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Initiating replication synchronously at multiple origins of replication allows the bacterium Escherichia coli
to divide even faster than the time it takes to replicate the entire chromosome in nutrient-rich environments.
What mechanisms give rise to synchronous replication initiation remain, however, poorly understood. Via
mathematical modeling, we identify four distinct synchronization regimes depending on two quantities: the
duration of the so-called licensing period during which the initiation potential in the cell remains high after
the first origin has fired and the duration of the blocking period during which already initiated origins remain
blocked. For synchronous replication initiation, the licensing period must be long enough such that all origins
can be initiated, but shorter than the blocking period to prevent reinitiation of origins that have already fired.
Our model reveals that the delay between the firing of the first and the last origin scales with the coefficient of
variation (CV) of the initiation volume. Matching these to the values measured experimentally shows that the
firing rate must rise with the cell volume with an effective Hill coefficient that is at least 20; the probability
that all origins fire before the blocking period is over is then at least 92%. Our analysis thus predicts that the
low CV of the initiation volume is a consequence of synchronous replication initiation. Finally, we show that
the previously presented molecular model for the regulation of replication initiation in E. coli can give rise to
synchronous replication initiation for biologically realistic parameters.

DOI: 10.1103/PRXLife.1.013007

I. INTRODUCTION

Passing on the genetic information from one generation
to the next with high fidelity is crucial for the survival of
every organism. Many bacteria contain several copies of their
chromosome [1–6]. In nutrient-rich environments, the bac-
terium Escherichia coli initiates DNA replication of several
copies of the same chromosome synchronously with very
high precision [2–4,7]. Already in the 1960s, Cooper and
Helmstetter suggested that initiating new rounds of replication
synchronously at several origins enables E. coli to divide
even faster than the fixed time it takes to replicate its entire
chromosome [8]: Rounds of replication that started in the
mother cell continue to be replicated during cell division and
finish only in the following generations [Fig. 1(a)]. To ensure
that all daughter cells obtain a fully replicated copy of the
chromosome at these high division times, replication must be
initiated at all chromosomes synchronously. Later, Skarstad
et al. confirmed the prediction of Cooper and Helmstetter by
counting the numbers of origins in rapidly growing cultures:
they found that most cells have 2n (n = 1, 2, 3) copies of
their chromosome and only a small fraction of cells (2–7%)
contained three, five, six, or seven chromosomes [9]. Recent
single-cell measurements indeed show that E. coli initiates
replication synchronously at up to eight origins with very high
precision in the fast-growth regime [2,7]. It remains, however,
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an open question how E. coli achieves such a high degree of
synchrony.

Replication initiation in E. coli is controlled by the initiator
protein DnaA [10–13]. This protein can switch between two
nucleotide-binding states, an inactive state in which DnaA
is bound to ADP and an active one in which it is bound to
ATP [2,13–17]. Both the inactive and active forms can bind
to an origin of replication, but binding of the inactive state
is not sufficient: replication initiation requires the binding of
ATP-DnaA [12,18–20]. The evidence is accumulating that
the origin binding of DnaA and hence replication initiation
is controlled via two distinct mechanisms, titration and pro-
tein activation [13,17,21]. Titration of DnaA via high-affinity
DnaA binding sites on the chromosome generates a cycle in
the concentration of free DnaA that is available for binding to
the origin [13,22], while an activation switch induces a cycle
in the fraction of active DnaA [17,23,24]. These two cycles
together conspire to generate robust oscillations in the con-
centration of free and active DnaA [25]. This concentration of
free and active DnaA forms the initiation potential of the cell,
which determines the propensity of origin firing.

Initiation synchrony entails that all origins are initiated
during each cell cycle, yet also only once per cell cycle.
This is a major challenge because the cell needs to meet
two potentially conflicting constraints. The requirement that
all origins must fire during each cell cycle means that when
the first origin fires, the initiation potential cannot go down
immediately: it must continue to rise so that also the other
origins can fire. On the other hand, the origin that has fired
should not fire again, even though the initiation potential is
still rising. It appears that E. coli employs two distinct mech-
anisms to meet these two constraints. The oscillations in the
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FIG. 1. Model of stochastic replication initiation at each origin. (a) Scheme of the cell cycle of E. coli: the volume of the cell grows
exponentially with a growth rate λ. At doubling times τd = ln(2)/λ that are shorter than the time to replicate the entire chromosome and
divide (C+D period), cells are typically born with an ongoing round of chromosomal replication. Replication is initiated stochastically at each
origin (yellow circles) at times t1 and t2, respectively, and the replication forks (blue triangles) advance towards the terminus (gray bar) with
a constant replication speed. In E. coli, all origins fire within a very short time interval, thus giving rise to synchronous replication initiation.
To fire replication synchronously a global and a local mechanism are required: the global mechanism keeps the initiation potential high for a
licensing period τl (red shaded area), while the local mechanism based on SeqA prevents already initiated origins from refiring for a blocking
period τb > τl (gray shaded area). In our model, cell division is triggered a fixed cycling time τcc = TC + TD after replication has been initiated.
(b) We model the initiation potential y in the cell as a function of the volume per origin, v = V/nori, via a Hill function with the Hill coefficient
n. At the critical volume per origin, v∗, the initiation potential equals the critical initiation potential y∗ = 0.5. (c) Stochastic model of replication
initiation at the origin as a function of the initiation potential in the cell: the origin can be in an open or in a closed configuration and replication
can be initiated with a constant rate k0

f if the origin is open. The probability to be in the open state po(y) depends on the initiation potential
in the cell and is modeled via a Hill function with the Hill coefficient m and the critical active fraction of DnaA, f ∗. (d) The volume V (t ),
the number of origins, nori (t ), the volume per number of origins, v(t ) = V (t )/nori(t ), the initiation potential y(t ), and the opening probability
po(t ) as a function of time (in units of the doubling time of the cell, τd). Every origin is initiated stochastically (dashed vertical gray lines)
and during the blocking period τb (light blue shaded area) the newly replicated origins cannot be reinitiated. The initiation potential y(t ) and
the opening probability po(t ) continue to increase during the licensing period τl (gray shaded area), such that the remaining origins that have
not yet initiated replication are also initiated. At the end of the licensing period, the initiation potential y(t ) and therefore also the opening
probability po(t ) instantaneously decrease to a lower value, making reinitiation highly unlikely. At cell division (vertical solid gray lines), the
cell volume is divided by 2 and one of the two chromosomes is chosen at random for the next cell cycle. (See Table I for all parameters.)

initiation potential, the concentration of free and active DnaA,
constitute a global mechanism that induces not only the first
origin to fire, but also prompts, and allows, the remaining
origins to fire [Fig. 1(a)]. To prevent the immediate reinitia-
tion of origins that have already fired, a local mechanism is
used.

The local mechanism that prevents the immediate reini-
tiation of newly replicated origins is based on the so-called
sequestration of these origins. In E. coli, after an origin has
initiated replication, the protein SeqA transiently binds to this
origin and thus prevents that new rounds of replication start
immediately again at the same origin [26,27]. When either

013007-2



SYNCHRONOUS REPLICATION INITIATION OF … PRX LIFE 1, 013007 (2023)

of the two proteins SeqA or Dam that are required for se-
questration after replication initiation are deleted, synchrony
is lost and replication is initiated throughout the entire cell
cycle [26,28]. Blocking of recently initiated origins during a
so-called blocking period is therefore an essential mechanism
to ensure synchronous replication initiation [Fig. 1(a)].

The combination of global oscillations in the initiation
potential, which induce all origins to fire, and local origin se-
questration, which prevents the newly replicated origins from
reinitiation, appears to be an elegant solution to the problem
of initiation synchrony. Yet, many questions remain. Newly
replicated origins are only sequestered for a finite amount of
time: the blocking period is about 10 min long [12,28,29].
Hence, while, after the initial origin has fired, the initiation
potential must first continue to rise sufficiently long in or-
der to allow all the remaining origins to fire, it must also
come down before this blocking period is over because oth-
erwise, the newly replicated origin(s) will fire again after all.
The licensing period during which origins can fire must thus
be long enough for all origins to fire, yet also shorter than the
blocking period [Fig. 1(a)]. Given that the blocking period is
only 10 min, this constraint is likely to pose a major challenge.

The problem of replication synchrony is compounded by
the fact that the oscillations in the initiation potential are
directly shaped by replication initiation itself [26]. When a
new origin is fired, the newly generated replisomes will stim-
ulate the deactivation mechanism called RIDA (regulatory
inactivation of DnaA) [12,17,30,31]. Moreover, a few minutes
after an origin has initiated DNA replication, the locus datA
is duplicated, which enhances deactivation by stimulating
the hydrolysis of ATP bound to DnaA [15,32–35]. Further-
more, the newly duplicated DNA will harbor new titration
sites [13,22], which also tend to reduce the initiation potential
by lowering the concentration of cytoplasmic DnaA. How
these molecular mechanisms cause the initiation potential to
first continue to rise during the licensing period and then fall
before the blocking period is over is far from understood.

To study how replication can be initiated synchronously
at several origins, we first propose a minimal coarse-grained
model in which an initiation potential rises when the cell
reaches a critical volume per origin. Each origin can initiate
stochastically with a firing probability that depends on the
initiation potential. The model contains a licensing period
during which the initiation potential rises and origins can
fire, and a blocking period during which newly fired origins
cannot fire again. By varying the duration of the licensing
and the blocking period we reveal four regimes. Only one of
these gives rise to robust synchronous replication initiation.
In particular, in order to initiate synchronously, the licensing
period must be long enough for all origins to fire, yet shorter
than the blocking period. However, given that the measured
blocking period is only 10 min [12,28,29], the licensing period
must be shorter than 10 min. To fire all origins within this
short blocking period with a success rate of 92%, the firing
rate must rise with the volume with a Hill coefficient of at
least 20, such that the average time between the first and last
initiation event is less than 4 min, as measured experimentally
by Skarstad et al. [9]. Our modeling thus provides a rationale
for the question of why DNA replication initiation in E. coli
is so tightly controlled.

We then investigate how these general synchronization
requirements could be realized in the bacterium E. coli,
by replacing the coarse-grained initiation potential with our
previously proposed molecular model, in which the free
ATP-DnaA concentration oscillates over the course of the cell
cycle [25]; to this end, we have extended this model to include
stochastic origin firing. We find that if replication initiation
is controlled by the DnaA activation switch [13,17,23,24],
initiation synchrony is only achieved for a narrow range of
parameters, which is hard to reconcile with the experimentally
measured values. Adding titration [11,21,22] and bringing the
system into a regime where the DnaA concentration in the
cytoplasm is low during most of the cell cycle significantly
improves the degree of synchrony by sharpening the rise of
the initiation potential at a critical volume per origin. This
suggests that combining a concentration cycle based on titra-
tion with a protein activation cycle is crucial for initiating
replication synchronously at multiple origins in the bacterium
E. coli.

