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Contact probabilities between loci, separated by arbitrary genomic distance, for a number of cell types
have been reported using genome-wide chromosome conformation capture (Hi-C) experiments. How to extract
the effective interaction energies between active euchromatin (A) and inactive heterochromatin (B) directly
from the experimental data, without an underlying polymer model, is unsolved. Here, we first calculate the
pairwise effective interaction energies (A-A, B-B, or A-B) for interphase chromosomes based on Hi-C data
by using the concept of statistical potential (SP), which assumes that the interaction energy between two loci
is proportional to the logarithm of the frequency with which they interact. Polymer simulations, using the
extracted interaction energy values without any parameters, reproduce the segregation between A and B type
loci (compartments), and the emergence of topologically associating domains, features that are prominent in the
Hi-C data for interphase chromosomes. Remarkably, the values of the SP automatically satisfy the Flory-Huggins
phase separation criterion for all the chromosomes, which explains the mechanism of compartment formation
in interphase chromosomes. Strikingly, simulations using the SP that accounts for pericentromeric constitutive
heterochromatin (C-type) show hierarchical structuring with the high density of C-type loci in the nuclear center,
followed by localization of the B-type loci, with euchromatin being confined to the nuclear periphery, which
differs from the expected nuclear organization of conventional interphase chromosomes, but is in accord with
imaging data. Such an unusual organization of chromosomes is found in the inverted nuclei of photoreceptor rods
in nocturnal mammals. The proposed method without free parameters and its applications show that compartment
formation in conventional and inverted nuclei is best explained by the inequality between the effective interaction
energies, with heterochromatin attraction being the dominant driving force.
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I. INTRODUCTION

Knowledge-based potentials, often referred to as statis-
tical potentials (SPs), have been used to extract effective
pairwise interactions between amino acid residues from the
database of nonredundant folded structures. The essence of
the idea was first introduced by Tanaka and Scheraga [1],
and subsequently developed by Miyazawa and Jernigan [2,3]
and others [4–8]. The frequency of contact between specific
amino acid residues is used to estimate the free energy of
the interaction. The set of free energies, which is propor-
tional to the amino acid contact frequencies in the set of
the PDB structures, constitute the approximate strengths of
tertiary interactions between the side chains of amino acids
or between the backbone and the side chains. The result-
ing SPs have been successful, especially when combined
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with coarse-grained simulations, to predict protein folding
thermodynamics and kinetics [9], peptide binding to MHC
complexes [10], protein-ligand binding [11], and protein-
protein interactions [12]. Most recently, an AI-based approach
using the SPs demonstrated the prediction of native protein
structures with remarkably high accuracy [13].

The concept of SP has also been used to extract stacking
interactions between nucleotides in RNA [14], which is im-
portant in determining the stability of RNA folds [15], by
exploiting the PDB structures that were available in 2005.
The calculated values of the stacking interactions are in ex-
cellent agreement with experimental measurements, which
were determined from the melting profiles of oligonucleotides
[16,17]. By using gapless threading and the SPs for RNA,
we correctly identified in excess of 70% of native base pairs
in the secondary structure for RNA molecules with fewer
than 700 nucleotides. Our study on RNA and the ones on
proteins established that knowledge-based methods are useful
in extracting the values of the interaction parameters, which
could then be profitably used in simulations for a variety of
purposes.

Here, we explore if the large number of genomic contact
maps (CMs), available from the chromosome conformation
capture experiments (referred to as Hi-C [18] from now on),
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for a number of species and under a variety of growth con-
ditions, could be used as a guide for calculating the effective
free energies of interactions between the distinct loci in in-
terphase chromosomes. In the commonly used polymer-based
modeling approaches [19–37], the parameters in an assumed
energy function are adjusted to obtain agreement with Hi-C
experiments. In practice, most of these polymer simulations
use iterative algorithms to optimize the model parameters by
fitting the simulated CMs to the experimental data [20,21,24–
28,30,31,38]. In contrast, we present a method, without free
parameters, for determining the effective interactions between
genomic loci by applying the SP concept directly to the Hi-C
data. We use the phrase “without free parameters” because
the interactions between the distinct loci are extracted directly
from the Hi-C contact maps without fitting procedures. This
method is essentially analytical, and computationally effi-
cient, as well as physically intuitive.

Let us classify the loci in chromosomes as euchromatin
(A-type locus) and heterochromatin (B-type locus). The free
energy scales for three different locus pair interactions (A-A,
B-B, and A-B interactions) and their distributions are calcu-
lated from the CMs using a generalization of the formulation
used for proteins and RNA. By using the mean values of the
free energies as the interaction parameters in polymer simu-
lations based on the chromosome copolymer model (CCM)
[25], we show that the relevant organization features found
in the Hi-C CMs are accurately captured. The mean free
energy values result in the effective interaction parameter,
χFH, from the Flory-Huggins theory [39,40] being greater
than zero, which explains the mechanism of microphase
separation between euchromatin and heterochromatin that is
routinely observed across virtually all eukaryotic interphase
chromosomes [41,42]. The ensemble of three-dimensional
structures predicted by the SP-based CCM (SP-CCM) poly-
mer simulations is in very good agreement with that observed
in the imaging experiment using DNA fluorescence in situ
hybridization (FISH) [43]. The SP-CCM simulations also re-
solve TAD structures in the CM, when the CTCF-mediated
loop anchors were included in the model. Strikingly, the
SPs extracted from the interchromosome Hi-C data for the
inverted nuclei [28] when used in the SP-CCM simulations
reproduce the observed unusual spatial pattern of nuclear
compartmentalization in which the euchromatin are localized
in the nuclear periphery, whereas heterochromatin structures
are in the interior. Our method, which provides the effective
pairwise interaction energies calculated directly from the Hi-C
data without any parameters, may be used in polymer simu-
lations to predict the structural and dynamical properties of
chromosomes over a broad range of length scales.

II. EFFECTIVE INTERACTION ENERGIES
BETWEEN LOCI

We first calculated the values of the SP between individual
locus pairs, �Gi j [Eq. (2); see Sec. VIII A for details], for
chromosome 2 (Chr2) from the IMR90 cell line using the
Hi-C CM at 100-kb resolution [44]. The distributions of the
SPs, P(�Gi j/kBT ), where kB is the Boltzmann constant and
T is the temperature, are plotted for each locus pair type
in Fig. 1(a). The locus types, A (active or euchromatin) or

B (inactive or heterochromatin), are inferred from the ex-
perimental CM using the principal component analysis (see
Sec. VIII D for details). The distributions of effective inter-
actions [Fig. 1(a)] show that the mean A-A interaction is
modestly more favorable than between B-B, which differs
from the prevailing view in the literature [18,28,42]. The
interaction between A-B is less favorable than between A-A
or B-B.

The mean values, �GAA, �GBB, and �GAB, set the effec-
tive energy scales in the CCM simulations [see Sec. VIII B
and Eq. (8) for details]. We used εαβ = −�Gαβ , where
α, β = A or B [Fig. 1(a)]. The calculation yields εAA =
1.62kBT , εBB = 1.41kBT , and εAB = 0.95kBT . Note that
χFH = [(εAA + εBB)/2 − εAB]/kBT > 0, which implies the
use of these effective energy scales in the polymer simulations
should result in microphase separation between A and B type
loci. It is worth emphasizing that the calculated interaction
energies emerge naturally from Eq. (2) with the CM being the
only input. In other words, these values were not adjusted to fit
with any experimental values unlike in a majority of previous
studies [20,21,24–28,31,38]. The validity of the calculated SP
values can only be assessed by polymer simulations.

III. COMPARTMENT FORMATION FROM
SP-CCM SIMULATIONS

Next we assessed the accuracy of the SP-based energetic
parameters by performing polymer simulations, as described
in Secs. VIII B and VIII C. The SP-CCM simulations account
for phase separation between A and B loci, which accords
well with experiment [Fig. 1(b)]. For a quantitative compar-
ison, we computed the Pearson correlation matrix from the
CM [Eq. (11)]. The correlation matrix, ρ(i, j), highlights the
checkerboard pattern of compartments vividly. In Fig. 1(c),
the Pearson correlation matrices for the Hi-C and simulated
CMs show good agreement. Visually the segregation between
A and B loci appears to be stronger in the CM calculated
using the SP-CCM simulations compared to Hi-C data. How-
ever, the distributions of the Pearson correlation coefficients
demonstrate that the compartmentalization predicted by the
SP-CCM is in quantitative agreement with the Hi-C result
[Fig. 1(d)]. The Jensen-Shannon divergence (JSD) [Eq. (16)]
between the distributions for the p-arm (q-arm) is 0.086
(0.13), which shows that the simulated and experimentally
inferred distributions are in excellent agreement.

