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Recent advances in machine learning (ML) are expediting materials discovery and design. One signifi-
cant challenge facing ML for materials is the expansive combinatorial space of potential materials formed
by diverse constituents and their flexible configurations. This complexity is particularly evident in molecu-
lar mixtures, a frequently explored space for materials, such as battery electrolytes. Owing to the complex
structures of molecules and the sequence-independent nature of mixtures, conventional ML methods have
difficulties in modeling such systems. Here, we present MolSets, a specialized ML model for molecular
mixtures, to overcome the difficulties. Representing individual molecules as graphs and their mixture as
a set, MolSets leverages a graph neural network and the deep sets architecture to extract information at
the molecular level and aggregate it at the mixture level, thus addressing local complexity while retaining
global flexibility. We demonstrate the efficacy of MolSets in predicting the conductivity of lithium battery
electrolytes and highlight its benefits in the virtual screening of the combinatorial chemical space.
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I. INTRODUCTION

The design of materials and molecules requires an
understanding of the structure–property relationships in a
broad chemical space. Navigating the chemical space is
challenging because the combinatorial complexity, orig-
inating from the diversity of constituents (e.g., atoms)
and various configurations of the constituents (e.g., atomic
arrangements), forms an expansive space with the number
of candidates far exceeding the capability of experiments
or computational simulations [1]. Despite the challenges,
growing amounts of data have been collected experimen-
tally and computationally in this pursuit. Machine learning
(ML) methods can harness these data and efficiently estab-
lish valuable structure–property relationships [2]. ML has
manifested potential in predictive modeling, virtual screen-
ing, as well as accelerating the design of novel materials
and molecules [3–5].
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For many materials systems of practical importance,
however, the combinatorial complexity occurs not only at
one level but at multiple levels. An example is molecu-
lar mixtures, a chemical space frequently explored in the
search for electrolytes [6], coolants, and fuels [7], among
others. Previously, ML models have been applied to phys-
ical properties in small subspaces [8,9], such as a binary
liquid. The applicability of current ML models in pre-
dicting more complex properties within a broader space
of molecular mixtures is limited by the multilevel com-
binatorial complexity. The arrangement of various atoms
produces complexity at the molecular level, whereas the
mixing of different molecules brings added complexity at
the mixture level. The key challenge lies in representation
[10], i.e., converting the structure into a digital format that
the ML model can access and use. To accurately learn the
structure–property relationships of molecular mixtures, it
is crucial to find a meaningful representation that both (1)
captures the relevant physical and chemical information
and (2) reflects the similarity between data points.

Specifically, the challenge of representing mixtures
and predicting their properties is threefold. First, for an
individual molecule, the property is determined by its
chemical composition and geometry, which should be
encoded in the representation and exposed to the model.
The atomic properties and molecular geometry form the
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essential chemistry to be captured. Owing to their ver-
satility in encoding this information, graphs have been
widely adopted as a representation of molecules. Using the
graph representation, graph neural networks (GNNs) have
demonstrated efficacy in molecular modeling and design
applications [11–14]. Second, between molecules, there
are interactions that influence their structures and behav-
iors, making the mixture property nonadditive, which
requires flexible methods that do not a priori assume a
form of constituent interactions. Last, a random mixture
is sequence-independent, i.e., (30% A, 70% B) is the same
as (70% B, 30% A). In conventional ML models, which
take vector inputs, the two ways of representing the same
mixture will be viewed differently; this fails to reflect the
similarity between data points and lacks robustness or effi-
ciency [15]. To address this, the representation should pos-
sess permutation invariance, as “sets” in mathematics, and
ML model architectures, such as deep sets [16,17], were
developed for attaining permutation invariant modeling
of sets.

Here, we represent a molecular mixture as a set of
molecular graphs, encoding the “chemistry” (formulation
and interactions) at both the molecular and mixture lev-
els, and propose the MolSets ML model for predicting
mixture properties from this representation. MolSets lever-
ages (1) the GNN to extract information from molecu-
lar chemistry and geometry, (2) the attention mechanism
[18] to learn the relative importance and interaction of

constituents, and (3) the deep sets architecture to ensure
permutation invariance. We demonstrate the predictive
power and interpretability of MolSets in modeling the
ionic conductivity of molecular mixtures to facilitate the
virtual screening of electrolytes for lithium-based batteries.

