Therefore, any point defect appearing in the
lattice should be closed immediately in the presence of free
tubulin, after which the lattice is repaired completely.

This picture changes completely if we assume that a GTP-
tubulin dimer experiences a steric hindrance to incorporate the
GDP lattice at a single point defect. Both GMPCPP tubulin (a
slowly hydrolyzing analog of GTP tubulin) and GDP tubulin
are assumed to adopt a curved conformation in solution albeit
with different curvature [47–49], which needs to straighten to
integrate a tube lattice. A recent kinetic study of the MT tip
dynamics [50] proposes a scenario based on steric constraints,
where GTP tubulin integrates the MT tip with an energetic
preference for a so-called bent conformation to form a sheet
structure. Upon GTP hydrolysis the conformation of GDP
tubulin shifts towards a straight conformation to close the
sheet into a tube structure. In this scenario a GTP tubulin
from solution would be in an unfavorable conformation to
integrate a point defect in a GDP lattice existing in a straight
tube conformation. Furthermore, structural studies [30,51,52]
on MT tube structures using analogs for GTP tubulin and
slowly hydrolyzing mutant tubulins show a high sensitivity
of structural properties of the microtubule (longitudinal and
lateral interdimer distances, preferred protofilament number,
and lattice skew and twist) with respect to the type of tubulin
dimers that form the lattice. Another interesting observation
stems from the dynamical behavior of MTs polymerized from
mixtures of GTP and GDP tubulins [53,54]. These MTs de-
polymerize significantly slower than MTs formed from pure
GTP tubulin, indicating structural differences between MTs
arising from different polymerization conditions.

Here, in our simple MT-lattice model, we explore the
consequences of these structural incompatibilities under the
hypothesis that neither GTP tubulin nor GDP tubulin (most
probably present in low concentrations in the experiments)
can integrate a point defect in a GDP-lattice environment
existing in a straight tube conformation [55]. Thereby we
consider a point defect with two lateral GDP neighbors as
a GDP-lattice environment [see Fig. 4(a)]. This assumption
creates a lattice dynamics in the neighborhood of the va-
cancy, which can potentially survive an extended period of
time and lead to localized tubulin exchange experimentally
visible in fluorescence microscopy [14–16]. Due to the high
anisotropy of the lattice the vacancy will perform a random
walk predominantly along a single protofilament, i.e., up or

down the MT axis. In this mechanism, a longitudinal neigh-
bor of a single point defect will leave the lattice, creating
a double point defect allowing a free GTP-tubulin dimer to
attach to one of the two vacant sites. After this cycle of
detachment and attachment the lattice has again a single point
defect.

Figure 4(b) shows example trajectories over 15 min in
the absence of motors, and with (+)- and (−)-end directed
destabilizing motors. In the absence of motors, the vacancy
dynamics is slow and covers only a small distance on the
protofilament � 0.25 µm. The trajectories are mainly dif-
fusive, i.e., 〈x2〉 ∼ t , and get slightly superdiffusive at long
times, due to the stabilizing effects of GTP contacts in the lat-
tice and the asymmetry in the GTP hydrolysis [see Figs. 4(b)
and 4(c)]. Therefore, the vacancy migrates slowly towards the
MT (+) end.

However, in the presence of destabilizing walking motors,
the vacancy trajectories are accelerated and become ballistic
at long times; i.e., the vacancies are drifting and the mean-
squared displacement behaves as 〈x2〉 ∼ t2. The drift direction
depends on the walking direction of the motors; (+)-end di-
rected motors induce a drift towards the MT (−) end, and
(−)-end directed motors induce a drift towards the MT (+)
end. Thereby, the dynamics is crucially determined by the
following factors: the motor penalty δ and the off-rate constant
of the tubulin dimers immediately upstream or downstream of
the point defect (influenced by the dimer fractions φe and φg).