II. THE LICENSING PERIOD MUST BE NONZERO
AND SHORTER THAN THE BLOCKING PERIOD

To investigate the effect of stochastic replication initia-
tion on the cell cycle of E. coli, we model the volume V (t )
of the cell as an exponential function, V (t ) = Vb eλ t , where
the growth rate λ = ln(2)/τd, with cell-doubling time τd, is
a model parameter. We track the number of chromosomes
together with their state of replication (e.g., fully replicated or
replication ongoing) and whenever an origin fires a new round
of replication at time t∗, a new division time a constant cycling
time τcc after replication initiation is set at τdiv = t∗ + τcc. The
constant cycling time τcc is given by the sum of the time to
replicate the entire chromosome, TC, and the time from the
end of replication until cell division, TD [Fig. 1(a)]. When the
next division time is reached, the cell volume is divided by 2,
and one of the two daughter chromosomes is kept at random
for the next cell cycle. While our model follows the work
of Cooper, Helmstetter, and Donachie [8,36] who proposed a
tight coupling between cell division and replication initiation,
a more loose coupling between replication and cell division
has been suggested more recently [37,38]. Previous work has,
however, shown that the replication initiation statistics are
similar in models in which replication initiation is coupled
more loosely to cell division because cell division does not
significantly affect the replication-initiation cycle [25]. Impor-
tantly, the Cooper-Helmstetter-Donachie model is convenient
because it ensures that cell division only happens when repli-
cation initiation has finished (see Appendix A for modeling
details).

Our coarse-grained model to study the effect of stochastic
replication initiation on the cell cycle consists of two parts.
First, we model the available amount of initiator proteins in
the cell as an initiation potential y that depends on the volume
per origin, v(t ) = V (t )/nori(t ), according to

y(v) = vn

vn + v∗n
(1)

with the Hill coefficient n and the critical volume per origin
v∗ [Fig. 1(b)]. Second, each origin is modeled as a two-state
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system that can switch stochastically between an open and a
closed configuration (see Appendix B for details). Exploiting
that the origin is more likely to be in the open state when
the initiation potential y in the cell is high, we assume that
the probability to be in the open state po increases with the
activation potential y as

po(y) = ym

ym + y∗m
(2)

with the Hill coefficient m and the critical initiation potential
y∗ [Fig. 1(c)]. Molecularly, this nonlinear opening probability
po(y) could arise via cooperative binding of the initiator to the
origin, since the origin contains 12 DnaA binding sites [13].
Alternatively, it could arise via a Monod-Wyman-Changeux
(MWC) model, where the open configuration becomes more
energetically favorable the more initiators bind to the origin.
Assuming rapid opening and closing dynamics of the origin,
the origin firing rate is given by the probability to be in the
open state, po, times the maximal firing rate k0

f :

kf = k0
f po. (3)

The model includes a licensing and blocking period, which
are essential for synchronous replication initiation. In par-
ticular, at the critical volume per origin, v∗, the activation
potential y(t ) rises, and the probability to initiate replication,
po(t ), increases strongly [Eqs. (1) and (2); Fig. 1(d), second
and third panels]. To study the effect of stochastic replication
initiation on the degree of synchrony, we consider the fast
growth regime (τd < τcc), where there are typically two or
more origins in the cell at the moment of replication initiation.
When the first origin fires, the number of origins in the cell
increases stepwise, and the volume per origin, v(t ), drops
instantaneously [Fig. 1(d)]. If the initiation potential y(t ) fol-
lowed the change in the volume per origin instantaneously, it
would become very unlikely for the second origin to initiate
replication as well, resulting in asynchronous replication initi-
ation. We therefore introduce a licensing time τl, during which
the initiation potential does not yet sense the change in the
volume per origin, v(t ), and continues to rise [Fig. 1(d), gray
shaded area]. The opening probability po(t ) therefore rises
sharply during this licensing time and the second origin also
initiates replication stochastically. To prevent that already ini-
tiated origins fire again, we additionally introduce a blocking
period τb, during which replication cannot be initiated again
at the same origin [Fig. 1(d), light blue shaded area]. At the
end of the licensing time τl, the activation potential is updated
according to the current number of origins in the cell, and it
thus drops instantaneously [Fig. 1(d), fourth panel].

To quantify the degree of synchrony of replication ini-
tiation for a given parameter set, we define the degree of
synchrony s as the change of the number of origins, �nori,
from the beginning of the initiation period ti to the end of the
initiation period tf , relative to the number of origins, nori(ti ),
at the beginning of the initiation period [Fig. 2(a)]:

s = �nori

nori(ti )
= nori(tf ) − nori(ti )

nori(ti )
. (4)

The beginning of the initiation period ti is given by the time
at which the first origin fires and the initiation period ends
at tf = ti + τl, when the licensing period of the first origin

that has fired is over. When the degree of synchrony s is
one, replication is initiated synchronously, as all origins that
were present at the beginning of the initiation period have
fired [Fig. 2(a)]. For s < 1 or s > 1, replication is under- or
overinitiated, respectively [Fig. 2(a)].

By varying the duration of the licensing and the block-
ing period, we find four different synchronization regimes
(Fig. 2). Yet, only in regime 4 is replication initiated syn-
chronously [Fig. 2(b)]. In regime 1, the blocking period τb

is too short and replication is severely overinitiated, such that
no stable cell cycles can be obtained [Fig. 2(b), gray fields].
In regime 2, the licensing time τl is too short and we obtain
a highly undersynchronized cell cycle: after each initiation
event, the initiation potential drops rapidly, preventing further
initiation events. In regime 3, the licensing and blocking times
are long enough, but the licensing time is longer than the
blocking period, τl > τb. As a result, origins that have already
fired can fire again after the end of the licensing period. In this
third regime, the number of origins goes from one to four dur-
ing one initiation duration instead of oscillating between two
and four. We therefore call this regime “oversynchronized.”
Only in regime 4, where the licensing period τl is sufficiently
large and the blocking period is even larger, τb > τl, is repli-
cation initiated synchronously [Fig. 2(b), regime 4].

III. A STEEP RISE IN THE ORIGIN OPENING
PROBABILITY IS ESSENTIAL

Figure 2 clearly shows that the licensing period has to be
smaller than the blocking period, but how small can it be?
How does the degree of synchrony vary with τl? To answer
this question, we compute the probability that two consecutive
firing events happen within a time interval �t smaller than
the licensing time τl. To this end, we first derive an expression
for the instantaneous firing probability kf (t ) = k0

f po(t ). In our
model, the opening probability po(y) depends indirectly on
the time-dependent volume per origin, v(t ), via the activation
potential y(v) [see Eqs. (1) and (2)]. The opening probability
as a function of the volume per origin, v, can, however, be ap-
proximated by a Hill function (see Appendix C for derivation)

po(v) ≈ vneff

vneff + v∗neff
(5)

with the effective Hill coefficient

neff = n m

2
. (6)

This is a good approximation for the opening probability
po(y(v)), when both the Hill coefficient of the activation
potential and that of the opening probability, n and m, respec-
tively, are relatively high [see Eqs. (1) and (2) and Figs. 6(c)
and 6(d)]. The firing rate is then given by Eq. (3) with the
approximate opening probability po(v) from Eq. (5). Using
this approximation for the opening probability in the regime
of sufficiently high Hill coefficients n and m, we can now
calculate the probability that two independent initiation events
at times t1 and t2 > t1 happen within a time interval �t =
t2 − t1 � τl (Appendixes D and E). In order to compare this
probability 〈P(�t < τl )〉 to the degree of synchrony obtained
from the simulations in the growth regime where two origins
are present at the beginning of an initiation event, we rescale
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FIG. 2. Replication is only initiated synchronously when the licensing period is sufficiently long, yet shorter than the blocking period.
(a) The degree of synchrony s of an initiation cascade is given by the number of origins at the end of the initiation cascade, nori(tf ), minus
the number of origins at the beginning of the initiation cascade, nori (ti ), relative to the number of origins at the beginning of the initiation
cascade, nori(ti ). An initiation cascade begins with the moment where the first origin fires and ends after the licensing time τl. Replication is
initiated synchronously when all origins that were present at the beginning of the cascade have fired exactly once during the cascade (s = 1)
and replication was under- or overinitiated when less or more origins have initiated, respectively. (b) The average degree of synchrony 〈s〉 as a
function of the licensing period τl and the blocking period τb. The effective Hill coefficient neff is obtained by fitting the opening probability
po( f (v)) to a Hill function po(v) (Appendix C). For each parameter set, the average degree of synchrony was obtained from N = 5000
consecutive cell cycles. We show example time traces of the number of origins as a function of time (in units of the doubling time of the cell,
τd) for four different synchronization regimes as indicated in the heatmap. When no cell cycle could be obtained, the field in the heatmap is
marked in gray. (See Table I for all parameters.)

the probability to range from smin = 0.5 to smax = 1:

sth = 0.5 + 〈P(�t < τl )〉 × 0.5. (7)

This fairly simple model describes the average degree of
synchrony 〈s〉 as a function of the licensing period τl for
different Hill coefficients n and m remarkably well [Fig. 3(a)].
The transition from the undersynchronized to perfect syn-
chronization regime in Fig. 2(b) is therefore given by the
probability that two independent origin firing events happen
within a short time window given by the licensing time τl. The
higher the effective Hill coefficient neff , the higher the degree
of synchrony for a given delay period τl [Fig. 3(a)]. The degree
of synchrony 〈s〉 increases with the effective Hill coefficient
because that raises the firing rate more steeply, making it more
likely that the two origins fire within the licensing time τl.

While the degree of synchrony 〈s〉 increases with the li-
censing time τl, τl cannot be longer than the blocking period
τb, because otherwise origins that have already fired will fire
again. The blocking period thus bounds τl. The duration of
the blocking period, as set by the binding of SeqA to the

origins, is about 10 min [12,28,29]. As the licensing time must
be shorter than the blocking period to prevent overinitiation
[Fig. 2(b), regime 3], the licensing time in E. coli must thus
be less than τ

expt
b = 10 min. Figure 3(a) shows that this puts

a major constraint on the Hill coefficient: to get a degree of
synchrony 〈s〉 that is above 95%, the effective Hill coefficient
must be at least neff = 30.

The question remains what the effective Hill coefficient neff

is that is consistent with experiments. Interestingly, Skarstad
et al. measured the time between the first and last firing event,
which we can compare against our theoretical prediction [9].
However, to do so, we must first examine the dependence
on the growth rate, because Skarstad et al. performed their
measurements at a higher growth rate. Figure 7 shows that
while the average degree of synchrony 〈s〉 as a function of
the licensing time τl varies strongly with the effective Hill
coefficient neff , it is fairly independent of the doubling time
of the cell, τd.

