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Generating Synthetic Power Grids Using Exponential Random Graph Models

Francesco Giacomarra *

Department of Mathematics, Informatics and Geosciences,University of Trieste, 34128 Trieste, Italy

Gianmarco Bet †

Department of Mathematics and Computer Science “Ulisse Dini,” University of Florence, 50134 Florence, Italy

Alessandro Zocca ‡

Department of Mathematics, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands

 (Received 22 November 2023; revised 9 April 2024; accepted 9 May 2024; published 6 June 2024)

Synthetic power grids enable real-world energy system simulations and are crucial for algorithm testing,
resilience assessment, and policy formulation. We propose a novel method for the generation of synthetic
transmission power grids using exponential random graph (ERG) models. Our two main contributions
are (1) the formulation of an ERG model tailored specifically for capturing the topological nuances of
power grids and (2) a general procedure for estimating the parameters of such a model conditioned on
working with connected graphs. From a modeling perspective, we identify edge counts per bus type and
k-triangles as crucial topological characteristics for synthetic power-grid generation. From a technical
perspective, we develop a rigorous methodology to estimate the parameters of an ERG constrained to the
space of connected graphs. The proposed model is flexible, easy to implement, and successfully captures
the desired topological properties of power grids.
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I. INTRODUCTION

Power grids are fundamental infrastructures of our mod-
ern societies and economies. A thorough understanding
of the principles that govern the formation of these net-
works is crucial to guarantee their reliability at all times.
However, network operators release only limited informa-
tion on transmission power grids due to security concerns.
Therefore, there is a substantial lack of real high-quality
data. To address this problem, over the past two decades,
synthetic grid-generation approaches have been exten-
sively investigated by the research community. The main
challenge has been to develop models flexible enough
to replicate the very heterogeneous nature and peculiar
properties of real power grids.

We propose a novel approach for the generation of syn-
thetic power grids based on exponential random graph
(ERG) models. The main idea of an ERG is to consider
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a parametric probability density over the space of all
graphs and tune its parameters to encode desirable topo-
logical properties as soft constraints. From a modeling
perspective, ERGs have been quite successful due to their
flexibility, since they offer a very tractable alternative to
the problem of sampling from involved graph subspaces.
To the best of our knowledge, this class of models has not
yet been considered in the power-systems literature. This is
probably due to the intrinsic difficulty of generating graphs
that are both sparse and connected, both key topological
properties of transmission power grids.

The main contributions of this paper are the follow-
ing. First, we propose an ERG model that captures the
main topological properties of real power grids. Second,
we give a general procedure to estimate the parameters
of a wide class of ERG models with constraints using an
algorithm based on Markov-chain Monte Carlo (MCMC)
with noisy parameters, which we prove to converge to the
set of parameters that satisfies the constraints imposed by
the ERG model defined before. We present the results that
we have obtained with our procedure, showing that the
proposed model is flexible and captures the properties of
possibly very different power grids while also being sim-
ple, easy to implement, and theoretically grounded. We
remark that the proposed methodology is rather general
and, except for the choices of graph statistics, is, in fact,
not specific to synthetic power-grid generation.
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Due to the aforementioned flexibility and the fact that
it requires only one real observed grid to be implemented,
our approach can be useful in numerous scenarios where a
large number of realistic samples are needed, e.g., training
machine-learning models. What distinguishes our formu-
lation from most methods available in the literature is
the fact that it is grounded in a well-studied theoretical
framework for probabilistic modeling, allowing for a more
insightful analysis of certain phenomena using tools from
random graph theory. Since our proposed model results in
a Boltzmann-type distribution, it could in principle be used
in combination with other models (e.g., energy-based gen-
erative models [1]) to build a more complex formulation
in a compositional fashion [2]. Furthermore, in Sec. VI,
we propose as a future direction a way to use our model
as a baseline to generate more complex synthetic networks
by exploiting the idea of reassembling smaller topologies
into larger ones [3–5].

In the past two decades, various proposals have been
put forward to address the challenge of generating syn-
thetic yet realistic power grids. Some major common-
alities among these works can be identified, based on
the approach used to tackle the problem. We will briefly
review here some of the proposed methods for synthetic
grid generation. For a more comprehensive survey on the
topic, see Refs. [6,7].