For a motor penalty δ = 0 the tubulin dimer situated up-
stream of the vacancy is slightly stabilized [see Fig. 2(e)].
In the case of the (+)-end directed motor, this small effect
reinforces the inherent small bias of the vacancy to drift to-
wards the MT (+) end [increased mean squared displacement
(MSD) in Fig. 4(c) for (+)-end directed motors with δ = 0].
For (−)-end directed motors with δ = 0, the stabilizing effect
by the motors induces a small drift of the vacancy towards
the MT (−) end, which is competing with the inherent drift of
the vacancy towards the MT (+) end due to GTP hydrolysis
[decreased MSD in Fig. 4(c) for (−)-end directed motors with
δ = 0].

As an illustration Fig. 4(d) shows example kymographs
of tubulin exchange, where dimers directly incorporated into
the shaft are shown in yellow. Figure 4(e) shows the length
of incorporation spots depending on the motor concentra-
tion and energy penalty δ for fast (+)-end directed and slow
(−)-end directed motors. Without motors at ρ = 0 the in-
corporation length is about 0.25 µm. Without motor walk
induced penalty (δ = 0) this length barely changes. However,
at a small penalty of δ = 1kBT (fast motors) the incorporation
length increases to about 1 µm at high motor density (ρ =
0.2). For δ = 2kBT (fast motors) the incorporation length
increases strongly with the motor density. Even at a low motor
density (ρ = 0.02) the incorporation length is about 1 µm.
Slow motors have a similar effect as fast motors, albeit at
higher energy penalties δ. For comparison, in experiments the
incorporation length after 7–40 min of tubulin incorporation
with kinesins (fast motors in our model) is approximately
1 µm [14–16].

So far, we have investigated a vacancy dynamics without
considering possible repair mechanisms, which could lead
to the closure of a point defect. As a weak assumption we
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FIG. 4. Effect of motor walk on the dynamics of a point defect in the presence of free tubulin. (a) GTP-tubulin dimers (pink) cannot leave
or integrate a fully occupied GDP lattice (green) with a single point defect (gray) due to steric hindrance. (b) Example trajectories of point
defects in the absence and presence of motors along a protofilament as indicated in the legend in (c). (c) Mean squared displacements of point
defect trajectories for various motor properties as indicated in the legend. (d) Examples of kymographs of tubulin exchange (yellow). The
current position of the point defect corresponds to the black line. The direction of motor walk is indicated by the white arrow. (e) Length of
tubulin exchange after 15 min depending on the motor density ρ for fast (+)-end directed and slow (−)-end directed motors for various energy
penalties δ as indicated in the legend. Parameters for fast motors are kw = 100τ−1, k− = 1τ−1, and for slow motors kw = 10τ−1, k− = 0.1τ−1

and as given in the legends and in Table I. The concentration of free tubulin is c = 20 µM.

could postulate that a lateral GTP-tubulin dimer adjacent to
a vacancy allows for the incorporation of a free GTP-tubulin
dimer, since the GTP dimer already present in the lattice suf-
ficiently extends the vacancy site to allow for a GTP dimer to
incorporate. In this picture, a point defect repairs completely,
as soon as a vacancy loses a lateral GDP-dimer neighbor. In
the absence of motors, the typical lifetime of a point defect
is then given by τL = [k∗

offe
β(2�G1+�G2−�G∗ )]−1 = 100 min,

well beyond the observation time in an experiment. In the
presence of destabilizing walking motors, the lifetime may
shorten considerably [cf. Fig. 2(d)]. For example, an effective
increase in the off-rate constant for a lateral dimer by a factor
of 3 [Fig. 2(d), ρ = 0.15, δ = 2kBT ] reduces the lifetime of
the vacancy to 100/3 min = 33 min, which is comparable to
the experimental timescale.

A second potential repair mechanism of point defects could
result from relaxing the rule of steric constraint for the in-
clusion of free tubulin at point defects, i.e., allowing for an
on-rate constant ∼ζkon with ζ 	 1. Repair would then be
complete with a typical time ∼1/(ζkon).