We then compared the Chr2 structures generated by the
SP-CCM simulations to those observed in the super-resolution
imaging experiment based on DNA FISH [43]. The simu-
lated and experimental distance maps (DMs), showing the
mean pairwise distance, 〈ri j〉, where the angular brackets,
〈· · · 〉, denote an ensemble average over multiple cells (in
experiments) or trajectories (in simulations), are in good
agreement [Fig. 1(e) and Figs. S1(a)–S1(c) [45]]. Although
both the DMs feature the checkerboard patterns corresponding
to A/B compartments, the simulated DM shows a modestly
larger difference between A-A (or B-B) and A-B interac-
tion blocks than observed in the experiment. To characterize
the differences quantitatively, we compare the simulated and
experimental probability distributions of the pairwise dis-
tance ri j for two locus pairs, (i, j) = (24 Mb, 32.1 Mb) and
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FIG. 1. SP-CCM simulations for Chr2 predict the chromosome structures with A/B compartmentalization. (a) The Hi-C contact map is
converted to the SP matrix [Eq. (2)], where the color bar above each heat map indicates the A/B type (green/purple) of the individual loci. The
calculated SP values are sorted into the distributions based on the locus type, whose mean values set the relative strength of A-A, B-B, and
A-B interactions that are used in the polymer simulations. (b) Comparison between the contact matrices obtained from the Hi-C experiment
(lower triangle) and the SP-CCM simulation (upper triangle), where the red shading shows the logarithm of the contact frequency, given in
the color bar on the right. (c) Pearson correlation matrices, corresponding to the contact matrices in panel (b), computed separately for the
p- (left) and q-arms (right). (d) Probability distributions of the Pearson correlation coefficients in panel (c), computed from the Hi-C and SP-
CCM, shown in blue and orange solid (dashed) lines for the p-arm (q-arm), respectively. (e) Comparison between the mean pairwise distance
matrices, 〈ri j〉, obtained from the imaging experiment (lower triangle) and the SP-CCM simulations (upper triangle). The A-A and A-B pairs,
(i, j) = (24 Mb, 32.1 Mb) and (32.4 Mb, 42.6 Mb), are highlighted in red and blue, respectively. (f) Probability distributions of the distance
between the locus pairs specified by the red (top) and blue (bottom) circles in panel (e). (g) Heatmap of the JSD matrix, where each element
indicates the value of the JSD between the probability distributions, P(ri j ), for a given locus pair as shown in panel (f). (h) Probability
distributions of JSD shown in panel (g) for a given type of locus pair.

(32.4 Mb, 42.6 Mb), the A-A and A-B pairs, which have a
similar genomic distance (|i − j| ∼ 8−10 Mb) [Fig. 1(e), red
and blue markers]. For the (24 Mb, 32.1 Mb) pair, the distance
distributions, P(ri j ), obtained from the FISH and the SP-CCM
are in excellent agreement with JSD = 0.035 [Fig. 1(f), top].
On the other hand, for the (32.4 Mb, 42.6 Mb) pair, the
agreement is not as good [JSD = 0.31; Fig. 1(f), bottom]. The
difference between the distance distributions for the (32.4 Mb,
42.6 Mb) pair arises because the structural ensemble from the
FISH experiment is not identical to the one implied by the
Hi-C data (see Fig. S2 [45]). The simulations are based on
the SPs extracted from the Hi-C data, which quantitatively
differ from the SPs based on the FISH data (see Sec. VII and
Appendix C).

To assess the overall similarity between the structural en-
sembles determined from experiments and the simulations,

we quantified the JSD values between the experimental and
the simulated distributions, P(ri j ), for all the pairs [Fig. 1(g)].
The distribution of JSD for a given pair type shows that the
spatial arrangements for A-A or B-B locus pairs predicted by
the SP-CCM are quantitatively close to those extracted from
the imaging experiment [Fig. 1(h)]. There is a small difference
between the A-B pair distance distributions, with JSD = 0.15,
where the bar denotes a sample mean (e.g., average over the
pairs). The results suggest that the simulated structures exhibit
modestly stronger A/B segregation while the spatial arrange-
ments between the same type of loci are accurate. Taken
together, we surmise that the SP-CCM simulations predict a
structural ensemble that is similar to the FISH data, which we
find to be most interesting because our theory and simulations
contain no free parameters. We also obtained similar results
for the q-arm of Chr2 [Figs. S1(d) and S1(e)].
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FIG. 2. Resolving TADs using SP-CCM simulations. (a) Comparison between the CMs from the Hi-C experiment and the SP-CCM
simulations for a region of Chr2 spanning 37.5–45 and 62.5–70 Mb on the left and right panels, respectively. The TAD boundaries inferred
from the insulation score (see Fig. S4 [45]) of each CM are delineated by the dashed lines. On the left panel, the CTCF loop anchors are marked
by blue circles. (b) Comparison of the probability distribution for the genomic length of TADs in the p-arm of Chr2, between the Hi-C (blue) and
the SP-CCM (orange). The dashed lines are the Gamma-distribution fits, f (x; a, b) = (x/b)a−1e−x/b/

∫ ∞
0 t a−1e−t dt , with (a, b) = (3.99, 1.58)

and (4.57, 1.93) for the Hi-C and the SP-CCM, respectively. The mean TAD length, L̄TAD, in Mb units, is shown at the top. (c) Comparison
between the mean distance matrices from the FISH experiment and simulation for Chr2: 62.5–70 Mb, overlaid with the TAD boundaries shown
in panel (a). The red box illustrates a 2-Mb region that is enriched in A-type, containing 3–4 TADs. (d) Probability distributions of the radius
of gyration (left) and relative shape anisotropy (right) of the red-boxed domain in panel (c), compared between the FISH (blue) and SP-CCM
(orange) results.

The results for the chromosome 21 (Chr21) show similar
trends as well. We computed �Gi j from the Hi-C CM at
50-kb resolution for IMR90 Chr21 (14–46.7 Mb). The dis-
tribution of �Gi j for each pair type is plotted in Fig. S3(a)
[45]. From the mean values of the SPs, we obtain εAA =
0.46kBT , εBB = 1.04kBT , and εAB = 0.49kBT (χFH > 0) for
use in the CCM simulations. Note that εBB > εAA ≈ εAB for
this chromosome unlike the values of interaction parameters
for Chr2. With this choice of the energetic parameters, the
SP-CCM simulations reproduce the compartments in the CM
[Figs. S3(b) and S3(c)]. The simulated mean distance map
also captures the pattern of compartments shown in the DM
from the FISH experiment [43] [Fig. S3(d)]. The matrix and
distribution of JSD(Pexp(ri j )||Psim(ri j )) demonstrate that the
structural ensemble from the SP-CCM simulations is in near
quantitative agreement with the FISH data [Figs. S3(e) and
S3(f)].

IV. TAD STRUCTURES FROM SP-CCM SIMULATIONS

TADs are the average structures that appear predominantly
in conjunction with the formation of CTCF-cohesin loops

[44,46,47] on the scale starting from ∼500 kbps. To account
for TAD formation in the simulations, we not only increased
the resolution of the SP-CCM from 100 to 50 kb, but we also
included the structural elements for loops in a CCM polymer
chain. The loops are represented by bonding interactions be-
tween specific pairs of loci [Eq. (6)] that are identified as the
loop anchors with CTCF motifs from the Hi-C experiment
[44]. In Chr2 from the IMR90 cell line, there are 126 uniquely
detected loops with CTCF motifs (see Sec. VIII C for details).
The calculated value of the energetic parameters for Chr2,
at 50 kb resolution, are εAA = 2.30kBT , εBB = 2.10kBT , and
εAB = 1.74kBT , which also leads to χFH > 0. Note that the
interaction scales are smaller at the lower (100 relative to
50 kb) resolution, which follows from general arguments
given in Appendix A.