Given that 〈s〉 as a function of τl is fairly independent
of the growth rate, we now examine the data of Skarstad
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(a) (b)

FIG. 3. The experimentally observed high precision of replication initiation is required to ensure synchronous replication initiation at
multiple origins. (a) The average degree of synchrony 〈s〉 as a function of the licensing time τl for varying effective Hill coefficients neff

(with n = m = √
2 neff ) from the simulations (solid lines) agrees well with the theoretical prediction derived in Appendix E (dashed lines).

The small difference between the simulations and theory at very low delay periods arises from the fact that while in the theory for two
synchronous firing events, the minimal degree of synchrony is smin = 0.5, in the simulations there can be more origins at the beginning of
an initiation cascade, leading to a lower degree of synchrony smin < 0.5. In these simulations, the blocking period τb is set larger than all
tested licensing τl periods (τb = 0.25 h), such that overinitiation events cannot occur. The maximal firing rate k0

f is set such that the average
initiation volume 〈v∗〉 equals the theoretical initiation volume v∗ in Eq. (5) as explained in Appendix D. The experimentally measured blocking
period τ

expt
b is marked as a gray vertical dotted line. For each parameter set, the average degree of synchrony was obtained from N = 5000

consecutive cell cycles. (b) The theoretical average time interval between two consecutive firing events 〈�t〉 (pink line and axes) and the
coefficient of variation of the initiation volume (CV, blue line and axes) as a function of the effective Hill coefficient neff (see Appendix F
for derivation). Skarstad et al. [9] found experimentally that the average time interval to fire all origins in the B/r A E. coli strain is about
〈�texpt〉 = 3 min with an upper estimate of �tmax

expt = 4 min (horizontal dotted pink lines). The effective Hill coefficient lies therefore in the
range neff = 29–38 (vertical dotted gray lines), corresponding to a coefficient of variation of CV = 0.05–0.07. This agrees well with the
experimentally measured precision of the initiation volume of CV � 0.1 [2,7,37]. Interestingly, the average degree of synchrony at neff = 30
and neff = 40, respectively, is given by 〈s〉(neff = 30) = 0.975 and 〈s〉(neff = 40) = 0.996, corresponding to the probabilities to fire all origins
synchronously of 〈P(�t < τl )〉(neff = 30) ≡ Ps(neff = 30) = 95.5% and Ps(neff = 40) = 98.9%. This prediction of the degree of synchrony
agrees well with the qualitative experimental observation that in E. coli DNA replication is typically initiated synchronously at multiple
origins. Our model therefore provides a rationale for the experimentally observed high precision of replication initiation. (See Table I for all
parameters.)

et al. [9]. To obtain an experimental estimate for the effective
Hill coefficient and thus for the average degree of synchrony,
we calculate the average time interval between the first and
last initiation events 〈�t〉 (see Appendix F) and compare it to
the experiments. Skarstad et al. find that this time is on average
〈�texpt〉 ≈ 3 min with an upper limit of �tmax

expt ≈ 4 min [9].
Our theory predicts that to fire two initiation events within
an average time interval of 〈�t〉 = 3–4 min, the effective
Hill coefficient must be in the range neff = 29–38 [Fig. 3(b),
vertical gray dotted lines]. Interestingly, the dependence of
〈�t〉 on neff closely tracks that of the coefficient of variation
(CV) of the initiation volume [Fig. 3(b)]. The 〈�t〉 = 3–4 min
measured by Skarstad et al. corresponds to a CV of the
initiation volume CV ≈ 0.05–0.06. This agrees fairly well
with the experimental finding that the initiation volume is
one of the most tightly controlled cell cycle parameters with
CV = 0.08–0.1 [2,37]. A CV of 0.1 as measured by Ref. [2]
corresponds to neff ≈ 20 [Fig. 3(b), see also calculation in
Ref. [2]] and would thus only result in a relatively low de-
gree of synchrony of less than 〈s〉 = 0.92 corresponding to
a probability of initiating synchronously of 〈P(�t < τl )〉 ≡
Ps = 84% [see Eq. (7)]. Recent experiments show, however,
that the contribution from the intrinsic noise in replication

initiation to the CV is only about CVint = 0.04–0.05 [7], in
even better agreement with the Skarstad data [Fig. 3(b)]. Our
model, which only concerns the effect of intrinsic noise, then
predicts that for this low CVint the effective Hill coefficient
neff must be at least 40 [Fig. 3(b)], which then means that at
least Ps = 98% of the initiation events happen synchronously
within a period of 10 minutes corresponding to 〈s〉 = 0.99
[Fig. 3(a)].

Before we conclude, we must discuss one key parame-
ter, which is the maximal firing rate k0

f . In our theoretical
model, we covaried k0

f with neff to keep the average initi-
ation volume per origin, 〈v∗〉, constant and equal to v∗ of
Eq. (5), following the procedure of Wallden et al. [2] (see
Appendix D). Figure 8(a) shows 〈�t〉 in our theoretical model
as a function of k0

f and neff separately (thus without enforcing
the constraint 〈v∗〉 = v∗). While 〈�t〉 increases with both k0

f
and neff , there is a minimal neff that is necessary to reach a
given 〈�t〉, corresponding to the limit k0

f → ∞ [see inset of
Fig. 8(a)]. The Hill coefficient necessary to reach the 〈�t〉 that
matches the value measured by Skarstad et al. is lower than
that in the above procedure in which k0

f and neff are covaried
[corresponding to the diagonal in Fig. 8(a)], but it is still very
high, around neff ≈ 20 [Fig. 8(a)]. Figure 8(b) shows that in
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FIG. 4. The LDDR model can ensure a high degree of synchronous replication initiation for a narrow range of parameters. (a) In the
lipid-datA-DARS1/2-RIDA (LDDR) model, replication forks overlap and RIDA is the main deactivator in combination with the activators
DARS1 and DARS2. (b) The average degree of synchrony, 〈s〉, as a function of the replication time of the site datA, τdatA, and the onset time
of RIDA, τrida. The sites DARS1 and DARS2 are replicated at the experimentally measured times τd1 = 0.25 h = 15 min and τd1 = 0.4 h =
24 min, respectively. Replication is only initiated synchronously for a small range of parameters: when the site datA is replicated after the
experimentally measured time of τdatA = 0.13 h ≈ 8 min (red horizontal line), replication in the LDDR model is only initiated synchronously
if RIDA starts only about 6 min after the origin is initiated. It is, however, not clear what could cause a delay of 6 min in the onset of RIDA.
(c) The volume V (t ), the number of origins, nori (t ), and the ATP-DnaA fraction f (t ) as a function of time (in units of the doubling time of the
cell, τd) for the parameter combination marked in (b). The large amplitude oscillations in the active fraction in combination with a long delay
in the onset of deactivation via RIDA and datA can give rise to a high degree of synchrony for a small range of parameters. For each parameter
set in (b), the average degree of synchrony was obtained from N = 5000 consecutive cell cycles. (See Table I for all parameters.)

this limit, k0
f → ∞ and neff = 20, the degree of synchrony is

very high, with Ps = 92%. Our model of stochastic replica-
tion initiation thus provides a rationale for the experimentally
observed high precision of DNA replication initiation in
E. coli: given the constraint set by the duration of the blocking
period, the system requires a very high Hill coefficient in
order to initiate replication synchronously. Since increasing
the Hill coefficient beyond this already large value becomes
progressively harder, it seems that the system operates close
to what is theoretically possible given the duration of the
blocking period.

IV. INITIATION SYNCHRONY IN MOLECULAR
ACTIVATION SWITCH MODEL FOR E. coli

Our coarse-grained model of replication initiation revealed
general requirements for initiating replication synchronously
at several origins. It remains, however, an open question how

these requirements are implemented on a molecular level in
different organisms. In E. coli, both a protein activation cycle
and a concentration cycle are required for robust replica-
tion initiation at all growth rates [25]. In the following, we
first address the question whether a protein activation cycle
alone, i.e., without the help of a concentration cycle, can
yield synchronous replication. To this end, we will study the
so-called lipid-datA-DARS1/2-RIDA (LDDR) model, which
we developed previously [25] [Fig. 4(a)]. This model contains
activation of DnaA via the lipids and the chromosomal sites
DARS1/2 and deactivation of DnaA via the chromosomal site
datA and the replication-associated mechanism of regulatory
inactivation of DnaA (RIDA) [25]. We show that this cycle
alone can induce synchronous replication initiation, but only
over a very limited parameter regime. In a second step, we
show that adding a concentration cycle via titration sites can
significantly enhance the degree of synchrony. To test the
effect of stochastic origin firing in the LDDR model, we
replace the abstract initiation potential y(v) we used in the
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coarse-grained model with the LDDR model for the ATP-
DnaA fraction f (t ) in the cell. The opening probability po( f )
is again modeled as a simple Hill function according to
Eq. (2). Motivated by the experimental observation that there
are about ten sites for DnaA binding to the origin [13], the
Hill coefficient was chosen to be m = 10; in addition, the
critical fraction in Eq. (2) was chosen to be f ∗ = 0.5. More-
over, the maximal firing rate k0

f was set to a large value, i.e.,
k0

f = 1000 h−1, such that the system is in the regime where
the degree of synchrony is not limited by k0

f [see Fig. 8(b)],
but only limited by the dynamics of the activation cycle f (t ).
Like in the coarse-grained model, already initiated origins are
blocked transiently during a blocking period of τb = 10 min.
Contrary to the coarse-grained model, where after the end
of the licensing period the initiation potential drops instan-
taneously to a very low value, in the LDDR model, the active
fraction f follows from the temporal dynamics of the antago-
nistic interplay between DnaA activation and deactivation (see
Appendix G for details). In the LDDR model, the licensing
period is thus not imposed, as in the coarse-grained model
above, but is implicit in the dynamics of the LDDR model.
Yet, to quantify the degree of synchrony, we need to define an
effective initiation period τi, akin to the licensing period τl in
the coarse-grained model [see Eqs. (4) and (7)]. We define τi

to be a fraction of the cell cycle time τd: τi = α τd. While α

cannot be defined uniquely, we show in Appendix H that the
degree of synchrony is fairly robust to the precise choice of
α. In the following, we therefore choose α = 0.4, such that
τi = 0.4 τd.

The LDDR model can indeed give rise to synchronous
replication initiation at multiple origins, but only for a small
range of parameters: when the (de)activators DARS1, DARS2,
and datA are located at the experimentally measured positions
on the chromosome, replication is initiated asynchronously
when RIDA starts directly after an origin has fired [Fig. 4(b)
at τrida = 0 h]. As RIDA is a strong deactivator, it causes the
active fraction to drop rapidly after the first origin has been
initiated and thus prevents other origins from firing as well.
By varying both the position of datA on the chromosome and
the time at which RIDA starts after an origin has fired, we find
that replication can be initiated synchronously in the LDDR
model for a small range of parameters: at the experimen-
tally measured replication time of datA of τdatA = 0.13 h ≈
8 min [13,32], replication is initiated with a high degree of
synchrony when the deactivation rate of RIDA becomes high
with a delay of τrida = 0.1 h = 6 min after the origin has
fired [Figs. 4(b) and 4(c)]. The closer the site datA is to the
origin, the later RIDA should start for synchronous replication
initiation [Fig. 4(b)].