II. PROBLEM FORMULATION

The electrolyte is an essential component of various
types of batteries [19,20], and a major family of elec-
trolytes are solid, liquid, or gel mixtures of molecules
or polymers [21–23]. Broadly, we may view these all as
molecular mixtures, with a single-component molecule as
a special case thereof. The design of electrolytes involves
a range of metrics to be considered, including properties
such as ionic conductivity, electrochemical stability win-
dow, chemical or electrochemical stability in contact with
the cathode and anode, solvation structure, Coulombic effi-
ciency, safety, cost, and sustainability. To demonstrate our
proposed MolSets model, we choose the room tempera-
ture (298 K) ionic conductivity as a target property to be
predicted from the molecular mixture formulation (con-
stituents and their weight fractions). Figure 1 illustrates the
problem formulation. Predicting conductivity serves as a
preliminary step for the virtual screening of electrolytes,
offering hints towards their actual performance and solva-
tion structure. It should be noted that the MolSets model

Solvent 1
1

…

Solvent 2
2

Solvent 3
3

Li+ salt
38 Li+ salts

168 solvents

1/

lo
g

Room T
conductivity

Molecular 
mixture

Battery 
electrolyte

FIG. 1. Overview of the electrolyte conductivity prediction problem. We consider molecular mixtures consisting of 1–4 solvents
and one Li+ salt in a candidate space of 168 types of solvents and 38 types of salts. Structures of some representative constituents
are visualized. Solvents include both small molecules and polymers; for polymers, we show the structures of their monomers, where
“Cu” and “Au” are placeholders to indicate the connecting sites of the monomer. (Cu and Au are not included in the molecular graph.)
Our model is used to predict the room temperature conductivity of a molecular mixture as an indicator of its potential as a battery
electrolyte.
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is generally applicable to other properties or performance
metrics as well.

We retrieved a dataset curated by Bradford et al. [6]
from the previously published literature. The dataset
reports the experimentally measured conductivity of poly-
mer or molecular mixtures, each consisting of up to four
types of molecules, together with Li+ salts and inorganic
additives. To avoid missing values, we select a subset
of 1076 distinct mixtures, each of which is formulated
of 1–4 different molecules and one salt, as a testbed for
MolSets. Note that not all mixtures have conductivity
reported at 298 K in the dataset, but they all have con-
ductivities reported at multiple different temperatures. We
use the reported ionic conductivities, σ , to perform a lin-
ear fit based on Arrhenius transport, which is widely used
in modeling the conductivity of both small molecule and
polymer mixtures [24,25]:

log σ = − Ea

RT
+ log σ∞ = k

1
T
+ b, (1)

where the temperature dependence, k, is related to the acti-
vation energy, Ea, and the ideal gas constant, R. With the
linear fit, we calculate an inferred 298 K conductivity for
the mixtures without a reported value in the dataset.

III. MODEL DEVELOPMENT

A. Deep sets learning

A mixture with arbitrary constituents can be represented
as a set, X = {x1, x2, . . . , xm}, where each x is a distinct
constituent, and the number of constituents, m, is not
fixed. To model a mixture property, y = f (X ), permuta-
tion invariance should be ensured for any permutation of
sequence π :

f ({x1, . . . , xm}) = f ({xπ(1), . . . , xπ(m)}). (2)

Without permutation invariance, an ML model may learn
a false dependence of y on the sequence of constituents in
X, thus lacking robustness to different ways of representing
the same mixture. A model-agnostic solution is to include
mixtures in various sequences in the training data. How-
ever, this leads to higher computational cost that grows
significantly with the number of constituents in a mixture,
thus lacking efficiency and limiting the scalability.

A more efficient and robust approach is to enforce
permutation invariance by design of the model architec-
ture. The deep sets architecture defines the sufficient and
necessary principle for that:

f (X ) = ρ

(∑
x∈X

φ(x)

)
, (3)

or, equivalently, f (X ) = ρ(⊕x∈X {φ(x)}), where φ(·) and
ρ(·) are appropriate transformations, and ⊕ is any permu-
tation invariant aggregating operation.