Figure 2 shows the results for TAD formation in the SP-
CCM simulations for the p-arm of Chr2. In a Hi-C contact
map, TADs appear as enrichment of contacts along the di-
agonal [46,47]. This feature is also prominent in the CM
calculated using the SP-CCM simulations [Fig. 2(a)]. To com-
pare the TADs between the simulation and Hi-C results, we

013010-4



FROM EFFECTIVE INTERACTIONS EXTRACTED USING … PRX LIFE 1, 013010 (2023)

(a)

(b) (c) (d)

FIG. 3. SP values reflect intrinsic energies of a chromosome. (a) Bar graph showing the SP energetic parameters calculated using 50-kb
resolution for individual IMR90 chromosomes. (b) Histogram of the effective Flory-Huggins [Eq. (1)] χ parameter computed from the
extracted energetic parameters, where the arrow indicates the data point for ChrX. (c) Scatter plot showing the correlation between the
maximum value of the energetic parameter for a given chromosome and the chromosome length along with a linear fit given by the dashed line.
The x-axis is shown in a log scale. (d) Probability distributions of the genomic distance for A-A (green) or B-B (purple) pairs in chromosomes
2 and 15, plotted in the top and bottom panels, respectively, where A/B sequence information of each chromosome is shown along with the
most probable but farthest interactions for A-A and B-B pairs.

determined the TAD boundaries using the insulation score
(IS), defined in Eq. (12), which quantifies the average num-
ber of interactions between the downstream and upstream
regions from a given locus. A small value of IS indicates
enhanced insulation around a given locus, so the associated
minima would indicate the TAD boundaries [48]. The profile
of IS and the corresponding TAD boundaries for the SP-CCM
simulations agree well with the Hi-C results (Fig. S4 [45]).
Although the simulations predict fewer TADs than expected
from Hi-C (78 versus 137), ∼94% of the predicted boundaries
are within 200 kb from those expected in the experimental
CM. The probability distribution of the length of the TAD,
LTAD, defined as the genomic distance between the inferred
boundaries, also yields quantitative agreement between the
simulations and the experiment, as indicated by the small JSD
value [∼0.08; Fig. 2(b)].

We also compare the simulation results with the FISH
experimental data for the three-dimensional characteristics of
the TADs. In Fig. 2(c), the mean DM exhibits the regions with
enhanced pair proximity, which are qualitatively similar to the
contact enrichment shown in the corresponding CM [Fig. 2(a),
right-hand side]. While the resolution of the experimental
data (250-kb resolution) is too low to perform an analysis
of individual TADs, we considered the structural features in
a 2-Mb region (Chr2: 63.85–65.85 Mb), which includes 3–4
TADs of A-type loci [Fig. 2(c), red box]. We computed the

distributions of the radius of the gyration, Rg, and the relative
shape anisotropy, κ2 [Eqs. (14) and (15)], which are displayed
in Fig. 2(d). Despite the minor difference in the widths of
the Rg distributions between the experiment and the SP-CCM
polymer simulations (standard deviation = 0.23 μm versus
0.07 μm), the median values are similar (0.45 μm versus
0.38 μm), and the JSD value is small (≈0.12). The calculated
and measured distributions of κ2 are in excellent agreement
with each other, with a JSD value ≈0.06. The nonzero value
of κ2 implies that these structures are anisotropic even though
they adopt globular structures on the whole. These compar-
isons show that the TAD structures predicted by the SP-CCM
simulations are in quantitative agreement with both Hi-C and
FISH experiments. It is worth emphasizing that the extent of
agreement is obtained without any adjustable parameter in the
polymer simulations, which only used the experimental CM as
input in the theory.

V. COMPARISON OF SP VALUES
FOR DISTINCT CHROMOSOMES

From the Hi-C data at 50-kb resolution [44], we calculated
the values of the single-chromosome SPs for all other chro-
mosomes from the IMR90 cell line (Table S1 [45]). The SP
values, ε (n)

αβ , depend on n, the chromosome number [Fig. 3(a)],
to a minor extent. The differences between εAA and εBB in all
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chromosomes are modest. In about nine chromosomes, εBB >

εAA, whereas in others the reverse holds. In addition to Chr2
and Chr21, we also performed polymer simulations for a few
other chromosomes using the calculated single-chromosome
SPs [Table S1, Fig. 3(a)]. The results in Fig. S5 [45] ensure
that the CMs for n = 5, 15, and X are accurately predicted
from the SP-CCM simulations of a single chromosome.

Using ε
(n)
αβ for all n, we calculated the effective Flory-

Huggins interaction parameter, χ
(n)
FH , defined as

χ
(n)
FH =

(
ε

(n)
AA + ε

(n)
BB

)/
2 − ε

(n)
AB

kBT
, (1)

which predicts the propensity of A and B type loci to
phase-separate. Figure 3(b) shows that the values of χ

(n)
FH are

narrowly distributed around a mean value, 0.45. The X chro-
mosome is a notable exception with χ

(X)
FH ≈ 0.06, which is

mainly due to the loss of A/B compartments in the inactive
X chromosome [44,49,50]. As pointed out above, χ

(n)
FH > 0

ensures that A and B loci would microphase separate, subject
only to the constraint of chain connectivity.

Figure 3(c) shows ε (n)
max = max[ε (n)

AA, ε
(n)
BB, ε

(n)
AB] as a func-

tion of the chromosome length, L(n)
chr, which is the difference

between the start and end positions of the Hi-C reads for
a given chromosome. There is a strong correlation between
the overall energy scale in the SP for each individual chro-
mosome and the logarithm of the length (Pearson correlation
coefficient = 0.96). The length dependence of the SP sug-
gests that there is a larger free energetic cost for a longer
chromosome to collapse into a compact configuration. If
we consider the contact between the start and end loci
for collapse, then �G1,N = −kBT ln[P(1, N )/Pref(1, N )] =
kBT ln N−3/2 + const, so |�G(n)

1,N | ∼ ln L(n)
chr. The proportion-

ality between the SP and the logarithm of the contour length
can also be demonstrated using homopolymer simulations
with different numbers of monomers [see Appendix B and
Fig. 6(a)]. The X chromosome is again an outlier from the
trend, as it has large energetic parameters compared to its
length. The relatively large value of ε

(X)
αβ should be attributed

to the formation of “super-loops” and “super-domains,” which
enhance the long-range contacts over 10–100 Mbs in the in-
active X chromosome [44,50,51].

The difference between ε
(n)
AA and ε

(n)
BB, which depends on the

chromosome number, can be understood by using a similar
argument to ε (n)

max ∝ ln L(n)
chr for the A-A and B-B locus pairs

along a given chromosome. That is, the overall scales of ε
(n)
AA

and ε
(n)
BB are determined by the contact free energies for the

A-A and B-B pairs separated by large genomic distances.
In Fig. 3(d), the distributions of the genomic distances for
A-A and B-B pairs, sAA and sBB, are compared between Chr2
and Chr15. For Chr2, the distributions of s(2)

AA and s(2)
BB are

close to each other, which implies A and B loci are similarly
positioned along the chromosome [Fig. 3(d), top]. Accord-
ingly, ε

(2)
AA and ε

(2)
BB have similar effective energies, while the

presence of A-A pairs at large distances leads to ε
(2)
AA � ε

(2)
BB.

On the other hand, these distributions for Chr15 are signif-
icantly different [Fig. 3(d), bottom]. The B loci are located
predominantly near the ends of the chromosome, whereas A
loci are inside, which yields a larger value of ε

(15)
BB relative

to ε
(15)
AA . Hence, ε

(n)
AA/ε

(n)
BB shows a better correlation with the

mean genomic distance ratio, s̄(n)
AA/s̄(n)

BB, than with the locus
number fraction, N (n)

A /N (n)
B (Fig. S6 [45]). We also demon-

strated the relationship between εAA/εBB and s̄AA/s̄BB, where
the SP values were inferred from a homopolymer contact map
with different A/B sequences assumed [see Appendix B and
Figs. 6(b)–6(d)].

For additional comparison, we also calculated the single-
chromosome SPs using the Hi-C CMs from the GM12878 cell
line [44]. The mean SP values for individual chromosomes,
ε

(n)
αβ , have a range of magnitudes similar to those for IMR90

chromosomes [Fig. S7(a) [45]]. Unlike the SPs for IMR90,
ε

(n)
AA is larger than ε

(n)
BB (ε̄AA/ε̄BB ≈ 1.2) [Fig. S7(b)], whereas

χ
(n)
FH shows a similar trend (χ̄FH = 0.46 ± 0.16) [Fig. S7(c)].

We confirm that SP values for GM12878 are also related
to the chromosome length and A/B sequence in the same
way as for IMR90 [Figs. S7(d) and S7(e)]. As such, the SP
can differentiate between the interaction scales for individual
chromosomes from distinct cell lines.