It remains, however, unclear what molecular mechanism
could cause a delay in the onset of RIDA of about 6 min.
In RIDA, the DNA polymerase clamp on newly synthesized
DNA forms a complex with ADP and the Hda protein. The
resultant ADP-Hda-clamp-DNA can bind ATP-DnaA and
stimulates ATP hydrolysis yielding ADP-DnaA [30,31]. It is
conceivable that Hda binding is slow, but whether it would
yield a delay of about 6 min is far from clear. For experimen-
tally realistic parameters, the LDDR model appears therefore
insufficient to explain synchronous replication initiation in
E. coli.

V. TITRATION CAN ENHANCE THE DEGREE OF
SYNCHRONY OF AN ACTIVATION SWITCH

In E. coli, DNA replication initiation is not only controlled
via an activation switch but also via titration [10,11]. To study
the effect of titration on the degree of synchrony, we add
homogeneously distributed titration sites on the chromosome
to the LDDR model [25]. In the LDDR-titration model, the
initiation potential is given by the free ATP-DnaA concen-
tration [D]ATP,f in the cell and both oscillations in the active
fraction f and in the free DnaA concentration [D]T,f con-
tribute to regulating replication initiation (see Appendix I for
details). We again model the stochastic opening probability
of the origin as a Hill function [Eq. (2)] with Hill coefficient
m = 10. The critical initiation potential y∗ is now given by a
critical free ATP-DnaA concentration [D]∗ATP,f at which ATP-
DnaA binds cooperatively to the origin. We here neglect the
effect of the relatively small number of about 10–20 DnaA
proteins that are bound to the origin on the free DnaA con-
centration. As explained in Ref. [25], we set the parameters
(by varying the lipid activation rate αl) such that the initiation
volume of the switch, v∗

s , and the initiation volume of the
titration mechanism, v∗

t , are approximately the same. This
optimal choice ensures that both the free concentration and
the active fraction rise at the same critical volume per origin,
thus increasing the amplitude of the oscillations in the free
ATP-DnaA concentration.

Figures 5(a) and 5(c) show the time traces of the model
that combines titration with the activation switch. The small
jump in the total free DnaA concentration upon cell division
results from the following interplay. First, only one out of
two chromosomes is selected per daughter cell [Figs. 5(a)
and 5(c), second panel). The stochastic firing of the origins
causes a temporal delay between the initiation of replication
at the respective origins. Moreover, in the growth-rate regime
of overlapping replication forks considered here, not all chro-
mosomes have been fully replicated at the moment of cell
division. Taken together, this means that at the moment of cell
division not all chromosomes have the same number of titra-
tion sites (the sites are distributed uniformly). The difference
in the number of titration sites per chromosome causes a slight
change in the free concentration upon cell division.

Adding titration sites to the LDDR model affects the degree
of synchrony only little when the critical free ATP-DnaA
concentration at which replication is initiated is high. When
a new round of replication is initiated, new titration sites
are generated and the free DnaA concentration drops. As
discussed in Ref. [25], at high growth rates, where multiple
chromosomes are present in the cell, new titration sites are,
however, replicated at a similar rate as new DnaA proteins are
synthesized. Titration therefore introduces only weak oscilla-
tions in the free total DnaA concentration [Fig. 5(a)]. If the
critical free DnaA concentration at which DNA replication is
initiated is relatively high, the oscillations in the free DnaA
concentration contribute only little to the oscillations in the
initiation potential [Fig. 5(a)]. In this scenario, adding titration
to the LDDR model does not significantly change the degree
of synchrony, the optimal position of datA on the chromo-
some, or the optimal onset time of RIDA [compare Fig. 5(b)
to Fig. 4(b)].
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FIG. 5. Adding titration sites to the LDDR model enhances initiation synchrony for low critical free DnaA concentrations. [(a), (c)] The
volume V (t ), free DnaA concentration (independent of whether DnaA is bound to ATP or ADP) [D]T,f (t ), the ATP-DnaA fraction f (t ), and
the free ATP-DnaA concentration [D]ATP,f (t ) as a function of time (in units of the doubling time of the cell, τd = 0.67 h = 40 min) for a
critical free ATP-DnaA concentration of (a) [D]∗f,ATP = 50 µm−3 and (c) [D]∗f,ATP = 10 µm−3. During the blocking period τb (light blue shaded
area), the newly replicated origins cannot be reinitiated. (a) When the critical free ATP-DnaA concentration is relatively high, the free DnaA
concentration [D]T,f (t ) oscillates only weakly and decreases slightly after new rounds of replication are initiated due to the synthesis of new
sites. The shape of the oscillations in the free ATP-DnaA concentration [D]ATP,f (t ) is therefore mainly determined by the oscillations in the
ATP-DnaA fraction f (t ). [(b), (d)] The average degree of synchrony 〈s〉 as a function of the replication time of the site datA, τdatA, and the onset
time of RIDA, τrida, for (b) [D]∗f,ATP = 50 µm−3 and (d) [D]∗f,ATP = 10 µm−3. The sites DARS1 and DARS2 are replicated at the experimentally
measured times τd1 = 0.25 h = 15 min and τd1 = 0.4 h = 24 min, respectively. (b) When the critical free ATP-DnaA concentration is high, the
effect of the titration sites on the degree of synchrony is small and almost indistinguishable from the scenario without titration sites [compare
to Fig. 4(b)]. (c) At a lower critical free ATP-DnaA concentration, the oscillations in the free concentration are larger and lead to sharper
oscillations of the free ATP-DnaA concentration. This causes a broader range of parameters for which replication is initiated synchronously
(d). For each parameter pair in (b) and (d), the average degree of synchrony was obtained from N = 5000 consecutive cell cycles. (See Table I
for all parameters.)

When the free DnaA concentration [D]T,f is low, however,
titration can significantly enhance the degree of synchrony
of the LDDR model. Setting the critical free ATP-DnaA
[D]∗f,ATP to a value that is comparable to the affinity of the
titration sites increases the oscillations in the free DnaA
concentration [Fig. 5(c)]. The resulting sharper rise of the
free ATP-DnaA concentration gives rise to a higher degree

of synchrony at all positions of datA and onset times of
RIDA [Fig. 5(c)]. The regime of parameters in which repli-
cation is initiated with a high degree of synchrony now
extends also to shorter and more realistic onset times of
RIDA than in the LDDR model [Fig. 5(d)]. In summary, the
full titration-switch model is able to synchronously initiate
replication.
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VI. DISCUSSION

The bacterium E. coli initiates replication at several origins
synchronously with high precision. How it achieves this high
degree of synchrony remained, however, unknown. In this
work, we have revealed several general principles that gov-
ern whether replication is initiated synchronously at several
origins: (1) the initiation potential must remain high after the
first origin has fired so that the remaining origins can fire;
(2) origins that have already fired must be prevented from
reinitiating immediately as long as not all origins have fired;
this necessitates a blocking period and (3) the initiation po-
tential must come down before the blocking period is over
to prevent reinitiation of the newly replicated origins. The li-
censing period, during which the origins can fire, must thus be
shorter than the blocking period. The blocking period, in turn,
is limited to only 10 min [12,28,29], which means that the
licensing period must be shorter than 10 min. To ensure that
all origins fire during this short licensing period, the initiation
potential must rise sharply, and to guarantee that the initiation
potential is low again before the blocking period is over, it
also must fall sharply. Synchronous replication initiation thus
requires sharp oscillations in the initiation potential. Such os-
cillations will also give rise to small variations in the initiation
volume. Our modeling thus reveals that the experimentally
observed small variation in the initiation volume is a result
of the requirement of synchronous replication initiation.

Our minimal, coarse-grained model has been instrumen-
tal in elucidating the principal requirements for synchronous
replication initiation. This model is inspired by our molecular
model of Ref. [25], which, in turn, is based on experimental
data. The main assumption is that the dynamics of the initi-
ation potential, the free concentration of active DnaA, is in
quasiequilibrium with respect to the volume dynamics. This
assumption is reasonable because DNA binding and DnaA
(de)activation rates are an order of magnitude faster than
the (highest) growth rate [25]. Given this quasiequilibrium
assumption, the model then exploits that a Hill function is
an accurate, effective description of ultrasensitive systems,
irrespective of the underlying molecular mechanisms. The
other assumption is that the only source of stochasticity is in
the opening of the origin; we have neglected the stochasticity
in the initiation potential. This serves to put a bound on the
precision of initiation (a lower bound on the CV of the initia-
tion volume and an upper bound on the degree of synchrony)
and hence a lower bound on the minimally required effective
Hill coefficient. Indeed, including noise in the initiation poten-
tial would raise the minimally required Hill coefficient only
further.

The minimal model shows that the effective Hill coefficient
must be at least 20, raising the question what are the molecular
mechanisms that give rise to such a high Hill coefficient. First,
our minimal model shows that the sharp dependence of the
opening probability on the initiation potential and the steep
dependence of the latter on the volume multiply to give
an even higher Hill coefficient [see Eq. (6)]. In addition,
each of the two processes separately is likely to have a
high Hill coefficient. The origin has 12 binding sites for
DnaA [13], thus allowing for a strong cooperative, nonlinear
response of the opening probability to the rise in the DnaA

concentration; an opening mechanism based on an MWC
would allow for an even stronger response. Concerning the
dependence of the initiation potential on the cell volume,
our previously developed model [25] predicts that there are
two mechanisms that act in concert to give rise to a steep
dependence. The first mechanism is associated with the
concentration cycle of DnaA based on titration. After a new
round of replication has been initiated, the newly synthesized
DnaA proteins strongly bind to sites on the DNA that are
uniformly distributed over the chromosome, such that the free
cytoplasmic concentration initially remains low; yet, after all
titration sites have been occupied, the free concentration rises
sharply, inducing an ultrasensitive response [39]. The second
mechanism is associated with the activation cycle of DnaA.
DnaA switches between an active and an inactive form via
a push-pull mechanism based on the antagonistic interplay
between DnaA activation (via synthesis, lipids, and DARS1/2)
and DnaA deactivation (via RIDA and datA) [25]. This
antagonism gives rise to a “zero-order” ultrasensitive response
when the (de)activation mechanisms operate near saturation
and hence become nearly independent of the substrate (DnaA)
concentration [40]. Since the number of DnaA proteins is
much larger than the number of datA, DARS1/2, and binding
sites on the replication fork (enabling RIDA), it is quite likely
that also in this system the (de)activation mechanisms operate
near saturation, and thereby generate a zero-order ultrasensi-
tive response. Last, the interplay between the concentration
cycle, which generates oscillations in the free concentration of
DnaA, and the activation cycle, which generates oscillations
in the active fraction of DnaA, gives rise to even sharper
oscillations in the active free concentration [25].