A unique feature of molecular mixtures is that the
set representation becomes X = {(xi, wi)}mi=1 , where each
molecule x has a weight fraction w in the mixture. The
permutation invariant model is modified accordingly:

f (X ) = ρ(⊕(x,w)∈X {φ(x), w}). (4)

In our implementation, the model consists of three compo-
nents: (1) an “embedding” module, φ, that learns a latent
representation for each molecule; (2) an “aggregation”
module, ⊕, that combines representations of individual
molecules into a latent representation for the mixture; and
(3) a “transformation” module, ρ, that maps the mixture
representation to the target property. Figure 2(a) illustrates
the overall model architecture.

B. Molecular graph neural network

We convert a molecule into the graph data structure,
G = (V, E), where the nodes V represent heavy atoms (any
element except H) in the molecule, and edges E represent
the bonds between them. Every node is associated with
a list of features. To make it generalizable, we use only
the element type and easily obtainable atomic descriptors
for an atom: atomic mass, formal charge, electronegativ-
ity, van der Waals radius, and the number of H atoms
connected to it. Every bond is associated with one fea-
ture, the bond type (aliphatic, aromatic, single, double,
etc.). The atomic and bond descriptors are obtained using
open-source cheminformatics software RDKit [26] and
PYMATGEN [27]. In addition, to distinguish between small
molecules and polymers, we associate every graph with
the logarithmic molecular weight, log M , as a graph-level
feature.

We use a GNN to learn the molecular representations.
As Fig. 2(b) shows, for an input graph, the GNN performs
message passing between connected nodes using a “graph
convolution” operator:

v′i ← MP(vi, vj , eij )j∈N (i) for vi ∈ V. (5)

In one convolutional layer, the feature vector of every node
is updated using a “message” derived from features of its
neighbor nodes and edges between them. How the message
is derived varies, depending on the type of convolution
operator. After several convolutional layers, the global
mean value vector of all node features is calculated. This
vector is concatenated with log M and goes into a fully
connected layer, which generates a vector representation
of the graph.
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FIG. 2. (a) Architecture of MolSets. (b) Embedding module φ is a graph neural network, which performs iterative message passing
between nodes and reads out all node features to form a representation of the molecule. (c) Aggregation module ⊕ first uses the
attention mechanism to adjust the molecular representations according to their importance, and then performs a weighted sum to form
a mixture representation. Transformation module ρ is a multilayer perceptron composed of several fully connected layers that maps
the mixture representation to the target property.

C. Aggregation with attention mechanism

The φ module maps every molecular graph x to a vec-
tor representation z. To aggregate the individual molecular
representations and weight fractions {(zi, wi)}mi=1, an intu-
itive way is to perform a weighted summation. However,
a constituent’s contribution to the mixture property is not
solely linearly dependent on its weight fraction. We use the
attention mechanism [18] to more accurately capture the
constituents’ contributions. For each molecular representa-
tion z, a “query” vector q is calculated by q = z ·WQ, with
learnable parameters WQ, and similarly two other vectors,
“key” k and “value” v. Then, a “score” that reflects the
molecule’s importance is derived from q and k, from which
we get an updated molecular representation:

z′ = score · v = softmax
(

q · kT

√
dk

)
· v, (6)

where dk is the length of k, and softmax(·) is a vector
function:

σ(x)i = exp xi∑n
j=1 exp xj

,

for any vector x = [x1, . . . , xn]. The updated representation
does not change in dimension, but its value is modu-
lated according to its importance. In addition, permutation

invariance is maintained as the attention mechanism oper-
ates on each molecule separately with shared parameters.

Afterward, from the updated representations of mole-
cules, the representation of the mixture is computed as a
weighted sum: Z =∑m

i=1 wiz′i. These form the aggrega-
tion module,⊕, which maps an arbitrary number of molec-
ular representation vectors into a single mixture represen-
tation, as shown in Fig. 2(c). The aggregation formulation
accounts for the weight fractions of constituent molecules,
as well as the nonadditive or nonlinear contributions of
constituents on the mixture property.