VI. SP-CCM SIMULATIONS FOR INVERTED NUCLEI

In typical interphase nuclei, gene-poor inactive heterochro-
matin (B-type) is localized on the nuclear periphery, whereas
gene-rich active euchromatin (A-type) tends to be located in
the interior of a nucleus [42]. The conventional picture for
the spatial arrangement of euchromatin and heterochromatin
is inverted in the mouse rod photoreceptor cells [52]—
heterochromatin loci are found at the center and euchromatin
loci are localized on the periphery [Fig. 4(a)]. The SP concept
used to extract interaction energies is general, and thus i.e., it
is applicable to any chromosome for which the Hi-C data are
available. We investigate if the SPs extracted for the inverted
nuclei yield results that characterize the experiments well
[28]. In particular, we calculated the interchromosome SPs
for use in polymer simulations of multiple chromosomes in
a nucleus.

Falk and co-workers surmised that the interactions involv-
ing pericentromeric heterochromatin [referred to as C-type;
see Fig. 4(b) and Secs. VIII G and VIII H] are predominant
in driving the spatial pattern in the inverted nuclei. Using
a search of all the parameter permutations (720 sets) in the
interaction parameter space, εAA, εBB, εCC, εAB, εAC, and εBC,
they obtained the set of six parameters that produces the
best agreement between their simulations and experimental
measurements [28]. Our calculations of the SPs for intra-
chromosome interactions from the Hi-C data for the inverted
nuclei show that ε

(n)
AA > ε

(n)
BB > ε

(n)
CC for each individual chro-

mosome [Figs. S8(a) and S8(b) [45]]. On the other hand,
when we calculated ε

(n,m)
αβ from the interchromosome CMs,

which is the mean value of the SP for the loci of types α and
β belonging to distinct chromosomes n and m, respectively
[Eqs. (17)–(19)], we found that ε

(n,m)
CC > ε

(n,m)
BB > ε

(n,m)
AA for

most pairs of distinct chromosomes [Fig. S8(c)]. The trend
in ε̄αβ [Eq. (21)], the SP values averaged over all distinct
chromosome pairs [Fig. 4(c)], is similar to that in the opti-
mized energy parameter set from Falk et al. (cf. Fig. 2d in
Ref. [28]). The values of ε̄αβ are roughly equal to the ones
estimated by Falk et al. with an offset (see Table I), which
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(a)

(e) (f)

(h) (i)

(g)

(b) (c) (d)

FIG. 4. Applications of SPs for inverted nuclei. (a) Schematic depictions of the conventional and inverted nuclei investigated by Falk
et al. [28], showing the different spatial patterns of subnuclear segregation among euchromatin (A), heterochromatin (B), and pericentromeric
heterochromatin (C). (b) Compartment types for each individual loci determined using the first principal component (PC1) from the Hi-C
CM (top). In polymer simulations, the first 20 Mb of each chromosome is assigned the C-type (center). The bottom panel shows a simulated
conformation for Chr2. (c) Bar graph showing the average of the interchromosome SP for each pair type. (d) Distributions of the relative radial
position for different locus types in the inverted nuclei, comparing the SP-CCM simulation results (solid lines) with the experimental data
(dotted lines). A cross section of the simulated inverted nucleus is shown at the top. (e) Comparison of the CM (Chr1 to Chr10) between the
Hi-C experiment (lower triangle) and the SP-CCM simulations (upper triangle). Gaussian smoothing with the standard deviation of the half
bin size (100 kb) was applied to the Hi-C CM to reduce noises. (f) Enlarged view of the black dotted square in panel (e), showing the Hi-C and
the simulated CMs for Chr2. (g) Enlarged view of the blue dotted squares in panel (e), showing the Hi-C (left) and the simulated (right) CMs
between Chr2 and Chr4. [(h),(i)] Pearson correlation matrices, corresponding to the CMs in panels (f) and (g).

is surprising because we used an entirely different method to
extract the effective energies. The comparison shows that it
is the relative effective interaction values that determine the
organization of chromosomes. Note that the difference be-
tween the energy scales for distinct pair types is small
as ∼0.05kBT . Using ε̄αβ , we obtain χ

(AB)
FH = [(ε̄AA +

TABLE I. Mean interchromosome SP values, ε̄αβ , for different
pair types in the inverted nuclei, which are compared with the op-
timal interaction parameters shown in Fig. 2d in Falk et al. [28].
ε̄αβ with an offset by 0.91kBT � ε̄S

CC − ε̄F
CC [ε̄S

CC is the value from
Fig. 4(c), and ε̄F

CC is the best fit value reported in in Falk et al. [28]]
is in good agreement with the parameter values from Falk et al.

αβ AA AB AC BB BC CC

ε̄αβ/kBT 0.946 0.873 0.922 1.030 1.081 1.144
(Falk et al.) 0.048 0.048 0.073 0.123 0.170 0.220
ε̄αβ/kBT − 0.91 0.036 −0.037 0.012 0.120 0.171 0.234

ε̄BB)/2 − ε̄AB]/kBT = 0.12 and χ
(AC)
FH = [(ε̄AA + ε̄CC)/2 −

ε̄AC]/kBT = 0.12, which predicts the microphase separation
between euchromatin (A) and heterochromatin (B and C). On
the other hand, χ (BC)

FH = [(ε̄BB + ε̄CC)/2 − ε̄BC]/kBT = 0.006,
which is close to a typical value of Flory-Huggins χ for
polymer blends [53], which suggests that there ought to be
less prominent segregation between the B and C loci.

Using ε̄αβ for the interaction parameters, we performed
SP-CCM simulations by confining 20 different chromosomes
to a sphere to mimic the rod cell nucleus (see Sec. VIII H for
details). Remarkably, without any parameter adjustments, our
simulations accurately capture the trends in the distributions
of relative radial position, r/R0, obtained from the FISH ex-
periment [52], where r is the distance of a given locus from
the nuclear center and R0 is the nuclear radius [Fig. 4(d)].
Our polymer simulations show that the euchromatin is on
the periphery and heterochromatin is predominantly in the
interior, which is a key characteristic of inverted nuclei
that differentiates them from conventional nuclei. We also
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verified that individual chromosomes in the simulated nu-
cleus exhibit the structures consistent with the Hi-C data
[Fig. 4(e)]. Figure 4(f) shows that the CM for Chr2 calcu-
lated from polymer simulations is in good agreement with the
Hi-C inferred CM. In Fig. 4(g), the similar extent of visual
agreement holds for the interchromosome CM between Chr2
and Chr4. The corresponding Pearson correlation matrices
[Figs. 4(h) and 4(i)] show that the compartment formation
is in excellent agreement between the simulation results and
the Hi-C data [Fig. S8(d)]. We compared the distributions
for the Pearson coefficients from the simulations and the
Hi-C, using the JSD between the distributions [Figs. S8(e)–
S8(g)]. The small JSD values (JSD = 0.061) confirm the
near quantitative agreement for the microphase separated
chromosome organizations between the simulations and the
experiments.

VII. DISCUSSION

We demonstrated that the effective interaction energies
between locus pairs are heterogeneous and differ depend-
ing on the pair type (A-A, B-B, or A-B). Without tweaking
any parameters, the calculated SP values averaged over each
pair type, εAA, εBB, and εAB, automatically satisfy χFH =
[(εAA + εBB)/2 − εAB]/kBT > 0, which readily accounts for
the microphase separation between A and B loci in inter-
phase chromosomes. The use of the mean SP values in the
polymer simulations generates the structural ensemble with
A/B compartmentalization, which is in very good agreement
with both Hi-C and FISH results. The SP-CCM simulations
at a sufficiently high resolution (e.g., higher than 50 kb) also
resolve the TAD structures.

Surprisingly, the SP theory faithfully captures the intrin-
sic differences in the interchromosome interactions in the
inverted nuclei. Polymer simulations for multiple chromo-
somes, with the interchromosome SPs, predict the observed
chromosome organizations in the inverted nuclei accurately.
We find it remarkable that using only the measured CM and
with no adjustable parameters in the simulations, we can
nearly quantitatively describe the 3D structures of both the
interphase chromosomes and those found in inverted nuclei.

Because the SP concept is general, it can be expanded and
applied to other experimental data, such as super-resolution
DNA FISH [43,54–58], Micro-C [59,60], GAM [61], and
SPRITE [62]. Although the values of the calculated energy
scales may differ depending on the experiment and resolu-
tion, the qualitative features should be conserved for a given
system. For instance, the SPs based on the FISH data for
the IMR90 Chr2 (see Appendix C and Fig. 7) show qualita-
tively the same trend as those inferred from the corresponding
Hi-C data [Fig. 1(a)], that is, �GAA � �GBB < �GAB. Our
method based on the SP should serve as a guiding basis for
characterizing the effective interaction scales encoded in ex-
perimental results on chromosome structures. In conjunction
with polymer simulations, they provide a method for calculat-
ing chromosome dynamics as well.