That the combination of a concentration and an activa-
tion cycle can indeed generate oscillations in the initiation
potential that are sharp enough for synchronous replication
initiation is supported by the simulations of our previously
presented model E. coli [25]. It can ensure a high degree of
initiation synchrony for a range of parameters that agree with
the experimentally measured ones. We find that if replication
initiation is governed by a protein activation switch only, the
optimal onset time of the RIDA mechanism would have to
be about 6 min in order to ensure synchronous replication
initiation. As RIDA is coupled to active replication [41],
protein diffusion in cells is typically on the order of seconds
rather than minutes [42] and binding of Hda to the replication
clamps is rather strong [30,31], it seems natural to assume that
the deactivation via RIDA becomes strong directly after a new
round of replication starts. It is, however, conceivable that Hda
concentration rises slowly, that Hda binding is slow, or that
several RIDA complexes are required for a strong deactivation
rate of RIDA [30,31]. Adding a concentration cycle based
on titration sites to the activation switch and bringing the
system to a regime where the free DnaA concentration is low
during the entire cell cycle enhances the degree of synchrony
significantly for a broad range of parameters. Importantly, in
the combined model, replication is initiated with a high degree
of synchrony also for shorter onset times of RIDA. Combining
an activation cycle with a concentration cycle is therefore
likely to be vital to synchronous replication initiation in E.
coli.
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To verify our model and make novel predictions, we turn
to the key parameters of our coarse-grained model, which are
(1) the duration of the blocking period τb, (2) the duration of
the licensing period τl , and (3) the effective Hill coefficients
with which the initiation potential and the firing probability
rise during the cell cycle. The most important prediction of
our model, namely, that the licensing period τl must be suffi-
ciently long so that all origins fire within this time, yet shorter
than the blocking period τb to prevent reinitiation, is strongly
supported by experiments. As the blocking period is a direct
consequence of origin sequestration via SeqA its duration τb

can be varied, both in experiments and in our simulations.
Our model predicts that while increasing the duration of the
blocking period does not change the degree of synchrony
(provided it remains shorter than the cell division time τd ),
decreasing the duration of the blocking period such that it be-
comes shorter than the licensing period τl , i.e., τb < τl , leads
to strong overinitiation and asynchrony [see Fig. 2(b)]. Inter-
estingly, experiments confirm these predictions: prolonging
the blocking period of wild-type cells by introducing excess
SeqA in the cell does not affect the degree of synchroniza-
tion [26,43,44]. Shortening the blocking period by increasing
the levels of Dam resulting in faster remethylation rates leads,
however, to asynchronous initiation [26,45,46].

The latter two parameters of our model, namely, the li-
censing period and the effective Hill coefficient, are both
characteristics of the temporal variations in the initiation po-
tential. Therefore, these two parameters are intertwined and
are difficult to manipulate separately. Experiments show that
mutations in datA, Hda, DASR2, ihf, and fis that affect the
(de)activators of DnaA lead to asynchronous replication ini-
tiation [26]. Interestingly, recent experiments show that also
the CV of these mutant cells is increased [7]. While these
mutations in (de)activators of DnaA likely affect both the
duration of the licensing period and the steepness of the rise
in the initiation potential, they nevertheless verify one of our
predictions, namely, that the variance in the initiation volume
and the degree of synchronization are correlated. Importantly,
this is an outcome from our model that we did not put in
a priori.

Besides these already verified predictions, we also make
testable predictions and propose experiments that can be used
to test these predictions. In our detailed molecular model, the
onset time of RIDA and the temporal delay in replicating the
chromosomal site datA set the licensing time. While the onset
time of RIDA seems hard to control, the position of datA
on the chromosome can be varied and the resulting degree
of synchrony can be measured. Our model makes the strong
prediction that replication is only initiated synchronously for
an optimal position of datA on the chromosome [Fig. 5(d)].
When datA is too close to the origin, τl becomes too short,
the initiation potential drops too rapidly, and replication is
underinitiated. When datA is, however, too far away from the
origin, such that τl > τb, the initiation potential drops too late,
and after the end of the blocking period overinitiation events
should occur. Experiments indeed show that translocating
the site datA to the terminus causes asynchronous replica-
tion initiation at high growth rates [33], strongly supporting
our model. To test our model further, in these mutant cells
the blocking period could be prolonged experimentally by

introducing excess SeqA, such that, as before, τb > τl . Our
model then predicts that this should reduce the degree of
overinitiation.

To determine the effective Hill coefficient of the opening
probability experimentally, its two contributions, namely, the
nonlinear rise in the initiation potential y(v) as a function of
the volume v and the nonlinear firing probability of the origin,
p(y), as a function of the initiation potential y, need to be stud-
ied separately. The Hill coefficient n of the initiation potential
as a function of the volume can be obtained by measuring
the free ATP-DnaA concentration in the cell as a function
of the cell volume over the course of the cell cycle, although
these experiments have proven challenging so far. By mutat-
ing the (de)activators, one could then test our prediction that
the steepness of the oscillations in ATP-DnaA is correlated
with the precision of initiation. Second, the Hill coefficient of
the opening probability as a function of the initiation potential
could be obtained by measuring the origin firing rate at dif-
ferent initiator concentrations (ATP-DnaA concentration, total
DnaA concentration, and ATP-DnaA fraction) in vitro, similar
to the experimental procedure of Hwang et al. [47]. Then,
by introducing different mutations, one could design mutants
with a less sharp rise in the opening probability that could be
used to test our predictions on the degree of synchrony and
the coefficient of variation as a function of the Hill coefficient
[Figs. 3(a) and 3(b)].

Increasing the duration of the blocking period would be
an easy way for the cell to increase the degree of synchrony.
However, also at very fast growth rates, where the doubling
time of E. coli is about 20 min, the blocking period must
remain shorter than the doubling time in order to allow for
a new round of replication to start in time. This imposes a
natural bound for the duration of the blocking period. Since
the duration of the blocking period imposes a hard constraint
on synchronous replication initiation, it is tempting to specu-
late that the requirement of synchronous replication initiation
limits the maximal growth rate of E. coli.

Also other organisms such as the bacteria Bacillus
subtilis [3,4], Mycobacterium smegmatis [5], and Vibrio
cholerae [6] initiate multiple chromosomes synchronously in
certain growth conditions. These bacteria are evolutionarily
divergent and have different molecular mechanisms to control
the initiation of replication. Nevertheless, the general princi-
ples for synchronous replication initiation presented in this
work should also remain valid for these organisms. For ex-
ample, while the bacterium B. subtilis lacks the protein SeqA,
it instead contains the protein Spo0A, which can inhibit repli-
cation initiation in the B. subtilis phage φ29 in vivo and has
been shown to bind to specific sites on the origin in vitro [12].
These experiments suggest that Spo0A, similar to SeqA in E.
coli, represses chromosomal replication by binding directly to
the origin region of B. subtilis.

Finally, we have not modeled the binding of about 10–20
ATP-DnaA proteins to the origin explicitly. It has, however,
been proposed in the so-called initiation cascade model that
initiating replication at the first origin could cause other ori-
gins to fire as well by releasing the bound initiator proteins
into the cytoplasm [48,49]. The resulting higher concentration
of free DnaA proteins could lead to a redistribution of the
free DnaA proteins to the remaining origins, making the next
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replication initiation event more likely [48]. We tested this
idea by introducing weak, cooperative origin binding sites to
which only ATP-DnaA can bind into our model. When in this
extended model the concentration of ATP-DnaA in the cyto-
plasm rises, the weak binding sites at the respective origins
begin to fill up and then trigger the initiation of replication at
a randomly selected origin (see Appendix J). After replication
has been initiated, the binding sites at the origin that fired
become unavailable for binding DnaA for the duration of the
blocking period, causing a rise in the free DnaA concentra-
tion, as predicted by Ref. [48]. We find, however, that the
ATP-DnaA binding to the origin has two opposing effects: on
the one hand, the initiation potential indeed increases right
after the first initiation event due to the released ATP-DnaA
proteins, making the next initiation event more likely [see
Figs. 9(a) and 9(b)]. On the other hand, binding of ATP-DnaA
proteins to the origin leads to a less sharp rise in the free DnaA
concentration right before the first origin initiates replication
[see Figs. 9(a) and 9(b)]. A sharp rise of the initiation potential
right before replication initiation is, however, a necessary
requirement for synchronous replication initiation. Therefore,
the net effect of the initiation cascade on the degree of syn-
chrony is approximately zero and we do not find a significant
increase in the degree of synchrony [see Fig. 9(c)].

The datasets generated and analyzed during the current
study are available at Zenodo via [50]. The code is publicly
available at the Github repository [51] or at Zenodo via [52].
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APPENDIX A: CELL-CYCLE SIMULATION DETAILS

At every replication initiation event at time t∗ a cell di-
vision time is set a fixed time τdiv = t∗ + τcc later. Each
set division time τdiv is linked to the chromosome that just
initiated replication. When the cell inherits a chromosome
that is already being replicated but has not yet reached its
division time, it also inherits the next division time (Fig. 10).
This method ensures that each daughter cell always obtains a
fully replicated chromosome, a necessary requirement for the
survival of every cell.

TABLE I. Parameters used in the simulations. One molecule per cubic micrometer corresponds to approximately 1 nM (1 µm−3 = 1.67 nM).