D. MolSets model architecture

Based on the deep sets guidelines [Eq. (4)] and the two
modules described above, we propose the MolSets model
architecture, illustrated in Fig. 2. A molecular mixture is
input as a set of graphs. The graphs are mapped by a GNN-
based embedding module, φ, to representation vectors,
which are then aggregated to a mixture representation vec-
tor by the ⊕ module. Finally, the transformation module,
ρ, a few layers of fully connected neural network, maps the
mixture representation to the output, i.e., the target prop-
erty of the mixture. Table I lists the detailed specifications
of the MolSets model.
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TABLE I. Implementation of three modules of MolSets and hyperparameters that could impact the model architecture.

Module Implementation Key hyperparameters

Embedding φ Graph convolutional layers Convolution operator type; number and dimensions of layers
Global mean pooling
Fully connected layer Dimension of representation

Aggregation ⊕ Attention layer Dimensions of q, k, v
Weighted sum

Transformation ρ Fully connected layers Number of layers; dimensions of hidden layers

IV. RESULTS AND DISCUSSION

A. Model testing

As a demonstration of MolSets, we perform tests on
the electrolyte conductivity prediction task described in
Sec. II. Since an electrolyte contains two different types
of molecules, solvents and salts, they can be treated either
together or separately in the model. Here, we adopt a more
general setting: constituents can be grouped into several
categories, and a molecular mixture can be considered
as mixtures within each category. In the case where no
grouping is applicable, this reduces to the “all together”
setting.

Following the setting, we adjust MolSets to a dual-
pathway architecture to be compatible with the data: two
φ modules are used, learning representations for solvents
and salts, respectively. As each electrolyte consists of mul-
tiple solvents and only one salt in the dataset we use, the
learned representations for solvents are aggregated into a
solvent mixture representation using ⊕, while that for the
salt needs no aggregation and is by itself the “salt mix-
ture representation.” If multiple salts are considered, the
salt mixture representation can be learned in the same
way as solvents using φ and ⊕. Then, the solvent mix-
ture representation, salt representation, and salt molality
are concatenated and passed to ρ.

In the following part, we show the results of predicting
electrolyte conductivity using MolSets and other meth-
ods. These tests serve three purposes: (1) as MolSets is
a generic architecture that can work with various types
of GNNs and has several hyperparameters, we explore
the effect of some key configurations on its performance;
(2) benchmarks that demonstrate MolSets’ advantages
over existing models; and (3) ablation tests that investi-
gate the importance of different parts of MolSets. We use
two main metrics for quantifying the model performance.
(1) The Pearson correlation coefficient, rp , which measures
the linear correlation between target and predicted values.
It is the square root of another commonly used metric,
coefficient of determination R2. (2) The Spearman rank
correlation coefficient, rs, which measures how well the
predicted values are ranked correctly as the targets. It is
important for materials modeling, especially for materials
properties to be optimized, as correct ranking can guide
the search towards superior candidates. For every test,

we randomly split the dataset into training, validation, and
testing datasets in a 60%/20%/20% ratio. Since the com-
binations of models and configurations lead to many runs,
cross-validation becomes time-consuming; hence, we use
one fixed data split in the model selection and hyperparam-
eter tuning. For every different configuration of MolSets,
hyperparameter tuning is performed using training and val-
idation data, and performance metrics are assessed on the
testing data as the criteria of selecting the optimal configu-
ration. Then, a comparison of MolSets and other models is
conducted on 30 random splits of the dataset.

B. Benchmark and ablation test

A major customizable configuration of MolSets is the
type of GNN used as the φ module. An abundance of
GNNs have been developed, and their main difference
lies in the graph convolution operation, i.e., how mes-
sages are composed and passed between nodes. Out of
many available, we choose four commonly used general-
purpose graph convolution operators, GraphConv, SAGE-
Conv, GCNConv, and GATConv, as well as a directed
message passing scheme (DMPNN) specially designed
for molecules [28]. Integrating each convolution operator
to MolSets, we tune the key hyperparameters that have
an impact on the model architecture using the validation
dataset and assess the testing performances via rp and rs.
The models are implemented using the PyTorch Geomet-
ric library [29], and more details on model implementation
are presented in Appendix B. The performance of MolSets
integrated with different graph convolution operators is
presented in Table S2 within the Supplemental Material
[49]. Using GraphConv and SAGEConv, both generic
and lightweight convolution operators, MolSets attain high
regression and ranking accuracies on the testing data.
DMPNN also shows high testing accuracy; although spe-
cially designed for molecules, the performance of DMPNN
is not superior, possibly because its architecture is not tai-
lored for working with the ⊕ and ρ modules as a part of
MolSets. Based on this step, we choose GraphConv as the
convolution operator in MolSets for further tests.