After our work was completed, we became aware of a
manuscript by Schuette, Ding, and Zhang (SDZ) [63]. They
also introduced an algorithm that converts Hi-C data into
contact interaction energies between genomic loci without

resorting to an iterative fitting procedure. Although the for-
malism used by SDZ is different from the SP, their method
also extracts contact energies by separating the energetic con-
tributions from the entropic effects arising due to polymer
topology.

VIII. METHODS

A. Statistical potential for a single interphase chromosome

We calculated the statistical potential (SP) between dis-
tinct, nonadjacent loci i and j (i.e., |i − j| � 2) on a single
chromosome by using

�Gi j = −kBT ln

[
Pexp(i, j)

Pref(i, j)

]
, (2)

where Pexp(i, j) and Pref(i, j) are the measured contact prob-
abilities for the pair (i, j) in a Hi-C experiment and in
a reference system, respectively. We consider an ideal ho-
mopolymer as the reference system for which Pref(i, j) ≈
|i − j|−3/2. For an ideal polymer, the distribution of the vector,
ri j , connecting i to j, pref(ri j ), is a Gaussian. The contact
probability is given by Pref(i, j) ∼ ∫

|ri j |<rc
pref(ri j )dri j (rc is

the threshold distance for establishment of a contact), which
for an ideal chain yields the desired result (see, for example,
[64] for details). With this choice, �Gi j specifies the effective
interaction for the contact pair, which excludes the free energy
cost associated with the entropic contribution from the poly-
mer backbone. For Pexp(i, j), the intrachromosome contact
matrix, C, from a Hi-C experiment is converted to a probabil-
ity matrix using Pexp(i, j) = max[1,C(i, j)/N ], where N is
a normalization factor. We choose N to be the mean value of
the diagonal entries of the contact matrix, because a diagonal
entry is the contact frequency for the genomic points that
are almost always in contact at a given resolution and thus
expected to have nearly unit contact probability.

In the calculation of the SPs for globular proteins, it is
known that the choice of the reference system is impor-
tant [6,7]. The choice of the reference system for proteins
and RNA may be assessed only by comparing predictions
based on folding simulations using the knowledge-based po-
tentials to experimental data. We follow a similar procedure
here, and demonstrate that the ideal polymer is a reasonable
choice.

B. Chromosome copolymer model (CCM)

To demonstrate the efficacy of the knowledge-based po-
tential, calculated using Eq. (2), we performed polymer
simulations using the CCM [25]. A chromosome is modeled
as a flexible self-avoiding copolymer chain with two locus
types, A and B, representing euchromatin and heterochro-
matin, respectively. Each monomer corresponds to a region of
the genomic DNA binned at a given resolution (e.g., 10, 50,
100 kbps, etc.). The locus type is determined using the proce-
dure described below. The interactions involving the bonded
and nonbonded pairs are described by the finite extensible
nonlinear elastic (FENE) [65,66] and the Lennard-Jones (LJ)
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potentials, respectively, which are given by

ub(r) = −1

2
KSb2

max ln

(
1 − r2

b2
max

)
+ uWCA(r) (3)

and

unb(r|ε, σ ) = 4ε

[(
σ

r

)12

−
(

σ

r

)6
]
, (4)

where KS is the FENE spring constant, bmax is the maximum
bond length, ε is the depth of the nonbonding potential well,
and σ is the diameter of a locus. In Eq. (3), the excluded
volume interaction between bonded loci is represented by the
Weeks-Chandler-Anderson (WCA) potential [67], given by

uWCA(r) = [unb(r|εb, σ ) + εb]
(r∗
LJ − r), (5)

where 
(x) is the Heaviside step function such that 
(x) = 1
if x > 0 and 
(x) = 0 if x � 0. The WCA potential uWCA(r)
is the repulsive tail of the LJ potential, which is shifted and
truncated at r∗

LJ = 21/6σ , which makes it decay to 0 smoothly
[unb(r|εb, σ ) at the minimum at r∗

LJ]. For the CTCF-mediated
loops, we used a harmonic potential between loop-anchoring
loci identified in the Hi-C experiment [44], defined as

uloop(r) = KL(r − a)2, (6)

where KL is the harmonic spring constant and a is the equilib-
rium bond length between the pair of loop anchors. Thus, the
total potential energy of the CCM polymer chain with N loci
is given by

U (rN ) =
N−1∑
i=1

ub(ri,i+1) +
N−2∑
i=1

N∑
j=i+2

unb(ri, j |εν(i)ν( j), σ )

+
∑
{p,q}

uloop(rp,q), (7)

where rN = {r1, . . . , rN } is the set of positions of all the loci,
ri, j = |ri − r j | is the distance between the ith and jth loci, and
{p, q} is the set of indices for the loop anchors. In the second
summation term in Eq. (7), ν(i) = A or B, so there are three
interaction parameters, εAA, εBB, and εAB, which set the depths
of the attractive pairwise potential wells for given pair types.
We take the diameter for A and B type loci to be identical.

In the previous study [25], we assumed that εAA= εBB= ε,
and we performed a single-parameter search with the con-
straint that χFH = ε − εAB > 0, which ensures that A and
B loci undergo microphase separation, a procedure that was
adopted recently [28]. In the present study, the interaction
parameters are calculated using Eq. (2) with an experimentally
measured contact map as the sole input. More precisely, we
performed an average of the calculated SPs over a given pair
type,

εαβ = −�Gαβ = −
∑N−2

i=1

∑N
j=i+2 �Gi jδν(i)αδν( j)β∑N−2

i=1

∑N
j=i+2 δν(i)αδν( j)β

, (8)

where α, β = A or B, and δi j is the Kronecker delta (i.e.,
δi j = 1 if i = j, or 0 otherwise). The use of δν(i)α and δν( j)β

in Eq. (8) ensures that the summation includes the locus
pairs of given type only. Because we use the Hi-C data at
face value, there are no adjustable parameters in the energy

function. Therefore, unlike other physical models that require
parameters tuned to fit the contact map (CM), our SP theory
and polymer simulations operate without the need for such
fitting procedures.

Although we employed the copolymer model whose locus
identity is binary, our method may be readily expanded to
polymer models with multiple epigenetic states that could
reflect more detailed genetic activities [19,24]. In other words,
Eq. (8) could be used to define the energetic parameters for
effective interactions between locus pairs with arbitrarily as-
signed epigenetic states.

C. Simulation details for the single-chromosome SP-CCM

To sample the conformations of the CCM for a specific
chromosome, using the effective pair interaction energies
extracted from the CM, we performed Langevin dynamics
simulations by integrating the equation of motion,

mr̈i + ζ ṙi = − ∂

∂ri
U (r1, . . . , rN ) + Ri(t ), (9)

where m is the mass of a locus and ζ is the friction coeffi-
cient. The Gaussian random force, Ri(t ), mimicking thermal
fluctuations, has the mean, 〈Ri(t )〉 = 0, and the variance,
〈Ri(t ) · R j (t ′)〉 = 6kBT ζ δi jδ(t − t ′). For the structural pa-
rameters in the energy function, U [Eq. (7)], we set KS =
30kBT/σ 2, bmax = 1.5σ , εb = 1.0kBT , KL = 300kBT/σ 2, and
a = 1.13σ , which are similar to the values used in previ-
ous studies [25,66,68]. The interaction parameters, εAA, εBB,
and εAB, were determined from the mean value of �Gi j

for each locus pair type [see Eq. (8)]. The loop anchors
were determined using the locations of CTCF loops identi-
fied by Rao et al. [44]. We only took the loops with CTCF
motifs “uniquely” called at both the anchors. For the Chr2
simulations, whose results are shown in Fig. 1, we did not
include CTCF loop anchors in order to focus on the A/B
compartmentalization.

All the simulations were carried out in the reduced units
(m = σ = kB = T = 1), using the LAMMPS molecular dy-
namics program [69]. We chose the integration time step as
�tL = 0.01 in units of τL =

√
mσ 2/kBT . The simulation tem-

perature, T = 1, which corresponds to room temperature in
reduced units, was maintained using the Langevin thermostat.
Each trajectory starts from a random configuration corre-
sponding to a self-avoiding walk polymer, which is relaxed
for 107–108 steps (varied depending on N) after which we
find that the total energy and the radius of gyration fluctuate
around plateau values. Subsequently, we propagate the sys-
tem for additional 107–108 steps from which we chose 104

conformations that are equally spaced along the production
run. To obtain an ensemble-averaged CM, a minimum of 20
independent trajectories were generated.