IV. DISCUSSION

In the present paper we have theoretically explored a pos-
sible mechanism for MT lattice plasticity in the presence
of processive molecular motors. Our basic idea is that the
motor walk transiently, locally, and weakly destabilizes the
underlying MT lattice, which increases the rate of tubulin
dimer loss from the shaft lattice. Assuming a steric hindrance
for GTP-tubulin dimers to integrate a single vacancy in the
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GDP lattice induces a lattice dynamics at the vacancy which
is accelerated by molecular motors. Furthermore, the vacancy
dynamics switches from diffusive to ballistic in the presence
of motors whereby the direction of motion depends on the
direction of the motor walk.

The proposed model mechanism matches qualitatively and
quantitatively fracture experiments (fracture size and time
to fracture) of end-stabilized MTs in the absence of free
tubulin dimers. It is also consistent with experiments on end-
stabilized MTs in the presence of free tubulin dimers, which
show an increase in the frequency of free dimer incorporation
spots with typical sizes of about 1 µm.

Frequencies of incorporation spots have been measured by
two different groups and vary considerably. Andreu-Carbó
et al. [16] measured a frequency of 0.05 µm−1 after 15 min
of free tubulin incorporation in the absence of motors. In
the presence of kinesins (5 nM), the frequency increased to
0.2 µm−1, which is consistent with defect nucleation rates
shown in Fig. 3(a). In contrast, Triclin et al. [14] measured
frequencies of 0.017 µm−1 after 40 min of free tubulin incor-
poration in the absence of motors. In the presence of kinesins
(10 nM), the frequency of incorporation increased to 0.05
µm−1, which is lower by a factor of 4 than the frequency
measured by Andreu-Carbó et al. [16] at much shorter incu-
bation times. While the absolute frequency of incorporation
may depend on the sensitivity of the experimental setup, both
groups find an increase in the incorporation frequency in the
presence of motors by a factor of 3 to 4 compared to the
control experiment, which corresponds in our model to a
motor penalty of about 2kBT or slightly above for low kinesin
densities on the MT.

A recent paper by Théry and Blanchoin [56] speculates
about possible mechanisms of interaction between the pro-
cessive motor walk and the underlying MT lattice. They
juxtapose two different concepts: the motor facilitates the
lattice dynamics at dislocations (e.g., changes in protofilament
numbers) (termed the “pickpocket” and “burglar” concept,
respectively) as opposed to the idea that the motor weakly
destabilizes the perfect lattice in its wake (termed the “road-
burner”). In the first case, the motor walk acts on existing
defects, which were created during polymerization. In the
latter case, the motor continuously and weakly perturbs the
lattice which leads to the nucleation of vacancies.

Here we have investigated the “road-burner” concept
where MT shaft plasticity is enhanced as a collective motor
effect; the motor walk weakly destabilizes the MT lattice
on an energy scale of a few kBT and facilitates detachment
of dimers from the lattice. The dynamics of an existing va-
cancy is greatly accelerated upstream of the motor current,
whereas downstream of the vacancy the lattice is devoid of
motors, leading to a vacancy drift in a direction opposite
of the walking direction. Both concepts (i.e., motors act on
existing defects and nucleate new defects) are not mutually
exclusive and could act in an additive manner. However, the
road-burner concept (de novo nucleation) would increase the
number of sites of lattice plasticity depending on the motor
density present on the MT [16], offering a true mechanism of
MT regulation.

An important feature in motor-induced MT lattice dy-
namics is the motor behavior at lattice vacancies. In the

here proposed model mechanism, motor-stimulated dimer
removal upstream of vacancies requires a sufficiently high
motor flux. In our simulations we had only considered
motors which walk on single protofilaments and detach
rapidly at the vacancy. However, especially dyneins are
known to sidestep frequently. In the vicinity of vacancies
this might be an important alternative mechanism to main-
tain a high motor flux and reduce jamming upstream of the
vacancy.