Next, we train two different GNN-based deep learning
models to predict mixture properties from the constituents’
molecular graphs. (1) Replace the ⊕ aggregation module
of MolSets with a simple weighted summation. This model
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(a) (b)

FIG. 3. Performance metrics of MolSets and other models on the testing dataset: (a) Pearson correlation coefficient, rp , and
(b) Spearman rank correlation coefficient, rs, across 30 random data splits.

still satisfies Eq. (3) and is thus permutation invariant.
However, it models a mixture as a linear combination of
its constituents, ignoring the nonlinear contributions they
may have. (2) Instead of aggregation, the molecular rep-
resentation vectors learned by a GNN φ are concatenated
and padded with zeroes, together with the solvent weight
fractions and salt molality, to form a mixture representation
vector, which then goes through ρ. This model no longer
preserves permutation invariance and needs the maximum
number of constituents to be specified. To control vari-
ables, other hyperparameters are kept the same as those
used in the MolSets model with GraphConv. The per-
formance of MolSets and other models is summarized in
Fig. 3, from which we find that MolSets shows a system-
atic advantage in learning both correlation (rp) and ranking
(rs) compared to existing GNNs.

As another benchmark, we retrieve a list of numerical
molecular descriptors and predict the conductivity based
on these descriptors using gradient boosting. 208 descrip-
tors are calculated for every molecule using RDKit. Then,
for every mixture, the descriptors of its constituents (4 sol-
vents and 1 salt) together with their logarithmic molecular
weights and weight fractions are concatenated to form a
feature vector. For mixtures containing fewer than four
solvents, the positions corresponding to missing solvents
are filled with zeros. The dimensions containing abnor-
mal values (NaN or infinity) or with no variance across
datapoints are removed. LightGBM [30], an accurate and
efficient implementation of the gradient boosting decision
tree algorithm, is employed to fit a model using the fea-
turized data, and its performance across 30 replicates is
shown in Fig. 3. Like the GNN with concatenation, this
method is also not permutation invariant and restricted to a
prespecified number of constituents, and it does not attain
an accuracy as high as that of MolSets.

In Fig. 4, we show the true values versus model-
predicted values of logarithm conductivity on the testing
data for one split, with colors differentiating different types
of mixtures. In general, MolSets’ predictions show less

deviation from the true values; moreover, MolSets models
show lower errors at the high end and low end of con-
ductivity (points far from the center), which favors the
discovery of exceptional materials [31].

C. Analyses and interpretation

The fundamental uniqueness of MolSets, compared to
other ML models, is that it treats a mixture as a per-
mutation invariant set of constituents, the contributions
of which are not simply governed by their weight frac-
tions. The advantage of this assumption is demonstrated
by the better predictive performance. To interpret why this
assumption can lead to better performance, we investigate
two questions. (1) How is a mixture different from the
weighted summation of its constituents? (2) What happens
if a mixture model is not permutation invariant?

For (1), we probe the representation space learned by
the φ and ⊕ modules of MolSets. Every molecular mix-
ture input to MolSets with GraphConv as a set of graphs
is mapped to a 32-dimensional representation vector. Note
that a “mixture” with only one constituent can be viewed
as a representation of that constituent. Choosing three
small molecules, together with one binary mixture and
one ternary mixture among them, we investigate their
locations in the representation space. We use t-distributed
stochastic neighbor embedding (t-SNE) [32] to reduce the
32-dimensional vectors to 2 dimensions and visualize the
locations of constituents, mixtures (marked by text), and
weighted summations of constituents (indicated by arrows)
in the representation space in Fig. 5(a). The significant
deviation of the mixture representation from the weighted
summations (dashed lines) suggests that in MolSets’ rep-
resentation learning, the mixture is not formed as a linear
combination of its constituents; this highlights MolSets’
capability to capture the nonlinearity of a mixture.