Parameter Name Value Motivation

n Hill coefficient of initiation potential 5 Set to match initiation precision reported in Ref. [2]
v∗ (μm3) Initiation volume per origin 1 Set to match initiation volume reported in Ref. [2]
m Hill coefficient of opening probability 10 Ref. [13]
y∗ Critical initiation potential 0.5 Set to maximal sharpness of opening probability
KD (μm−3) Dissociation constant of (de)activators 5 Ref. [22]
αll (μm−3 h−1) Activation rate lipids LDDR:500, Set to match initiation volume

LDDR+titration:800 reported in Ref. [2]
βdatA (h−1) Deactivation rate datA 600 Ref. [15]
τdatA (h) Replication time datA 0.13 Ref. [15]
f ∗ Critical initiator fraction 0.5 Refs. [17,24]
τi (h) Initiation duration 0.27 See Fig. 11
αd1 (h−1) Activation rate DARS1 100 Refs. [13,16]
τd1 (h) Replication time DARS1 0.4 Ref. [13]
α+

d2 (h−1) High activation rate DARS2 600 Combined with βrida

α−
d2 (h−1) Low activation rate DARS2 50 Set to arbitrary low value

τd2 (h) Replication time DARS2 0.25 Ref. [16]
τ+

d2 (h) Start high activation rate DARS2 0.2 Ref. [16]
τ−

d2 (h) End high activation rate DARS2 2/3 Ref. [16]
βrida (h−1) Deactivation rate RIDA 500 Refs. [15,31,53]
[D]T (μm−3) Total DnaA concentration 400 Refs. [19,21]
φ0 Gene allocation fraction 4 × 10−4 Set to match [D]T

K s
D (μm−3) Dissociation constant of titration sites 1 Ref. [22]

Kp
D Dissociation constant of promoter 200 Ref. [21,54]

ns
ori Number of origin binding sites 10 Ref. [13]

[D]∗ATP,f Critical free ATP-DnaA concentration 10 Ref. [22]
ρ (μm−3) Number density 106 Ref. [55]
φ0 Gene allocation fraction 10−3 Ref. [21]
k0

f (s−1) Maximal origin firing rate 1000 Set such that degree of synchrony is maximal
τb (h) Blocking period 0.17 Refs. [27–29]
λ (h−1) Growth rate 1.04 Refs. [2,3]
TC (h) C-period 2/3 Ref. [8]
TD (h) D-period 1/3 Ref. [8]
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The simulations are performed with a finite-time step δt .
Each time step, the volume is updated according to V (t +
δt ) = V (t ) + V (t ) λ δt and the firing rate kf is evaluated via
Eq. (3), i.e., kf = k0

f po, where the opening probability po(y)
depends on the current initiation potential y(V ), which de-
pends on the current volume V of the cell. The firing rate kf

then translates into a probability 0 < (Pfire = kfδt ) 
 1 that
during this time step the origin will fire; an origin will then
fire when this probability is smaller than a random number ξ ,
uniformly distributed between 0 and 1, i.e., when Pfire < ξ .

APPENDIX B: COARSE-GRAINED MODEL
FOR ORIGIN OPENING

We describe the origin region as a two-state system that
can switch between an open (O) or a closed (C) configuration
with the opening rate ko and the closing rate kc. If the origin
is open, replication can be initiated (I) with a maximal firing
rate k0

f :

C
ko−⇀↽−
kc

O
k0

f−→ I. (B1)

In thermal equilibrium, the ratio of the transition rates be-
tween the open and closed states is given by the Boltzmann
distribution of the energy difference between the two states:

kc

ko
= e−β Ec

e−β Eo
= eβ �G, (B2)

with β = kB T and the energy difference

�G = Eo − Ec, (B3)

where Eo is the energy of the open state and Ec is the energy
of the closed state. The probability to be in the open state as a
function of the energy difference �G is given by

po = e−β Eo

e−β Eo + e−β Ec
= 1

1 + eβ �G
. (B4)

Assuming rapid opening and closing dynamics of the origin,
the origin firing rate is given by Eq. (3). The higher the
initiation potential f in the cell, the more likely is it that the
origin is open and that replication can be initiated. We model
this observation phenomenologically by assuming that the
opening probability po increases with the activation potential
f following a Hill function [see Eq. (2)].

APPENDIX C: DERIVATION OF APPROXIMATION
FOR OPENING PROBABILITY

We want to find an expression for the opening probability
po and therefore also the instantaneous firing rate kf [Eq. (3)]
as a function of time. We therefore insert Eq. (1) into Eq. (2)
to obtain

po( f (v)) = vn m

f ∗ m (v∗ n + vn)m + vn m
(C1)

= vn m

f ∗ m v∗ n m (1 + ṽn)m + vn m
, (C2)

where we used ṽ = v/v∗. According to the binomial formula,
we can write

(1 + ṽn)m =
m∑

k=0

(
m

k

)
1k (ṽn)m−k (C3)

=
m∑

k=0

(
m

k

)
(ṽn)m−k, (C4)

with the binomial coefficient(
m

k

)
:= m!

k! (m − k)!
. (C5)

We introduce the shifted parameter k′ = k − m/2, such that
Eq. (C4) can be rewritten as

(1 + ṽn)m =
m/2∑

k′=−m/2

(
m

k′ + m
2

)
(ṽn)

m
2 −k′

. (C6)

By examining the first and the second terms of the sum in
Eq. (C6) separately, we find that the binomial coefficient has
a maximum at k′ = 0 and decays quickly for k′ �= 0 [see
Fig. 6(a)]. Second, as can be seen in Fig. 6(b), for small
k′ 
 ±m/2 and sufficiently large Hill coefficient m, the sec-
ond term is approximately given by

ṽn ( m
2 −k′ ) ≈ ṽ

mn
2 . (C7)

Combining these two observations, we can approximate
Eq. (C6) by

(1 + ṽn)m ≈
m/2∑

k′=−m/2

(
m

k′ + m
2

)
ṽ

mn
2 . (C8)

Finally, using that

m/2∑
k′=−m/2

(
m

k′ + m
2

)
= 2m, (C9)

we find

(1 + ṽn)m ≈ 2m ṽ
mn
2 . (C10)

Plugging this expression into Eq. (C2) gives

po(v) ≈ vn m

f ∗ m v∗ n m 2m ṽ
mn
2 + vn m

(C11)

= vn m

f ∗ m 2m v∗ nm
2 v

mn
2 + vn m

(C12)

= v
nm
2

f ∗ m 2m v∗ nm
2 + v

nm
2

. (C13)

For f ∗ = 0.5 we then find Eq. (5) of the main text with
the effective Hill coefficient neff = n m/2. By comparing the
approximation of po(v) in Eq. (5) to a function

pfit
o (v) = afit vnfit

eff

v∗ nfit
eff + vnfit

eff

(C14)

that was fitted to po( f (v)) [Eq. (C2)], we find that the ap-
proximation in Eq. (5) is indeed a good approximation for
sufficiently large Hill coefficients n and m, especially at vol-
ume close to the critical volume v∗ [Fig. 6(c)]. Indeed, the
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(a) (b)

(c) (d)

FIG. 6. The instantaneous opening probability can be approximated by a Hill function with an effective Hill coefficient. (a) The binomial
coefficient as defined in Eq. (C5) as a function of the index k′ for m = 10. The binomial coefficient is centered around and maximal at k′ = 0
and becomes small for k′  0. (b) The second term in Eq. (C6) for different values of the index k′ as a function of the rescaled volume
ṽ = v/v∗. For small values of k′, the second term in Eq. (C6) is well approximated by the term ṽ

n m
2 (dashed blue line). (c) The opening

probability of the origin po( f (v)) [Eq. (C2)] as a function of the volume per origin v for different Hill coefficients n and m (solid lines).
The effective Hill coefficient nfit

eff is obtained from a fit of the function po( f (v)) to a Hill function [Eq. (C14)]. The dashed lines show the
approximated opening probability [Eq. (5)] with the effective Hill coefficient as defined in Eq. (6). The vertical dotted line indicates the critical
volume per origin, v∗, at which the opening probability equals 1/2. (d) The fitted (solid line) and the approximated [dashed line, Eq. (6)] Hill
coefficient as a function of the Hill coefficient n for different values of the Hill coefficient m. Except for very low Hill coefficients n and m, the
approximated Hill coefficient agree well. In all graphs f ∗ = v∗ = 0.5. (See Table I for all parameters.)

fitted Hill coefficient agrees well with the approximated Hill
coefficient in Eq. (6) for a broad range of Hill coefficients n
and m, respectively [Fig. 6(d)].

APPENDIX D: PARAMETER CHOICE
FOR MAXIMAL FIRING RATE

Combining the approximation for the opening probabil-
ity as a function of the volume per origin [Eq. (5)], the
exponentially growing cell volume V (t ) = Vb eλ t , and the ex-
pression for the firing rate [Eq. (3)], we find the following
time-dependent firing rate of a single origin:

kf (t ) = k0
f

(Vb eλ t )neff

v∗ neff + (Vb eλ t )neff
. (D1)

From this rate, we can calculate the survival probability

S(t ) = e− ∫ t
t0

dt ′kf (t ′ ) (D2)

= e
− k0

f
neff λ

ln
(

(Vb eλ t )neff +v∗ neff

V
neff
b +v∗ neff

)
, (D3)

where we solved the integral with the initial condition
S(t0 = 0) = 1. We now impose that at the theoretical initiation
volume per origin, v(t = t∗) = v∗, the survival probability
is exactly S(t∗) = 0.5. Using this constraint, we obtain the
following expression for the maximal firing rate as a function
of the effective Hill coefficient neff :

k0
f (neff ) = neff λ ln(2)

ln
(

2 v∗neff

V
neff

b +v∗neff

) . (D4)

This parameter choice ensures that the average initiation vol-
ume 〈v∗〉 is given by v∗.
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FIG. 7. The average degree of synchrony does not depend
strongly on the growth rate of the cell. The average degree of syn-
chrony, 〈s〉, as a function of the duration of the licensing period τl for
different cell-doubling times τd. The average degree of synchrony,
〈s〉, is to a good approximation independent of the doubling time
τd. The small decrease in the degree of synchrony at high licens-
ing times τl at a doubling time of τd = 32 min is because at this
doubling time replication initiation happens almost at the same time
as cell division. When the cell divides during an initiation cascade,
the number of origins decreases and the counted total number of
origins at the end of the cascade is smaller than the total number of
origins in both daughter cells. This error in counting the total change
in the number of origins, �nori, in Eq. (4) effectively reduces the
degree of synchrony, especially for long initiation durations (high
licensing times τl). The decrease in the minimal average degree of
synchrony, 〈s〉 (at τl = 0), with increasing growth rate comes from
the overall higher number of origins at higher growth rates and thus
a higher denominator in Eq. (4). The effective Hill coefficient is set
to neff = 50. (See Table I for all parameters.)