Similarly to the approach that we propose here, there
have been several attempts to use already existing graph
models either to directly generate power-grid topologies or
as building blocks for more complex procedures. Examples
of models used are the “small-world model” introduced
by Watts and Strogatz in Ref. [8] and refined by Wang
et al. into the “RT-nested small-world model” to gener-
ate synthetic power grids [9–12]. Another model used is
the Chung-Lu model [13–15], used as a building block
for the generation procedures presented in Refs. [16,17].
Similarly, in Ref. [18], a variation of the generalized ran-
dom graph model [19] is proposed as a generative model.
A very recent paper proposes a topological approach to
power-grid generation using a modified version of the
Erdős-Rényi model [20]. In Ref. [21], the authors sam-
ple grid topologies using the so-called graphons, or graph
functions [22], which can be viewed as limiting objects for
dense random graphs.

Many researchers argue that the geographical attributes
of the area and/or the geographical locations of the nodes
cannot be disregarded while generating synthetic power
grids. Consequently, several models proposed in the liter-
ature put particular emphasis on the spatial embedding of
the synthetic grids. A straightforward way to generate spa-
tially embedded grids that are both connected and sparse is
to solve the “minimum spanning tree” (MST) problem [23]
given the desired locations of the nodes and by assigning
weights at each possible edge based on some distance-
cost function. MSTs are often used as the first step in

building the topology of several synthetic grid-generation
procedures [24–28].

Other approaches in the literature to obtain spatially
embedded synthetic grids rely on clustering of nodes based
on the geographical properties of the locations of the nodes
[29–31]. After cluster identification, different procedures
have been proposed to obtain the topologies with the
desired properties considering as distinct the edges that
connect nodes within the same cluster and those that
connect nodes belonging to different clusters.

In Refs. [3,4,32], the authors propose to view the power
grids from the perspective of a “network of networks,” i.e.,
analyzing separately the subgraphs with the same voltage
level in the grid, which they call fragments, and then the
interconnections of these subgraphs as a new graph itself.
This hierarchical view has led to the development of the so-
called sustainable data-evolution technology (SDET) tool
to create open-access synthetic grid data sets [5]. Using
this method, new synthetic topologies are generated by
reassembling fragments of real grids that were previously
anonymized (to avoid disclosure of sensitive information).
The idea of developing an anonymization procedure rather
than a completely new generation method is also dis-
cussed in Ref. [33], where the grid topologies of real grids
are left unchanged and only the electrical parameters are
randomized to obfuscate sensitive information.

Finally, Ref. [34] proposes a deep-learning method for
the generation of synthetic power grid. To our knowledge,
this is the first attempt to solve this kind of problem using
deep-learning techniques. This is because, in general, these
approaches require a large amount of input data to provide
accurate results.

The paper is structured as follows. In Sec. II, we intro-
duce the graph-theoretic framework and discuss the main
topological properties of power grids. In Sec. III, we intro-
duce the ERG model along with the proposed specifica-
tions. The estimation procedure and a theoretical explana-
tion of its convergence are discussed in Sec. IV. The results
obtained using our proposed model specifications are pre-
sented in Sec. V. Lastly, in Sec. VI, we offer final remarks
and highlight potential avenues for future research.

II. TRANSMISSION POWER GRIDS AS COMPLEX
NETWORKS

Power grids are interconnected networks that deliver
electricity from producers to consumers, consisting of
nodes called buses connected through links called power
lines. We can distinguish two main types of power net-
works, namely, the distribution network and the transmis-
sion network. Distribution networks have shorter power
lines (often referred to as distribution power lines) and
serve the function of transporting electricity for short dis-
tances and low voltage levels. The transmission network
is used to transport electricity over long distances, with
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longer power lines operating at high voltage. Coherently
with other similar works in the literature [5,9,16–18,24–
26,29,31,35–38], we focus solely on the transmission net-
work and in this section we will highlight how to model
such a network and its properties in a graph-theoretic
framework.

A. Model description and preliminaries

A high-voltage transmission network can be modeled
as a simple undirected unweighted graph G = (V, E),
where the nodes V = {1, . . . , |V|} represent electrical buses
and the edges E ⊂ V × V represent the transmission lines
connecting them. We denote by n := |V| the number of
nodes and by m := |E| the number of edges. Any sim-
ple graph G = (V, E) can be equivalently described by
its adjacency matrix A = A(G) ∈ {0, 1}n×n, which is the
square-symmetric matrix defined as

Aij =
{

1, if (i, j ) ∈ E,
0, otherwise.