For (2), we test the performance of the permutation
noninvariant GNN model (concatenating molecular repre-
sentations) on a dataset containing mixtures represented in
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Regression plots showing target values (horizontal axis) and predicted values (vertical axis) of logarithmic conductivity.
(a)–(c) MolSets using different graph convolution operators. (d)–(e) GNN models using the GraphConv operator and different treat-
ments of molecular representations learned from graphs. (f) LightGBM model trained on molecular descriptors. “Mix_type” denotes
whether a data point is a mixture of molecules (“small”), polymers (“poly”), or both (“mixed”).
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FIG. 5. (a) Reduced-dimensional visualization of three molecules (shown on the right) and their binary or ternary mixtures in the
learned representation space. Arrows indicate the weighted summation of constituents’ representations, the deviation of which from
the learned representations of mixtures is indicated by dashed lines. (b) Target values (horizontal axis) and GNN-predicted values
(vertical axis) on the permuted dataset. Colors are assigned according to target values to help distinguish different mixtures.
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different sequences. From the testing dataset, we select all
the mixtures that contain more than one solvent and create
a new dataset where the solvents in every mixture appear
in different orders. For each permuted data point, the order
of solvents, molecular weights, and weight fractions are
permuted in the same way; hence, it represents the same
mixture, and the target property is unchanged. Figure 5(b)
shows the GNN model’s predictions on this permuted
dataset: it gives substantially different predictions for the
same mixture represented in different orders. Moreover,
the model’s predictions show systematic deviation from
the target values on these mixtures containing more than
one constituent. These demonstrate the advantages of per-
mutation invariance in mixture modeling.

With an accurate predictive model like MolSets, it is
also desired to draw chemical insights that guide theoret-
ical or experimental studies. GNNs and attention models
are both challenging to interpret due to their complexity.
As a preliminary step, we inspect the importance of con-
stituents in small molecule mixtures. We use the magnitude
change of representation vector ||z′||/||z|| as an indica-
tor of relative importance for each constituent (details are
provided in Appendix B). Most molecules showing high
importance are cyclic carbonate esters, which are widely
used in electrolytes for their superior ion solvation abil-
ity [33]. We make the relative importance data available
in the Supplemental Material for further analyses, e.g.,
the interaction between different types of molecules in the
mixture.

D. Virtual screening and experimental assessment

Finally, we employ the MolSets model with the best
configurations found in tests to perform virtual screen-
ing. We train the model on the whole dataset (70% for
training, 30% for validation), and use it to predict the

room temperature conductivity for a large set of candidates
with the small molecules and Li+ salts that appear in
at least three mixtures in the dataset. We consider all
equal-weight binary mixtures among 28 types of small
molecules, combining with 30 types of salts (1 mol kg−1),
totaling 11 340 candidates. The predicted conductivities
of all candidates are available at Ref. [34]. Out of the
candidates, the top-performing ones are listed in Table S4
within the Supplemental Material [49]. Fixing the type
and molality of salt, we compare the equal-weight binary
mixtures with their constituents and find that a binary
mixture can lead to higher conductivity than either of its
constituent molecules (Table S5 within the Supplemental
Material [49]). This indicates a nontrivial improvement in
the properties of mixtures, which resembles the bowing
effect observed in alloys [35], and provides the potential
to design electrolytes with superior properties to those of
single constituents within the broader chemical space of
mixtures.

In addition to the candidates selected based on
the available dataset, we choose a few new mixtures
that are of special interest to small-molecule elec-
trolyte developers, and experimentally assess the pre-
diction of MolSets. Each candidate is a binary or
ternary equimolar mixture with 1 mol kg−1 lithium
bis(trifluoromethanesulfonyl)imide (LiTFSI) added. Note
that these mixtures contain molecules never seen by the
model, and they have high similarities in composition,
both making the task more challenging. The mixtures were
prepared inside a glovebox and measured with a conduc-
tivity probe at 298 K (details are provided in Appendix C).
Figure 6 shows the results, where MolSets’ predictions
show fair agreement with experimentally measured con-
ductivities. Assessment results for other ML models are
shown in Fig. S3 within the Supplemental Material [49].
Were there a specially curated dataset for small molecular

DOL+TTE

MtBE+DOL
+TTE

TBEE+DOL
+TTE

CPME+DOL
+TTE

MtBE+DOL

TBEE+DOL

CPME+DOL

MtBE

DOL
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TTE

CPME

LiTFSI

Salt: LiTFSI

FIG. 6. Predicted versus experi-
mentally measured logarithm con-
ductivities of mixtures, with the
ingredient structures shown on the
right.
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mixtures using high-throughput experiments [36,37], the
capability of MolSets on these virtual screening tasks
could be further improved.