D. Identification of compartment types

From the experimental CM, the compartment (A or B)
type of a given locus is determined by the standard procedure
[18]. We first define a normalized contact matrix, C∗, whose
elements are the observed contact frequency divided by the
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expected value at given genomic distance such that

C∗(i, j) = (N − |i − j|)C(i, j)∑N
k=1

∑N
l�k+1 C(k, l )δ|k−l|,|i− j|

, (10)

where the sum is taken over all the locus pairs. The normalized
contact matrix is then converted to the Pearson correlation
matrix, ρ(i, j), which is the normalized covariance between
two row vectors,

ρ(i, j) = cov(C∗
i ,C∗

j )

[cov(C∗
i ,C∗

i ) cov(C∗
j ,C∗

j )]1/2
. (11)

Then we performed the principal component analysis (PCA)
on ρ(i, j). The sign (positive or negative) of each element in
the first eigenvector indicates the compartment type of the
corresponding locus [see Fig. 4(b)]. By comparing the PCA
vector with specific histone marker tracks (e.g., H3K4me3
or H3K4me1 for active, H3K27me3 for inactive) for the ref-
erence human genomes [70,71], we determine the sign that
corresponds to A or B type (active or inactive). In the present
study, the resulting compartment types of individual loci are
used as the locus type, ν(i), for the CCM simulations. Ac-
cording to the ChIP-seq data for IMR90 [72], the fractions
of nucleosomes with active modification marks in the PCA-
derived A and B type loci in Chr2 are estimated as 0.70
(±0.18) and 0.40 (±0.20), respectively, at 50-kb resolution.
Thus, the difference among A-A, B-B, and A-B pair interac-
tion energies should reflect the different extent of chemical
modifications in each locus type.

In principle, the locus types could also be determined
directly from the histone modification data [25]. It was pre-
viously shown that copolymer simulations using the locus
identities based on histone markers faithfully capture the com-
partments observed in the contact maps in Hi-C data [25].
The use of such detailed chemical identities may be needed
to characterize the interactions between the gene regulatory
elements at the sub-TAD length scale.

E. TAD analysis

Given a contact matrix C, the insulation score for the nth
locus is given by

IS(n) = 1

w2

w∑
i=1

w∑
j=1

C(n − i, n + j), (12)

where w is the number of loci across which the contact
frequencies are averaged. We used w = 10 at 50-kb resolu-
tion. In other words, the upstream and downstream regions of
500 kbs are considered. The computation of the insulation
profile can be visualized by sliding a square of width w along
the diagonal of the CM over which the contact frequencies
are averaged [48]. The first and last w bins are not assigned
any IS, as the insulation square would go beyond the given
chromosome region. The local minima of the calculated IS
profile correspond to the boundary positions of TADs, as a
small value of IS indicates a region insulated from the contacts
with neighboring regions.

For an identified TAD region, we calculated the radius of
gyration, Rg, and the relative shape anisotropy, κ2 [Fig. 2(d)].
These quantities are determined from the gyration tensor,

defined by

Sαβ = 1

N (θ )

N (θ )∑
i∈θ

(
rα

i − rα
cm

)(
rβ

i − rβ
cm

)
, (13)

where θ is a given TAD region having N (θ ) loci, rcm is the
position of the center of mass, and α, β = x, y, or z so the
superscripts on positions specify the three-dimensional coor-
dinates. Rg and κ2 are defined in terms of the eigenvalues of
the gyration tensor, λα , as

Rg = (λx + λy + λz )1/2 (14)

and

κ2 = 3
(
λ2

x + λ2
y + λ2

z

)
2R4

g

− 1

2
, (15)

respectively.

F. Jensen-Shannon divergence

The Jensen-Shannon divergence (JSD) between two prob-
ability distributions, P1(x) and P2(x), is defined as

JSD(P1||P2) = 1

2

∫
dx

2∑
i=1

Pi(x) log2

[
Pi(x)

PM(x)

]
, (16)

where PM(x) = [P1(x) + P2(x)]/2. The value of JSD is zero
for P1(x) = P2(x), and it is unity if the distributions do not
have any overlap, i.e.,

∫
P1(x)P2(x)dx = 0. For instance, if

P1(x) and P2(x) are Gaussian distributions with identical vari-
ance σ 2

s but different means, μ1 and μ2, then JSD(P1||P2) ≈
0.16 for |μ1 − μ2| = σs and JSD(P1||P2) ≈ 0.40 for |μ1 −
μ2| = 2σs. If P1(x) and P2(x) have an identical mean but their
standard deviations differ by a factor of 2 (σs,1 = 2σs,2), then
JSD(P1||P2) ≈ 0.13.

G. SPs for interchromosome interactions

The effective energy scales for interchromosome inter-
actions may also be calculated using the SP theory. By
generalizing Eq. (2), we define the SP between the ith and
jth loci belonging to chromosomes n and m, respectively, as

�G(n,m)
i j = −kBT ln

[
Pexp(i, j|n, m)

Pref(i, j|n, m)

]
, (17)

where Pexp(i, j|n, m) is the interchromosome contact proba-
bility for the pair i and j, inferred from a Hi-C experiment. For
the reference contact probability, Pref(i, j|n, m), we take the
average contact probability over all the interchromosome lo-
cus pairs by assuming that chromosomes can intermingle with
one another in the reference system. We define Pref(i, j|n, m)
using

Pref(i, j|n, m) = 2

M(M − 1)

M−1∑
n=1

M∑
m=n+1

P̄(n,m)
exp , (18)

where M is the total number of chromosomes (e.g.,
M = 23 for human and M = 20 for mouse) and P̄(n,m)

exp =
1

N (n)N (m)

∑N (n)

i=1

∑N (m)

j=1 Pexp(i, j|n, m) is the average contact prob-
ability for the locus pairs between chromosomes n and m,
which have N (n) and N (m) loci, respectively. The mean value
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of the SP for the locus types α and β, in a given chromosome
pair, is computed using

ε
(n,m)
αβ = −

∑N (n)

i=1

∑N (m)

j=1 �G(n,m)
i j (δν(i)αδν( j)β + δν(i)βδν( j)α )

N (n)
α N (m)

β + N (n)
β N (m)

α

,

(19)
where N (n)

α and N (m)
β are the numbers of loci with types α and

β in chromosomes n and m, respectively.
Following Falk et al. [28], we assigned the compartment

types A, B, or C to individual chromosome loci binned at
200-kb resolution for the mouse rod cell. In each chromo-
some, the A and B types for euchromatin and heterochromatin
were determined using the same procedure as described
above. The B type loci in the first 20 Mb were classified as the
C type for pericentromeric heterochromatin [see Fig. 4(b)].

Based on the locus types, we obtained ε
(n,m)
αβ for α, β = A, B,

or C, whose distribution is shown in Fig. S8(c).

H. Polymer simulations for an inverted nucleus

We prepared a system with 20 polymer chains, which
model chromosomes 1 to X from a mouse rod cell at 200-kb
resolution. There are 13203 loci in total, whose types are
determined as described above. In each chromosome, the first
20 Mb is collectively redefined as the C-type loci which forms
the chromocenter involving centromeres and pericentromeric
heterochromatin [Fig. 4(b)], so there are 2000 C-type loci
∼15% of the entire system (cf. 16% that was assigned the C
loci in [28]). The diameters (σ ’s) for the A, B, and C type loci
are identical. The potential energy for the multichain system
is

Umulti
(
rN (1)

, . . . , rN (M )) =
M∑

n=1

U (n)
intra

(
rN (n)) +

M−1∑
n=1

M∑
m=n+1

U (n,m)
inter

(
rN (n)

, rN (m)) +
M∑

n=1

U (n)
conf

(
rN (n))

=
M∑

n=1

⎡
⎣N (n)−1∑

i=1

ub
(
r (n,n)

i,i+1

) +
N (n)−2∑

i=1

N (n)∑
j=i+2

unb
(
r (n,n)

i, j

∣∣ε (n)
ν(i)ν( j), σ

)⎤⎦

+
M−1∑
n=1

M∑
m=n+1

N (n)∑
i=1

N (m)∑
j=1

unb
(
r (n,m)

i, j

∣∣ε (n,m)
ν(i)ν( j), σ

) +
M∑

n=1

N (n)∑
i=1

uWCA

(
R0 + r∗

LJ

2
− ∣∣r(n)

i

∣∣), (20)

where rN (n) = {r1, . . . , rN (n)} are the positions of all the loci in
the nth chromosome, and r (n,m)

i, j = |r(n)
i − r(m)

j | is the distance
between the ith and jth loci in chromosomes n and m, respec-
tively. In Eq. (20), the last summation accounts for spherical
confinement, centered at the origin with radius R0, which
mimics the nuclear boundary. Following Falk et al. [28], we
assumed that the interaction parameters for both intra- and
interchromosome pairs are given by

ε̄αβ = 2

M(M − 1)

M−1∑
n=1

M∑
m=n+1

ε
(n,m)
αβ . (21)

In other words, ε
(n)
αβ = ε

(n,m)
αβ = ε̄αβ for all n and m. In some

instances, it is important to distinguish between intra- and
interchromosome interactions in order to capture the relative
positions of chromosomes and the chromosome territories
[30]. Nevertheless, the nondiscrimination between intra- and
interchromosome interactions is a reasonable assumption for
simulating the inverted nuclei because the interchromosome
contacts are higher in mouse rod cells than in other cell types
[28]. In recent studies [36,37], whole-genome polymer sim-
ulations yielded the interchromosome CMs that are in good
agreement with the Hi-C data, even without differentiating
between inter- and intrachromosome ones.