It was suggested in Ref. [21] that the walk of a single
kinesin is sufficient to directly remove dimers from the MT
shaft as a rare event. Indeed, the experiments in Ref. [21]
show that the cooperative action of several kinesins may be
able to remove a tubulin dimer from the lattice by pulling
on the dimer via a flexible tether, although a direct proof
of dimer removal is missing. Within this concept of direct
dimer removal, the motor walk facilitates vacancy nucleation,
as an extremely rare event. It is not clear how the motors
affect the lattice in the vicinity of the vacancy, since this
would require that a rare lattice destabilization event occurs at
an existing vacancy. A direct dimer removal offers therefore
no straightforward explanation for micrometer-sized tubulin
incorporation spots, which involve an exchange of several tens
to 100 dimers length. However, the direct detachment of tubu-
lin dimers by the kinesin walk as a rare event can be treated
potentially within the same kinetic Monte Carlo framework
we have used here. To that end, only an almost vanishing
small fraction of motor steps leads to a strong transient lattice
destabilization (limited by the free energy of ATP hydrolysis).
An investigation of this “single-molecule” mechanism with
respect to MT fracture and free tubulin incorporation is part
of future work in an attempt to oppose the two mechanisms of
motor-lattice interactions.

It has been speculated that GTP islands in the GDP shaft
may serve as rescue sites for rapidly depolymerizing MTs
and thus an increased tubulin turnover in the shaft may entail
an increased MT stability. Indeed, it has been shown in vivo
and in vitro that an increased frequency of tubulin exchange
sites correlates with a higher rescue frequency [16,57,58].
Increasing the stability of dynamic MTs by increasing the MT
shaft plasticity constitutes a completely novel and unexplored
mechanism of MT regulation, of which a mechanistic picture
is completely missing. Our proposed mechanism for MT-
motor interactions could serve as an important cornerstone in
plasticity-induced MT regulatory mechanisms.

Data and source codes for Figs. 2(a)–2(e), 3(a)–3(d), 4(b),
4(c), 4(e), 5, 7(a)–7(e), 8, and 9(a)–9(c) are available on the
Zenodo repository [59].

ACKNOWLEDGMENTS

The authors thank Sarah Triclin, Manuel Théry, Laurent
Blanchoin, and Denis Chrétien for fruitful discussions. The
computations were performed using the Cactus cluster of the
CIMENT infrastructure, supported by the Rhône-Alpes region
(Grant No. CPER07_13 CIRA). The authors thank Philippe
Beys who manages the cluster. This work was supported by
the French National Agency for Research (Grant No. ANR-
18-CE13-0001).

013012-9



WILLIAM LECOMPTE AND KARIN JOHN PRX LIFE 1, 013012 (2023)

APPENDIX: MODEL DETAILS AND
SUPPLEMENTARY FIGURES

Kinetic Monte Carlo simulations were performed using
a rejection-free random-selection method [60], and using
custom written codes in C and PYTHON. Statistical analy-
sis (averages, standard deviations, and standard errors of the
mean) was either performed using C, PYTHON, or R. Unless
stated otherwise, kinetic Monte Carlo simulations were per-
formed using the parameters shown in Table I.

a. Details of the seam structure. Individual lattice sites on
the square lattice are identified by a doublet of integers (i, j).
Lattice sites at the seam have two nearest lateral “half” neigh-
bors across the seam; that is, dimers at the seam in Fig. 1(a)
with the doublet (1, j) are in contact with dimers (13, j + 2)
and (13, j + 1) at the opposite site of the seam and dimers at
the right seam with doublet (13, j) are in contact with dimers
(1, j − −1) and (1, j − −2) for a 133 protofilament lattice.
Each lateral dimer-dimer contact across the seam is counted
with a binding energy �G2/2; i.e., in the fully occupied
lattice, dimers at the seam have the same binding energy as
dimers in the bulk lattice.

b. Principle of detailed balance for reversible reactions.
For the passive process of lattice polymerization and de-
polymerization, the principle of detailed balance has to hold.