A limitation of the current model is that it does
not consider salt solubility. Since the dataset is curated
from experimental reports in the literature, where salt
molality does not exceed solubility, the model trained
thereon cannot generalize to mixtures containing higher
salt concentrations. Nonetheless, by rationally choosing
salt molality as a constraint, this issue can be precluded
when applying MolSets to electrolyte screening.

V. SUMMARY AND OUTLOOK

We presented MolSets, a machine learning model archi-
tecture for molecular mixtures that captures the chemistry
and geometry of molecules while preserving the permuta-
tion invariance nature of mixtures. Using the conductivity
of electrolytes as a testbed, we demonstrated the accuracy
and robustness of MolSets, and investigated the nontrivial
characteristics of mixtures compared to the combination of
constituents.

An accurate yet efficient predictive model like MolSets
can facilitate the virtual screening of promising materials
in the vast combinatorial space of molecular mixtures. As
an initial step, we use MolSets to predict the conductivity
of over 10 000 mixtures based on available data. How-
ever, the limited availability of data poses a key challenge.
Although a molecular property database was released
recently [38], there is no comprehensive data resource for
mixtures. As datasets for various properties of mixtures
become available, the generalizability of MolSets can be
further examined. A future direction could be construct-
ing a platform where researchers could access MolSets-
predicted properties of mixtures and upload experimen-
tally measured values. With growing amounts of data and
the MolSets model, such a platform could offer accurate
estimates of molecular mixture properties, as AlphaFold
[39] offers for proteins and matterverse.ai [40] for crystals.

Raw data are retrieved from Ref. [6]. The code and
processed data are publicly available at GitHub [50]. The
newly generated data are available at Dryad [34].
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APPENDIX A: DATA PREPARATION

We use a dataset of size 1076, involving both small
molecules and polymers, due to limited available data for
mixture properties. Specifically, 732 data points are poly-
mer mixtures, 269 are small molecule mixtures, and 75
contain both small molecule(s) and polymer(s). We rep-
resent a polymer with the molecular graph of its monomer;
as a monomer is linked to another in the real polymer, we
add C atoms to its connecting sites in the graph. In addi-
tion, we include the molecular weight, M, in the input, so
that polymers can be distinguished from small molecules.
In the dataset, some polymers have the weight average
molecular weight, Mw, reported and some have the num-
ber average molecular weight, Mn. We use the available
one as M and use Mn if both are available.

A molecule is converted into a graph with its
heavy atoms (any element other than H) as nodes and
bonds between them as edges. The node features are
13-dimensional, with the first 7 dimensions being one-hot
encoding of elements B, C, N, O, F, S, and Cl. If the atom
is one of these elements, the corresponding dimension is
1 and others are 0; otherwise, these seven dimensions are
all 0. The remaining six dimensions are atomic number,
atomic mass (in Da), formal charge (in elementary charge
e), electronegativity (on the Pauling scale), van der Waals
radius (in Å), and number of H atoms connected to the
atom. Each edge is associated with one feature, a numeri-
cal representation of the bond type: 1, 2, and 3 for single,
double, and triple bonds, respectively, and 1.5 for aromatic
bonds.

APPENDIX B: METHODS AND MODEL

1. Graph convolution

A graph is formulated as G = (V, E), with nodes V =
{vi}ni=1 and edges E = {eij }. Each node vi is associated with
a node feature vector xi, and in our formulation, each edge
is associated with a scalar feature, denoted eij for simplic-
ity. Graph convolution iteratively updates the node feature
vectors. A graph convolution operator defines (1) how
a “message” is composed of a node vi, neighbor nodes
j ∈ N (i), and edges eij between them, and (2) how the
node’s feature is updated based on the message.
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TABLE II. Definitions of graph convolution operators.