The simulations were performed using the same reduced
units as in the single-chromosome simulations. The CCM
chains were initially placed on a square lattice such that they
were equally spaced from one another (by 2σ ) in the lin-
early extended configurations. The chains were relaxed to a
collapsed state using the Langevin thermostat. The collapsed

polymer chains were then equilibrated for 5 × 107�tL under
spherical confinement with R0 = 15σ , which ensures that the
volume density is similar to that for the mouse rod cell nucleus
with σ ≈ 0.125 μm (the nuclear diameter of a mouse rod
cell is ≈4.8 μm so the rod cell chromosomes are more com-
pact than the human IMR90 chromosomes). The equilibrated
system was propagated for an additional 5 × 107�tL from
which 104 conformations were sampled along the production
run. We generated 50 independent trajectories to obtain the
statistics for the radial distributions and the contact map that
are shown in Figs. 4(d) and 4(e).

I. Analysis for interchromosomal CMs

For quantitative comparison of the compartment patterns
between the Hi-C and the simulated interchromosome CMs,
we calculated the correlation matrix for all the genomic region
of our interest (Chr1 to Chr10, as shown in Figs. 4(e) and
S8(d)]. We first rescaled the normalized contact matrix, C(n)∗,
defined for chromosome n [Eq. (10)], by the mean interchro-
mosome contacts,

C̃(n)∗(i, j) = C(n)∗(i, j)

C(n)∗(M − 1)

M∑
k �=n

C̄(n,k), (22)

where C(n)∗ is the mean value of all the elements in C(n)∗, and
C̄(n,k) is the mean contact frequency in the interchromosomal
CM, C(n,k) (from either Hi-C or simulations), between chro-
mosomes n and k. The rescaling removes statistical bias in the
intrachromosomal CM for a given chromosome relative to the
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contacts with other chromosomes. Hence, the normalized and
rescaled CM for the entire genomic region can be written as
the following block matrix form:

C̃∗ =

⎡
⎢⎢⎢⎢⎣

C̃(1)∗ C(1,2) · · · C(1,M )

C(2,1) C̃(2)∗ · · · C(2,M )

...
...

. . .
...

C(M,1) C(M,2) · · · C̃(M )∗

⎤
⎥⎥⎥⎥⎦. (23)

This matrix is then converted to the Pearson correlation
matrix, ρ(i, j), as defined in Eq. (11). For the Hi-C data,
Gaussian smoothing with the standard deviation of the bin size
(200 kb) was applied to C̃∗ before computing the correlation
matrix.
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APPENDIX A: INTERACTION PARAMETERS
DEPEND ON RESOLUTION OF THE CM

In the main text, we showed that the absolute values of the
extracted interaction parameters between the loci increases as
the resolution of the Hi-C CM map increases. We can account
for this result using a simple theoretical calculation. Consider
two spherical particles, each with diameter σ , interacting
through a square-well potential defined by

uσ (r) =
⎧⎨
⎩

∞, r < σ,

−εσ , σ < r < R + σ,

0, r > R + σ,

(A1)

where R and εσ are the width and depth of the well, respec-
tively. Such a short-ranged contact potential could be used
to approximate the LJ interactions used for the nonbonding
interactions in the polymer simulations (see Fig. 5). If we set

FIG. 5. Plot of the square well potential, uσ (r), defined in
Eq. (A1), with R = σ . The dashed line shows the LJ potential,
unb(r|εσ , σ ), for comparison.

R = σ , then the collapse of a polymer chain of the interacting
particles depends solely on εσ , at a given temperature and
pressure (or density). The analytic expression for the second
virial coefficient for the potential in Eq. (A1) is given by

Bσ
2 = 1

2

∫
dr

[
1 − e−uσ (r)/kBT

] = 2πσ 3

3

(
7eεσ /kBT − 8

)
.

(A2)

Now, consider another polymer chain whose monomer has
the diameter σ ′ > σ and interacts with one another through
the contact potential, uσ ′ (r). If this polymer chain collapses
to the same extent as the chain with σ , then a minimum
requirement is that the second virial coefficients, Bσ

2 and Bσ ′
2 ,

should be equal. In principle, we should equate the partition
function of the two chains, Z (σ, εσ ) = Z (σ ′, εσ ′ ). But for our
purposes, equating Bσ

2 = Bσ ′
2 suffices. This is a naive type of

renormalization, which ensures that the global properties of
the chain (Rg for instance) be invariant under a scale change.
By equating the two coefficients and rearranging the terms,
we obtain (

σ ′

σ

)3

= 7eεσ /kBT − 8

7eεσ ′ /kBT − 8
> 1. (A3)

It follows from Eq. (A3) that εσ ′ < εσ for σ ′ > σ . Therefore,
if a self-interacting polymer is coarse-grained at a lower res-
olution, the energy parameter should be reduced in order that
the polymer captures the equivalent scaling behavior.

We also performed simulations to demonstrate the validity
of the above argument numerically. We considered a collapsed
homopolymer chain with N monomers in a poor solvent
and a coarse-grained chain scaled by λ, which has Ñ = N/λ

monomers. Upon coarse-graining, the mass and the diameter
scale as m̃ = λm and σ̃ = λ1/3σ , respectively. The functional
form of the potential energy in Eq. (B1) remains the same.
However, σ̃ and ε̃nb would change to ensure that Eq. (A3) is
satisfied. The bond length is increased by a factor of σ̃ /σ =
λ1/3 (b̃max = λ1/3bmax), and the bond coefficient is rescaled
as K̃S = 30kBT/σ̃ 2 = λ−2/3KS. In the homopolymer simula-
tions, we took N = 2400 and λ = 2, resulting in Ñ = 1200.
We performed simulations using εnb � 1kBT , which ensures
that the polymer is collapsed (εnb ≈ 0.3kBT is a theta condi-
tion leading to B2 ≈ 0 [73]). We calculated the coarse-grained
value of ε̃nb parameter using

ε̃nb = kBT ln

[
1

λ
eεnb/kBT + 8

7

(
1 − 1

λ

)]
, (A4)

which is obtained by rearranging Eq. (A3). The values of εnb

and ε̃nb used for the simulations are listed in Table II. We
compared the values of Rg between the original and coarse-
grained chains (Table II). The near invariance of Rg upon the
renormalization becomes increasingly accurate as the extent
of compaction increases (larger εnb). Therefore, the depen-
dence of the extracted values of the SPs on the Hi-C resolution
follows from the renormalization procedure.

APPENDIX B: SP FOR HOMOPOLYMERS
DEPENDS ON LENGTH AND SEQUENCE

We tested the relationship between the mean SP value and
the chromosome length, shown in Fig. 3(c), using simulations
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TABLE II. List of the nonbonding interaction parameters, εnb

and ε̃nb [Eq. (A4)], used for the simulations of a homopoly-
mer (N = 2400) and the coarse-grained chain with λ = 2 (Ñ =
1200). The radius of gyration, Rg, computed from each simula-
tion is given along with the relative error, defined by [Rg(Ñ, ε̃nb) −
Rg(N, εnb)]/Rg(N, εnb). Given that in calculating the renormalized
ε̃nb, we approximated the LJ potential by a square well potential, the
error is relatively small.