Therefore, on- and off-rate constants, kon and koff , must be
coupled by the relation [61]

koff

konc0
= eβ�G, (A1)

where β−1 = kBT , c0 denotes the standard concentration of
free tubulin in solution, that is, 1 M by convention, and �G de-
notes the change in free energy upon transferring a free dimer
from the solution into the lattice. Note that c0 in Eq. (A1) is not
the actual concentration of the free tubulin in solution, but the
standard concentration, and originates from the concentration
dependence of the chemical potential, that is, kBT ln(c/c0),
where c denotes the actual concentration of free tubulin in
solution. �G = �Gb + �Ge + δ contains contributions from
binding of the dimer to nearest neighbors �Gb, the loss of
entropy due to immobilization of the free dimer in the lattice
�Ge, and an additional (weak) transient contribution δ due to
the stepping of processive motors. We rewrite Eq. (A1) into

koff = konc0eβ�G = k∗
off e

β(�Gb+δ−�G∗ ) (A2)

with k∗
off = konc0eβ(�Ge+�G∗ ). �G∗ = �G1 + �GT

1 + �G2

denotes the binding energy at the microtubule tip with a GTP
cap (i.e., the binding energy of a GTP dimer with one lateral
and one longitudinal GTP-dimer neighbor).

TABLE I. Parameters for the kinetic Monte Carlo simulations unless stated otherwise. T-T (D-D) indicates a contact between GTP dimers
(GDP dimers), and T-D indicates a contact between a GTP and GDP dimer. The timescale is τ = 1 s.

Parameter Notation Value Remark

Binding energies: Great variability in the values found
Longitudinal (T-D, D-D) �G1 −15kBT in the literature [11,22,23,33,62,63];
Lateral (T-D, D-D) �G2 −7.5kBT lattice anisotropy is �G1/�G2 = 2
Longitudinal stabilizing (T-T) �GT

1 −6.3kBT

GTP hydrolysis rate constant kh 0.6 τ−1 comparable to experimental values [64] and values
used in other theoretical studies [11,25,26]

Entropic loss due to dimer Estimated from k∗
off = konc0e�Ge+�G1+�G2+�GT

1 ,
immobilization estimates in the literature range from 10kBT

to 20kBT [22,65,66]

Reference energy at the MT tip �G∗ 28.8kBT �G∗ = �G1 + �G2 + �GT
1

On-rate constant (GTP dimer) kon 1 µM−1 τ−1 Overall on-rate constant per 13 protofilament MT is
kMT

on = 13 µM−1 τ−1, comparable to other
studies [3,22,23,64]

Off-rate constant k∗
off τ−1 Corresponds to the off-rate constant for a GTP

Corresponds to the off-rate constant for a GTP dimer with one
lateral and longitudinal GTP neighbor

Motor speed kw 10τ−1–100τ−1 Comparable to typical speeds for yeast dyneins
(10 dimers/s) or kinesins (100 dimers/s) [15,40,67,68]

Motor off-rate constant k− 0.1τ−1–1τ−1 k− = 0.1τ−1 with kw = 10τ−1 and k− = 1τ−1

with kw = 100τ−1corresponds to a typical run
length of 100 dimers, comparable to experiments
on dyneins and kinesins [15,40,67,68]

Motor off-rate constant (MT end) kE− = θk− θ = 100 We assume motors are not end tracking [43]

Motor on-rate constant k+ Adapted to obtain a steady-state motor density
ρ using Eq. (A3)

Conformational penalty due to motor stepping (per dimer) δ 0kBT –4kBT Adapted for our model
Lattice relaxation time kr 1τ−1 Adapted for our model
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FIG. 5. Tip dynamics of the MTs depending on the concentration of free tubulin as indicated in the upper right corner of each graph. The
gray bars for 21 µM and 25 µM denotes the end of the simulation box, which triggers catastrophes. Remaining parameters are as given in
Table I.