APPENDIX E: DERIVATION OF THE THEORETICAL
PREDICTION FOR THE DEGREE OF SYNCHRONY

In the following, we derive a theoretical prediction for the
probability that two initiation events happen within a time
interval τl . We assume here that the two firing events are sta-
tistically independent, meaning that between the first initiation
event at time t1 and the time t1 + τl , the change in the number
of origins induced by the first event has no effect on the firing
of the second event. Using the firing rate in Eq. (D1), we can
now calculate the error probability Serr that the second event
does not happen within a time τl after the first event, given that
the first event happened at time t1:

Serr (t2 − t1 > τl|t1) = e− ∫ t1+τl
t1

dt ′kf (t ′ ) (E1)

= e
− k0

f
neff λ

log
(

(Vb eλ (t1+τl ) )neff +v∗ neff

(Vb eλ t1 )neff +v∗ neff

)
. (E2)

The average error probability 〈Serr〉 over all initiation times of
the first event, t1, is then given by

〈Serr〉 =
∫ τd

0
dt1 q1(t1) Serr (t2 − t1 > τl|t1) (E3)

=
∫ τd

0
dt1 q1(t1) e− ∫ t1+τl

t1
dt ′kf (t ′ )

, (E4)

where τd is the doubling time of the cell. The propensity q1(t1)
that one out of two origin events happens at time t1 is given by

q1(t1) = 2 kf (t1) e− ∫ t1
t0

dt ′2 kf (t ′ )
. (E5)

Therefore, the average error probability 〈Serr〉 that the second
origin fires after a time τl after the first event is given by
plugging expression (E5) into Eq. (E4):

〈Serr〉 = 2
∫ τd

0
dt1 kf (t1) e−2

∫ t1
t0

dt ′kf (t ′ ) e− ∫ t1+τl
t1

dt ′kf (t ′ ) (E6)

= 2 k0
f

∫ τd

0
dt1

(Vb eλ t1 )neff

v∗ neff + (Vb eλ t1 )neff

× e
− 2 k0

f
neff λ

ln
(

(Vb eλ t1 )neff +v∗ neff

V
neff
b +v∗ neff

)
e
− k0

f
neff λ

ln
(

(Vb eλ (t1+τl ) )neff +v∗ neff

(Vb eλ t1 )neff +v∗ neff

)
,

(E7)

where τd is the average division time of the cell and τd  τl,
such that the probability that both origins have not yet fired
at τd becomes negligible. The average probability that the
second origin fires within a time interval �t = t2 − t1 < τl

after the first has fired at t1 is then given by

〈P(�t < τl )〉 = 1 − 〈Serr (τl )〉. (E8)

We solve the integral in Eq. (E7) numerically and use expres-
sion (7) to predict the degree of synchrony for two origins [see
Fig. 3(b)].

One can also calculate numerically the degree of synchrony
at higher growth rates where there are typically four or more
origins per cell at the beginning of an initiation cascade. The
probability that none of the n − 1 origins fires within the time
τl after the first origin has fired at t1 is similar to Eq. (E7) and
given by

〈Serr〉 = n
∫ τd

0
dt1 kf (t1) e−n

∫ t1
t0

dt ′kf (t ′ ) e−(n−1)
∫ t1+τl

t1
dt ′kf (t ′ )

.

(E9)
This is the probability that, given that the first origin fires at t1,
all n − 1 other origins fire later than t1 + τl. Importantly, one
now also needs to take into account the cases where only one
or more origins fire at t1 + τl and the others fire before. We
here do not derive an expression for the scenario n > 2.

APPENDIX F: DERIVATION OF THEORETICAL
PREDICTION FOR 〈�t〉 AND THE CV

OF THE INITIATION VOLUME

The average time interval between two independent firing
events, 〈�t〉, can be calculated for the approximate opening
probability in Eq. (5) via

〈�t〉 =
∫ τd

0
dt1

∫ τd

t1

dt2 2 kf (t1) kf (t2) e−2
∫ t1

t0
dt ′kf (t ′ )

× e− ∫ t2
t1

dt ′′kf (t ′′ )
. (F1)

Solving this integral numerically gives the pink line in
Fig. 3(b).

013007-15



MAREIKE BERGER AND PIETER REIN TEN WOLDE PRX LIFE 1, 013007 (2023)

10 20
neff

200

400

600

800

k0 f
[h

1 ]

(a) (b)

10 20
neff

200

400

600

800

k0 f
[h

1 ]

FIG. 8. In the coarse-grained model, the average time interval between the first and the last firing event, 〈�t〉, and the average degree of
synchrony, 〈s〉, depend both on the effective Hill coefficient neff and on the maximal firing rate k0

f . These contour plots show (a) the average
time interval between the first and last origin firing event, 〈�t〉, and (b) the theoretical degree of synchrony, sth [according to Eq. (7)], as a
function of the effective Hill coefficient neff and the maximal firing rate k0

f for the licensing period τl = 9.6 min < τb at the experimentally
observed blocking period of τb = 10 min. The dashed gray lines are given by Eq. (D4) and correspond to the parameter choice in the main text
where the average initiation volume 〈v∗〉 = v∗ (see Appendix D). For a given Hill coefficient neff both 〈�t〉 and 〈s〉 first increase as a function
of the maximal firing rate k0

f and then converge to a constant value for higher maximal firing rates. Therefore, at a higher maximal origin firing
rate than in Fig. 3(a) the effective Hill coefficient can be lower to achieve the same degree of synchrony. However, panel (a) shows (and the
inset more clearly) that there is a minimal neff necessary to reach the experimentally reported maximal bound on 〈�tmax

expt 〉, corresponding to the
limit k0

f → ∞. The red vertical lines show that to initiate replication within at least 〈�tmax
expt 〉 = 4 min, the minimal Hill coefficient required in

the regime of firing rates (k0
f → ∞) is neff = 20. This corresponds to a high degree of synchrony of sth ≈ 0.96 (corresponding to Ps ≈ 92%)

[see panel (b)]. Therefore, the finding of the main text that a high Hill coefficient is required for a high degree of synchrony remains valid. (See
Table I for all parameters.)

The theoretical coefficient of variation of the initiation
volume V is given by

CV = σ

μ
=

√
〈V 2〉 − 〈V 〉2

〈V 〉 , (F2)

where we use

〈V 〉 =
∫ τd

0
dt kf (t ) e− ∫ t

t0
dt ′kf (t ′ ) Vb eλ t (F3)

and

〈V 2〉 =
∫ τd

0
dt kf (t ) e− ∫ t

t0
dt ′kf (t ′ ) (Vb eλ t )2. (F4)

In this theoretical model, the only source of noise is intrinsic
noise and the CV in Eq. (F2) therefore also corresponds to the
intrinsic noise as defined by Ref. [7] based on the derivation
of Elowitz et al. [56].

APPENDIX G: THE LDDR MODEL

The LDDR model contains all known (de)activators of
DnaA with their temporal regulation over the course of the
cell cycle: the number of catalytic RIDA complexes is pro-
portional to the number of origins with a rate βrida [31,53]
that is only non-zero during the period of active replication
TC. The chromosomal sites DARS1 and DARS2 are located
near the middle of the chromosome and are replicated at
constant times τd1 and τd2, respectively, after the origin.
The activity of DARS2 is temporally regulated during the
cell cycle via binding of the integrating host factor (IHF)
[13,16,26]. We model this observation via a step function

αd2(t − ti ) that switches to a high value α+
d2 at t = ti + τ+

d2
and back to a low value α−

d2 at t = ti + τ−
d2 after replication

initiation at ti. DARS1 activation is modeled via a constant
activation rate αd1. We further assume that the concentra-
tion of the acidic phospholipids [l] is constant in time and
that DnaA is activated by the lipids with a rate αl. Finally,
we assume that every newly synthesized DnaA binds ATP
rather than ADP right after synthesis. The change in the ATP-
DnaA fraction f (t ) in the LDDR model is therefore given
by:

df

dt
= (

α̃l [l] + α̃d1 [nori(t − τd1)]

+ α̃d2(t ) [nori(t − τd2)]
) 1 − f

K̃D + 1 − f

− (
β̃datA + β̃rida (t )

)
[nori]

f

K̃D + f
+ λ (1 − f ) (G1)

with the re-normalized activation and deactivation rates
α̃l = αl/[D]T, α̃d1 = αd1/[D]T, α̃d2 = αd2/[D]T, β̃datA =
βdatA/[D]T and β̃rida = βrida/[D]T and the Michaelis-Menten
constant K̃D = KD/[D]T. All parameters are described in
more detail in our previous paper [25] and their values are
listed in Table I.

APPENDIX H: DEFINITION OF THE INITIATION
DURATION IN LDDR AND LDDR-TITRATION MODELS

While a synchronization parameter cannot be defined
uniquely, we will define one to quantify the degree to which
replication is initiated synchronously and then show that the
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FIG. 9. The initiation cascade does not significantly enhance the degree of synchrony. [(a), (b)] The volume V (t ), free DnaA concentration
(independent of whether DnaA is bound to ATP or ADP) [D]T,f (t ), the ATP-DnaA fraction f (t ), and the free ATP-DnaA concentration
[D]ATP,f (t ) as a function of time (in units of the doubling time of the cell, τd = 0.67 h = 40 min) for a critical free ATP-DnaA concentration of
[D]∗f,ATP = 10 µm−3 (a) with and (b) without the initiation cascade. For illustration purposes, replication is here initiated deterministically at all
origins as soon as the critical free ATP-DnaA concentration in the cell is reached. (a) When the free ATP-DnaA concentration approaches the
critical free ATP-DnaA concentration of [D]∗f,ATP, ATP-DnaA proteins begin to bind to the weak, cooperative origin binding sites. This leads
to a decrease in the rise of the free DnaA concentration right before replication initiation. Upon replication initiation, the bound ATP-DnaA
proteins become unavailable, leading to a sharp increase in the free DnaA concentration. (b) For comparison, we here also show the time
traces of a system in which the origin binding sites are not modeled explicitly and the only binding sites are the strong DnaA boxes distributed
homogeneously all over the chromosome. (c) The average degree of synchrony, 〈s〉, as a function of the replication time of the site datA, τdatA,
and the onset time of RIDA, τrida, for the same parameters as in Fig. 5(d). Comparing the two panels reveals that the initiation cascade does not
significantly enhance the degree of synchrony. For each parameter pair in (c), the average degree of synchrony was obtained from N = 1000
consecutive cell cycles. (See Table I for all parameters.)

result is fairly robust to the precise definition. Specifically,
the degree of synchrony is obtained by counting the number
of origin firing events per initiation event, where the initia-
tion duration τi is a parameter that we will choose carefully
[Fig. 2(a)]. In the coarse-grained model, an initiation event
starts when the first origin initiates and ends after the licens-
ing period is over. As after the end of the licensing period

the initiation potential drops instantaneously to a very low
value, reinitiation events after the end of the licensing period
are very unlikely in the coarse-grained model. In the LDDR
model, the active fraction f does not, however, decrease in-
stantaneously after RIDA has started and the site datA has
been doubled [Fig. 4(c)]. Therefore, it is less clear what the
initiation period should be. We test the effect of varying the
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end of 2nd replication

1st replication 
inititiation

2nd replication 
inititiation

t1 t2
* *

end of 1st replication

2nd division

1st division

C period D period 

FIG. 10. Scheme of the cell cycle of E. coli that shows how
each origin firing event triggers cell division a fixed cycling time
later. At doubling times that are shorter than the time to replicate
the entire chromosome and divide (C+D period), cells are typically
born with an ongoing round of chromosomal replication. Here, we
illustrate replication initiation in the growth-rate regime with two
origins of replication at the beginning of the cell cycle. Replication
is initiated stochastically at each origin (yellow circles) at times t1

and t2, respectively, and the replication forks (blue triangles) advance
towards the terminus (gray bar) with a constant replication speed. In
our model, each initiation event triggers cell division a fixed cycling
time τcc = TC + TD after replication has been initiated. This ensures
that a cell never divides before the entire chromosome has been
replicated. Note that “1st division” (“2nd division”) corresponds to
the division event triggered by the “1st replication initiation” (“2nd
replication initiation”) event in the mother cell.