Convolution operator Message passing scheme

SAGEConv [41] x′i =W1xi +W2 ·mean
j∈N (i)

xj

GraphConv [42] x′i =W1xi +W2

∑
j∈N (i)

eij xj

GCNConv [43] x′i =WT
∑

j∈N (i)∪{i}

(
eij/

√
didj

)
xj

GATConv [44] x′i = αij W1xi +
∑

j∈N (i)

αij W2xj

Table II shows the graph convolution operators used
here and their message passing schemes. In the formulas,
W’s denote learnable weight matrices; GCNConv utilizes
the quantity di = 1+∑

j∈N (i) eij; GATConv involves pair-
wise attention coefficients αij. Weight matrices are learned
from and used for all nodes. More details are provided in
the online documentation of PyTorch Geometric [29].

2. Model training and hyperparameter tuning

The model is trained using an AdamW optimizer [45],
with an initial learning rate of 0.001 and a weight decay
coefficient of 0.0001 for regularization. The learning rate
is controlled using a scheduler, which reduces it by a fac-
tor of 2 upon 10 epochs of no improvement in validation
loss. To further prevent overfitting, an early stopping rule
is adopted in training: if validation loss has not improved
for 20 successive epochs, the training process is termi-
nated and the model parameters at the epoch that displayed
the lowest validation loss are taken as the final model
parameters.

Implementing MolSets with each graph convolution
operator, we tune the hyperparameters that have an impact
on model architecture, which include (1) the number of
convolution layers, (2) the dimension of hidden layers,
(3) the dimension of learned molecular representation, and
(4) the dimension of attention. Tuning is conducted using a
grid search over a discrete set of values for each hyperpa-
rameter and tracked using the Weights & Biases platform
[46]. Table S1 within the Supplemental Material [49] lists
the hyperparameters found to be optimal for MolSets with
different convolution operators. Figure S1 within the Sup-
plemental Material [49] presents a typical learning curve
of MolSets with GraphConv; other models show similar
learning curves.

3. Analysis and interpretation

The ⊕ module of MolSets is designed to learn the
importance of constituents in a mixture using the attention
mechanism. However, interpreting an attention model to
retrieve the importance scores is highly nontrivial [47,48].

Here, we adopt an intuitive method, which is not neces-
sarily rigorous. A molecule is mapped to its representa-
tion vector z by the GNN module φ, and the attention
mechanism converts it into z′ before forming a mixture
representation. We compute ||z||2, the Euclidean norm of
z, as well as ||z′||2. The norm of a vector quantifies its
magnitude, and intuitively, the attention mechanism should
enlarge the magnitude of an important constituent’s repre-
sentation vector. Hence, we use ||z′||2/||z||2 as an indicator
of relative importance.

In every mixture, we find constituents with an impor-
tance that is more than twice that of the least impor-
tant constituent. These constituents include ethylene car-
bonate [O=C1OCCO1], propylene carbonate [CC1COC
(=O)O1], and γ -butyrolactone [O=C1CCCO1], which
are cyclic carbonate esters, and toluene [CC1=CC=
CC=C1].

APPENDIX C: EXPERIMENTAL DETAILS

1,3-Dioxolane (DOL, Thermo Scientific), 1,1,2,2-
tetrafluoroethyl-2,2,3,3-tetrafluoropropylether (TTE, Syn-
Quest), methyl tert-butyl ether (MtBE, Thermo Scien-
tific), tert-butyl ethyl ether (TBEE, Sigma-Aldrich), and
cyclopentyl methyl ether (CPME, Thermo Scientific) were
dried with molecular sieves inside an argon-filled glove-
box (O2, H2O < 0.1 ppm). To prepare the electrolytes,
1 mol kg−1 LiTFSI (Solvionic) was dissolved in various
solvent mixtures. The conductivities of the electrolytes
were measured with a conductivity probe (InLab 752,
Mettler Toledo) at 25 °C inside the glovebox. Table S6
within the Supplemental Material [49] lists the mixtures’
constituents and their predicted and measured conductivi-
ties. No unexpected or unusually high safety hazards were
encountered.
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