c. Justification for the choice of �GT
1 . Note that the sta-

bilization of longitudinal T-T contacts is a major difference
from the model by vanBuren et al. [22], but permits to cap-
ture the dynamic instability without further assumptions. The
stabilization of only lateral T-T contacts is not sufficient to
induce a dynamic instability with sufficiently long phases of
growth and shrinkage.

d. Motor dynamics with occasional backward steps. Fig-
ures 7(a) and 7(c) show results for the steady fractions of
excited and ground-state dimers which can leave the lat-
tice, φe and φg for slow motors which may occasionally
step backwards. These simulations were carried out under
the assumption that the motor walks with a mean speed
〈v〉 = 10τ−1. The rate constant for doing a forward step is
given by kw,f

1−ξ

1−2ξ
〈v〉 and the backward-stepping rate con-

stant is kw,b
ξ

1−2ξ
〈v〉. ξ denotes the fraction of backward

steps which is 0.2 in the simulations in Figs. 6(a) and

6(c). The mean velocity 〈v〉 is related to kw,f and kw,b

by 〈v〉 = kw,f − kw,b.
e. Motor dynamics in the mean-field approximation. Typi-

cally, simulations were carried out for a given quasi-steady-
state motor density at the intact lattice (i.e., the temporal
average of the probability that a motor front head is attached to
a tubulin dimer after all transients have decayed). In this situa-
tion, the motor (front head) density is related to the motor on-
rate constant k+ and the motor off-rate constant k− [27,37] by

0 = k+
(1 − 2ρ)2

1 − ρ
− k−ρ. (A3)

For a given ρ and motor off-rate constant k−, Eq. (A3)
determines the motor on-rate constant k+. The microtubule
lattice was initiated with all tubulin dimers in the ground state
and with a mean motor density ≈ ρ. Statistical measures of
the lattice dynamics in the presence of motors were recorded
after a short period of equilibration ∼10k−1

− .

FIG. 6. Steady-state behavior of motors and dimer fractions φe and φg depending on the ratio of motor attachment and detachment rate
constants μ = k+/k−. (a) Steady-state density of motors on the intact lattice according to Eq. (A3). (b) Steady-state flux of motors according to
Eq. (4) along an intact protofilament in units of the motor stepping rate constant kw. (c) Approximate fractions of exited (φe) and ground-state
dimers (φg) for fast (ν = kw/kr = 10) and slow motors (ν = kw/kr = 1) according to Eqs. (2) and (3).
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FIG. 7. Effect of motor walk on the stability of the MT shaft for slowly walking motors. (a) Quasi-steady-state fractions of excited (φe)
and ground-state dimers (φg) in the intact lattice depending on the steady-state density of motors, ρ. “Back step” indicates motors that do 20%
backward steps; “mf” indicates the mean-field estimate as given in Eqs. (2) and (3). (b) Quasi-steady-state probabilities to find a motor front
head in the vicinity of a point defect located at the dimer position i = 0. The motors walk into the positive x direction. (c) Quasi-steady-state
fractions of excited and ground-state dimers at a lattice position adjacent to the point defect (us, upstream; ds, downstream). “Back step”
indicates motors that do 20% backward steps. (d) Effective off-rate constant for the creation of a vacancy (normalized by the off-rate constant
of the unperturbed lattice) depending on the motor density ρ for various values of the lattice excitation δ as indicated in the legend. (e) Effective
off-rate constant for a tubulin dimer upstream of a vacancy (normalized by the off-rate constant of the unperturbed lattice) depending on the
motor density ρ of the unperturbed lattice for various values of the lattice excitation δ as indicated in the legend in (d). The (small) error bars
in (d) and (e) represent the SEM. The axis label “motor density ρ” in (c) and (e) indicates the motor density which would be reached in the
intact lattice. Remaining parameters are kw = 10τ−1, k− = 0.1τ−1, and as given in Table I.