εnb/kBT ε̃nb/kBT Rg(N, εnb)/σ Rg(Ñ, ε̃nb)/σ error (%)

1.00 0.66 6.71 ± 0.02 7.19 ± 0.06 7.0
1.50 1.03 6.48 ± 0.01 6.72 ± 0.03 3.6
2.00 1.45 6.37 ± 0.01 6.51 ± 0.02 2.2

of a single homopolymer with chain length, N = 500, 1000,
1500, 2000, and 2500. The potential energy function of the
polymer chain is given by

Uhomo(rN ) =
N−1∑
i=1

ub(ri,i+1) +
N−2∑
i=1

N∑
j=i+2

unb(ri, j |εnb, σ ), (B1)

where ub(r) and unb(r|ε, σ ) are the bonding and nonbonding
potentials, respectively [see Eqs. (3) and (4)]. The parameter,
εnb, was set to 1kBT , which is sufficient to induce collapse
of the polymer chain into a globule. The simulations were

performed using the same conditions and procedure as de-
scribed in Sec. VIII C. For each N , we constructed the CM
using 10 independent trajectories. Then, we calculated the SP,
�Gi j (N ), using Eq. (2), where the simulated CM was used as
the input data for Pexp(i, j). Figure 6(a) shows that the mean
value of the SP, ε(N ) = − 2

(N−1)(N−2)

∑N−2
i=1

∑N
j=i+2 �Gi j (N ),

is exactly proportional to the logarithm of the chain length, N
(Pearson correlation coefficient = 1.00).

We also used the homopolymer CM to test the relationship
between the mean SP value and the sequence. We paint a
certain region of the polymer chain in green and designate
the monomers in that region as A. Similarly, the purple region
corresponds to monomer type B. Thus, a sequence is specified
by blocks of green (A) and purple (B). Note that the bare
interaction (εnb) between the A and B monomers is identical.
Then, using Eqs. (2) and (8) with the homopolymer CM as
the input for Pexp(i, j), we calculated the SPs corresponding
to the A-A and B-B pairs in the polymer chain for a given
sequence [see Fig. 6(b)]. The resulting SP values are used to
demonstrate how the relative scale between A-A and B-B in-
teractions depends on the underlying sequence. The regions in
the input CM, supposed to be of A-B pairs, are not included in
calculating the SPs [Fig. 6(b)]. We considered eight sequences
with NA = NB, as shown in Fig. 6(c). In Fig. 6(d), the ratio
between the mean SP values for A-A and B-B interactions,

(a)

(c) (d)

(b)

FIG. 6. Relationship between the mean SP value and chromosome length/sequence, obtained using homopolymer simulations. (a) Plot
of the mean SP, ε(N ), computed from the contact map of a homopolymer, versus the number of monomers, N . The x-axis is in a log scale.
(b) Extraction of εAA and εBB from the homopolymer CM. Based on a supposed A/B (green/purple) sequence, the CM regions corresponding
to the A-A and B-B pairs are used to calculate εAA and εBB. The shaded regions corresponding to the A-B pairs are disregarded. (c) Various
A/B sequences used to calculate εAA and εBB from the homopolymer CM. (d) Plot of the ratio, εAA/εBB, for the sequences shown in panel (c),
against the ratio of average distance along the contour [genomic distance; see Eq. (B2)] for A-A pairs to that for B-B pairs. The x-axis is shown
in a log scale.
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FIG. 7. SPs based on the FISH data. From the 3D coordinates of chromosome loci determined in the FISH imaging experiments [43] (left),
the SPs can be calculated for individual locus pairs (center) as well as for a given pair type (right).

εAA/εBB, is compared with the ratio between the average
genomic pair distances along the chain contour, s̄AA/s̄BB, for
various sequences, where

s̄αβ =
∑N−1

i=1

∑N
j=i+1( j − i)δν(i)αδν( j)β∑N−1

i=1

∑N
j=i+1 δν(i)αδν( j)β

. (B2)

Our analysis confirms that the ratio, εAA/εBB, is strongly
correlated with ln(s̄AA/s̄BB) (Pearson correlation coefficient
= 0.98). It is worth noting that because of chain connec-
tivity εAA/εBB depends on the sequence characterized by
ln(s̄AA/s̄BB). Deviation of εAA/εBB from unity arises due to
entropic repulsion between the two designated monomer types
due to chain connectivity.

APPENDIX C: INFERRING SPs FROM FISH DATA

Super-resolution DNA FISH experiments [43,56] provide
a set of three-dimensional coordinates of chromosome loci, at
the single cell level, from which the probability distributions
of the locus pair distances, P(ri j ), can be calculated. Using the
pair distance distributions, we define the distance-dependent
SP for a given locus pair [4],

�G(ri j ) = −kBT ln
P(ri j )

Q(ri j )
, (C1)

where Q(ri j ) is the probability density distribution of the
pair distance, ri j , for a reference system. Due to the poly-
meric nature of the chromosomes, we consider the Rouse
chain (an ideal chain) or polymer in a good solvent (a self-
avoiding chain) as appropriate reference systems. Previously,
we showed that the Rouse chain with internal constraints
represents the pair distance distributions from the FISH exper-
iments quantitatively [74]. For Q(ri j ), we used the Redner–des
Cloizeaux distribution [75,76], given by

Q(r) = A(r/μ)2+g exp ( − B(r/μ)δ ), (C2)

where μ is the mean distance, g is the “correlation hole”
exponent, and δ is related to the Flory exponent ν by δ =
1/(1 − ν). For the Rouse chain, g = 0 and δ = 2. For a poly-
mer in a good solvent, g = 0.71 and δ = 5/2 [77]. In Eq. (C2),
A and B are constants, which are determined using the follow-
ing conditions: (i) Q(r) is normalized,

∫ ∞
0 drQ(r) = 1, and

(ii) the first moment should equal μ, that is,
∫ ∞

0 dr rQ(r) = μ.
With the two constraints, we obtain

A = δ

μ

�3+g((4 + g)/δ)

�4+g((3 + g)/δ)
, (C3)

B = �δ ((4 + g)/δ)

�δ ((3 + g)/δ)
, (C4)

where �(·) is the gamma function. Hence, the reference dis-
tribution Q(ri j ) is fully determined by δ, g, and μ = 〈ri j〉.

One way of determining the SPs for the contact pair inter-
actions is to take the value of �G(ri j ) at ri j = rc, which is
the characteristic distance for contact. On the other hand, as
in the definition of Eq. (2), we can evaluate the pair contact
probabilities by integrating P(ri j ) and Q(ri j ),

�GFISH
i j = −kBT ln

∫ rc

0 dri jP(ri j )∫ rc

0 dri jQ(ri j )
. (C5)

We used rc = 0.5μm for the proximity criterion, which gives
the highest correlation between the FISH-proximity frequency
map and the Hi-C contact map [43]. The results for the IMR90
Chr2 based on Eq. (C5), with the Rouse chain as the reference,
are shown in Fig. 7. The mean SP values are much smaller
than those extracted from the Hi-C data (εmax = 0.25kBT ver-
sus 2.30kBT ). The corresponding χFH is also smaller (0.13
versus 0.46), implying that the structures determined from
the imaging experiment show less A/B segregation than from
the Hi-C CM. Nevertheless, the ratio, εAA/εBB, shows good
agreement (1.2 versus 1.1).

APPENDIX D: EFFECT OF THE Hi-C CONTACT
MATRIX BALANCING

In the literature, a Hi-C contact matrix is commonly nor-
malized using different matrix balancing algorithms that make
the probabilities along each row or column sum to an equal
number [18,44,78]. This matrix balancing scheme is based
on the assumption that the proximal locus pairs ligated in
the Hi-C procedure should give the same readout frequen-
cies for each locus throughout the entire genome. Although
the assumption is reasonable, the actual proximity frequen-
cies of chromosome locus pairs do not necessarily yield a
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balanced contact matrix. For generality, we reported all the SP
values in this study based on the raw data of the Hi-C contact
matrices without matrix balancing. Indeed, the mean SP val-
ues computed using the balanced Hi-C contact matrices do
not differ significantly from those based on the raw Hi-C
CMs [Fig. S9(a) [45]]. We observe that ε

(n)
BB is modestly

larger than ε
(n)
AA for a given chromosome [Fig. S9(b)], whereas

the trend in χ
(n)
FH is qualitatively the same as that calculated

using the SP values inferred from the raw Hi-C data (χ̄FH =
0.49 ± 0.13 versus 0.44 ± 0.13) [Fig. S9(c)]. The SP values
from the normalized Hi-C data also follow the relationship
with the chromosome length and A/B sequence [Figs. S9(d)
and S9(e)]. These observations suggest that the SP is a reliable
physical measure of the intrinsic energy scale of chromosome
interactions encoded in a given Hi-C contact matrix regardless
of the normalization.
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