initiation duration τi on the average degree of synchrony,
〈s〉, for different starting times of RIDA, τrida (Fig. 4). The
average degree of synchrony, 〈s〉, varies strongly with the
initiation duration in parameter regimes where replication is
initiated asynchronously: at very low starting times of RIDA,
τrida, replication is underinitiated [Fig. 4(b)], but the degree
of synchrony nevertheless becomes larger than one at high
initiation durations τi > 0.6τd (Fig. 11). The larger the ini-
tiation duration τi the more origin firing events are counted
per initiation event, leading to an average degree of synchrony
that is larger than one. Conversely, when the RIDA is start-
ing too late and replication is overinitiated [Fig. 4(b)], the
degree of synchrony can nevertheless be smaller than one
if the initiation duration is chosen too short. At the optimal
starting time of RIDA of τrida = 0.1 h ≈ 6 min, where repli-
cation is initiated synchronously, the choice of the initiation
duration becomes, however, less relevant: because all origin
firing events happen within a relatively small time window,
increasing the initiation duration further does not change the

FIG. 11. The average degree of synchrony, 〈s〉, depends strongly
on the initiation duration when replication is initiated asyn-
chronously, but not when replication is initiated synchronously. The
average degree of synchrony, 〈s〉, as a function of the starting time
of RIDA, τrida, for varying initiation durations τi (in units of the
doubling time τd) for the LDDR model. The degree of synchrony
s is obtained by counting the number of origin firing events from
the first origin firing until the end of the initiation duration τi. When
replication is initiated synchronously at all origins within a short
time interval (at τrida ≈ 0.1 h), the average degree of synchrony does
not depend strongly on the initiation period τi. When origins are,
however, initiated asynchronously over the course of the cell cycle,
the average degree of synchrony can either be smaller or larger than
one, depending on the duration τi. In the rest of this paper, we use
an intermediate initiation duration of τi = 0.4τd. (See Table I for all
parameters.)

degree of synchrony significantly. Only if the initiation du-
ration is chosen way too small (τi = 0.2 τd ≈ 8 min) or too
large (τi = 0.9 τd ≈ 36 min) does the average degree of syn-
chrony become smaller or larger than one. We therefore in
the following choose an intermediate initiation duration of
τi = 0.4 τd ≈ 16 min.

APPENDIX I: THE LDDR-TITRATION MODEL

In the LDDR-titration model, the initiation potential is
given by the free ATP-DnaA concentration in the cell. We
explicitly model the change in the total number of DnaA
proteins N tot

D over the course of the cell cycle as described in
Ref. [25], such that the change in copy number N tot

D is given
by

dN tot
D

dt
= φ0 ρ λV

1 +
(

[D]T,f

Kp
D

)m (I1)

with gene allocation fraction φ0, number density ρ, growth
rate of the cell λ, dissociation constant of the promoter Kp

D,
Hill coefficient m and total DnaA concentration in the cyto-
plasm [D]T,f = N f

D/V . Each chromosome contains a constant
number of 300 homogeneously distributed titration sites and
the initiator proteins can be either freely diffusing in the
cytoplasm or bound to these titration sites with a dissociation
constant of K s

D. As explained in Ref. [25], due to fast binding
and unbinding dynamics of the initiator protein to the titration
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sites, we assume for simplicity a quasiequilibrium state and
use a quadratic equation to calculate at every time step the
concentration of initiators [D]T,f freely diffusing in the cy-
toplasm. When a new round of DNA replication is initiated,
the number of titration sites on that chromosome increases
linearly from the moment of initiation of replication ti until
the end of replication at ti + TC.

Using several assumptions that are discussed in detail in
Ref. [25], the free ATP-DnaA concentration [D]ATP,f is then
given by the concentration of free DnaA [D]T,f times the
active fraction of DnaA f :

[D]ATP,f (t ) = [D]T,f (t ) × f (t ) (I2)

APPENDIX J: MODEL FOR THE INITIATION CASCADE

To initiate DNA replication, eight ATP-DnaA proteins and
three DnaA proteins independent of the nucleotide-binding
state form a cooperative complex at the origin, which induces
a conformational change and leads to the opening of the
origin [13]. Consequently, the DNA replication machinery
binds to the open origin, and replication is initiated. Upon
replication initiation, the DnaA proteins that were bound to
the origin are likely being released into the cytoplasm, leading
to a transient rise in the free DnaA concentration. It has
been suggested that the release of origin-bound DnaA proteins
from one origin triggers replication initiation at the remaining
origins in a so-called initiation cascade [48]. Here we propose
a model to test whether the rise in the free DnaA concentration
upon replication initiation at one origin could be sufficient to
trigger replication initiation at the other origins.

So far, we have modeled the origin opening and firing
process in a coarse-grained manner using a Hill function as a
function of the initiation potential for the opening probability
of the origin (see Appendix B). Now, we instead model the
binding of ATP-DnaA to the origin explicitly by introducing
weak, cooperative binding sites for ATP-DnaA proteins at the
origin. Specifically, we neglect the three strong binding sites
to which both ATP- and ADP-DnaA can bind and assume that
there are n weak binding sites with the dissociation constant
Kori

D to which only ATP-DnaA can bind cooperatively. The
probability that n ATP-DnaA proteins are bound to the origin
is given by

pn
b = Zn

b∑N
i=0 Zi

, (J1)

where Zn
b is the partition function of n proteins bound to the

origin and
∑N

i=0 Zi is the sum over all possible configurations
the origin can be in. Let us first consider the scenario of only
two cooperative binding sites. This gives rise to the following
probability that two ATP-DnaA proteins are bound to the
origin:

p2
b = Z2

b

Z0
b + 2 Z1

b + Z2
b

. (J2)

The statistical weight of zero bound ATP-DnaA proteins is
normalized to one, Z0

b = 1, and the weight of one bound
ATP-DnaA protein is given by Z1

b = [D]f,ATP/KD with the dis-
sociation constant KD = c−1

0 e−β �G and the free ATP-DnaA
concentration [D]f,ATP. The weight of two bound ATP-DnaA

proteins is then given by Z2
b = w [D]2

f,ATP/K2
D, where w =

eβ �E accounts for the additional energy gain from cooperative
binding of two ATP-DnaA proteins. When cooperative bind-
ing is very strong then �E  �G and we can neglect terms
with lower powers of w:

p2
b ≈ Z2

b

Z0
b + Z2

b

= w [D]2
f,ATP/K2

D

1 + w [D]2
f,ATP/K2

D

= [D]2
f,ATP( KD√

w

)2 + [D]2
f,ATP

.

(J3)

This expression can be generalized to the case of n strongly
cooperative ATP-DnaA origin binding sites:

pn
b ≈ [D]n

f,ATP( KD
n√w

)n + [D]n
f,ATP

. (J4)

We therefore recover expression (2) for the origin opening
probability in the coarse-grained model where now the critical
free ATP-DnaA concentration is given by [D]∗ATP,f = KD/ n

√
w.

In order to calculate the free DnaA concentration [D]f in
the scenario where both DnaA forms can bind to the 300
homogeneously distributed strong binding sites on the chro-
mosome and ATP-DnaA can additionally bind cooperatively
to n weak binding sites on the origin, we write down the
following expression:

[D]f = [D]T − [D]s − [D]o, (J5)

where [D]T is the total DnaA concentration in the cell, [D]s

is the concentration of titration-site bound DnaA, and [D]o is
the origin-bound concentration of ATP-DnaA. An expression
for the titration-site bound concentration [D]s as a function
of the free DnaA concentration [D]f is obtained from the
quasiequilibrium approximation as explained in Ref. [25],

[D]s = [s]T [D]f

K s
D + [D]f

, (J6)

with the total titration site concentration [s]T and the dissoci-
ation concentration of the titration sites K s

D. The origin-bound
ATP-DnaA concentration [D]o is given by the probability pn

b
that n ATP-DnaA proteins are bound to the origin times the
total concentration of proteins that can be bound to these ori-
gin sites. This total concentration is given by the concentration
of origins that are available for ATP-DnaA binding [nf

ori] times
the number of binding sites per origin, n. Therefore, we obtain
the following expression for the free DnaA concentration:

[D]f = [D]T − [s]T [D]f

K s
D + [D]f

− n
[
nf

ori

]
([D]f f )n( KD

n√w

)n + ([D]f f )n
. (J7)

We here made the simplifying assumption that the free ATP-
DnaA concentration [D]f,ATP is given by the ATP-DnaA
fraction f times the free DnaA concentration [D]f . This is
a reasonable approximation because the number of origin
binding sites is small compared to the total number of DnaA
proteins and the total number of titration sites. The total
fraction of ATP-DnaA proteins in the cell f is therefore ap-
proximately equal to the fraction of ATP-DnaA proteins in the
cytoplasm. Importantly, as explained in Ref. [25], we assume
that the switch components (de)activate DnaA independent of
whether it is bound to the chromosome (either titration sites
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or origin sites) or freely diffusing in the cytoplasm. We solve
Eq. (J7) numerically at every time step of the simulations
given the total titration site concentration [s]T, the total DnaA
concentration [D]T, and the total number of ATP-DnaA avail-
able origin binding sites [nf

ori]. Replication is again initiated
stochastically at every origin with a rate kf = k0

f pn
b. We model

the effect that DnaA proteins are released to the cytoplasm
upon replication initiation by transiently reducing the number
of available origin binding sites for a duration of τb = 10 min
after an origin has initiated replication.

Modeling the ATP-DnaA binding to the origins explicitly
does not significantly increase the degree of synchrony for a
broad range of parameters. When the free ATP-DnaA concen-
tration rises and approaches the critical free ATP-DnaA con-
centration [D]∗ATP,f , ATP-DnaA begins to bind cooperatively
to the origin binding sites. This causes a weaker rise in the free
DnaA concentration right before replication initiation as com-

pared to a system without these origin binding sites [Figs. 9(a)
and 9(b)]. After an origin has been initiated, the origin bind-
ing sites become unavailable, causing an increase in the free
DnaA concentration after replication initiation [Figs. 9(a)
and 9(b)]. While this increase should enhance the probability
of other origins to fire replication as well, the weaker rise in
the free concentration before replication initiation reduces the
sharpness of the rise in the free ATP-DnaA concentration and
should therefore lead to a decrease in the degree of synchrony.
Indeed, comparing the simulations in which the origin binding
is modeled explicitly [Fig. 9(c)] to the previous model in
which we simply used a Hill function for the opening prob-
ability [Fig. 5(d)] shows that the degree of synchrony is not
significantly enhanced by the initiation cascade. The reason
likely is that the positive effect of the initiation cascade is
counterbalanced by the negative effect of a lower rise in the
free concentration before replication initiation.
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