f. Motor-lattice interactions in the quasi-steady-state ap-
proach. The computational effort of the kinetic Monte Carlo
(KMC) model presented in the Model section in the main
text increases rapidly with the employed motor density since
the system dynamics is driven by two different timescales.
On the one hand, the tubulin dynamics [k−1

off (�G∗) = 1 s] is
slow, and on the other hand, the motor dynamics (k−1

w = 0.1–
0.01 s) is one to two orders of magnitude faster. It is then a
prerequisite to optimize the KMC algorithm to minimize the
computational time. One can either reduce the total number
of reactions needed to simulate the system (i.e., reduce the
complexity of the model) or increase the number of reactions

per second (i.e., optimize the script algorithm). Some of the
simulations (MT fracture) were done with a sharp reduction
in the complexity (i.e., the number of considered reactions),
using a quasi-steady-state assumption to capture the effect of
the motor walk on the lattice stability. To that end we tabulated
the steady-state fractions of dimers in the excited and ground
states (φe, φg) that are able to leave the lattice; i.e., they are
not blocked by the presence of motors bound to two dimers.
Thereby we considered two cases. In case I the motors move
on an intact protofilament with translational symmetry and the
steady states are given by (φe, φg) = (φe,i, φg,i ). In case II,
we considered a protofilament containing a point defect and
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FIG. 8. Fracture process of a MT in the presence of motors.
Average propagation speeds v of the damage along the MT axis for
various values of the motor penalty δ as indicated in the legend.
A velocity v > 0 (v < 0) indicates a propagation in the direction
downstream (upstream) of the motor walking direction. The up-
stream propagation speed is accelerated in the presence of motors.
The downstream propagation speed is independent of the presence
of motors. The error bars represent the SD. Remaining parameters
are kw = 100τ−1, kr = 10τ−1, k− = 1τ−1, and as given in Table I.

tabulated (φe,u, φg,u) and (φe,d, φg,d) for the dimers immedi-
ately upstream and downstream of the defect, respectively.
For simulations of MT fracture we then used the tabulated
doublets of (φe, φg) to define effective off-rate constants using
Eq. (5) for dimers that are nearest neighbors to vacant lattice
sites using the following rules. Dimers upstream and down-
stream of the defect detach with the rate constants koff,eff,u and
koff,eff,g, respectively,

koff,eff,u = (
φe,ueβδ + φg,u

)
k∗

offe
−β�Gb, (A4)

koff,eff,d = (
φe,deβδ + φg,d

)
k∗

offe
−β�Gb, (A5)

with �Gb = �G1 + n�G2 with n = (0, 1, 2) determined by
the lattice environment. For dimers which are lateral neigh-
bors of the defect and experience an unperturbed motor flow
the off-rate constant koff,eff,i is given by

koff,eff,i = (
φe,ie

βδ + φg,i
)
k∗

offe
−β�Gb (A6)

with �Gb = 2�G1 + n
2�G2 with n = (0, 1, 2, 3) determined

by the lattice environment. Dimers which are missing one
lateral and two longitudinal neighbors detach almost instan-
taneously from the lattice; the excitation state of the dimer is
negligible for the lattice dynamics. We did not consider the de-
tachment of dimers without a vacant neighbor site. Using full
KMC simulations (simulating the motor dynamics explicitly)
we checked that the distribution of dimer detachment times
k−1

off is exponential.

FIG. 9. Effect of slowly walking motors on the fracture of the MT shaft in the absence of free tubulin. (a) Effective rate constant for the
creation of a vacancy per micrometer MT length depending on the motor density ρ for various values of the lattice excitation δ as indicated in
the legend. The error bars represent the SEM. (b) Time to fracture and (c) length of damaged region at fracture after the creation of a vacancy
depending on the motor density ρ for various values of the lattice excitation δ as indicated in the legend in (a). The error bars represent the SD.
Remaining parameters are kw = 10τ−1, k− = 0.1τ−1, and as given in Table I.
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