(1)

We define the graph distance d(i, j ) between any two nodes
i �= j as the length of the shortest path (in hops) between i
and j , with d(i, i) = 0 and d(i, j ) = ∞ if there are no paths
between i and j . If d(i, j ) < ∞ for any pair of nodes i �= j ,
then the graph is said to be connected. The average path
length or characteristic path length is the average length
of the shortest path between any two nodes in the graph,
i.e.,

〈�〉 = 1
n(n − 1)

∑
i,j ∈V

d(i, j ). (2)

For every node i ∈ V, we define its degree ki = deg(i) ∈ N

as the number of nodes adjacent to i in G. The degree ki of
node i ∈ V can be recovered as the sum of the i th row of
the adjacency matrix, namely, ki = ∑n

j =1 Aij . The average
node degree 〈k〉 of the graph G is

〈k〉 := 1
n

n∑
i=1

ki = 2m
n

.

The degree matrix D(G) of the graph G is the square-
diagonal matrix defined as D(G) = diag(k1, . . . , kn).
Another equivalent matrix representation of the graph G is
given by its Laplacian matrix L = L(G) ∈ Rn×n, which is
the square-symmetric matrix defined as L(G) := D(G) −
A(G), or, equivalently, as

Li,j :=

⎧⎪⎨
⎪⎩

ki, if i = j ,
−1, if (i, j ) ∈ E,
0, otherwise.

(3)

The Laplacian matrix is a useful graph-theoretic tool and
its spectrum can be linked to many properties of the corre-
sponding graph (for a detailed overview, see Ref. [39]). In
particular, the second-smallest eigenvalue λ2 of the Lapla-
cian matrix, known as algebraic connectivity, is closely
related to the connectivity of the graph itself [40]. In par-
ticular, λ2 > 0 if and only if G is a connected graph and
its magnitude reflects how well connected G is. Spectral
graph theory has been shown to be an excellent tool for
understanding the redistribution of power flows after line
contingencies [41–45] and thus for designing more robust
network topologies [46,47].

A triangle is a clique of size 3, i.e., a subgraph consist-
ing of three nodes that have an edge between each pair of
nodes. The total number of triangles t1(G) in a graph G can
be calculated using its adjacency matrix as

t1(G) = 1
6

n∑
i=1

n∑
j =1

n∑
l=1

Aij AjlAli. (4)

More generally, for each k ≥ 1, one defines k-triangles
as the subgraphs in which the k triangles share the same
edge (for some examples, see Fig. 1). We denote the total
number of k-triangles in a graph G as tk(G).

The local clustering coefficient Ci of node i ∈ V is
defined as the ratio between the number of triangles TG(i)
to which node i belongs and the maximum number of tri-
angles tG(i) that could possibly exist between node i and
its ki neighbors. Denoting by Ni ⊆ V the neighborhood of
i, i.e., the collection of nodes adjacent to i in G, the local
clustering coefficient can be computed as

Ci = TG(i)
tG(i)

= |{(j , k) ∈ E : j , k ∈ Ni}|
ki(ki − 1)/2

=
{

1
ki(ki−1)

∑n
j =1

∑n
l=1 Aij AjlAli, if ki ≥ 2,

0, if ki < 2.
(5)

The average clustering coefficient C is defined as the
average of the local clustering coefficients, i.e.,

C = 1
n

n∑
i=1

Ci. (6)

B. Electrical properties

In this work, we focus purely on the topology of syn-
thetic grid graphs and thus do not consider the electrical
properties of the nodes or of the lines. We refer the inter-
ested reader to Ref. [48] and references therein. However,
it is key to distinguish the nodes based on the function
of the corresponding substation, as this information is
used in the generative procedure. In the context of power
networks, we generally distinguish three types of nodes:
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(a)

(b)

(c)

FIG. 1. Examples of (a) a 2-triangle, (b) a 3-triangle, and (c) a
4-triangle.

(a) generator nodes, which represent the network com-
ponents where the electricity is produced, e.g., con-
ventional power plants, wind farms, or solar parks

(b) load nodes, which represent the network compo-
nents where electricity is consumed, e.g., industrial
districts, residential areas, or distribution network
feeders

(c) interconnections nodes, which represent intermedi-
ate substations or transformers

From now on, we will refer to the subset of generator nodes
in a power network with P, and similarly with L for the
loads and with I for the interconnections.

In Fig. 2, we show the topologies of two grids made
available in Ref. [50]. The two grids, namely, the 118
IEEE and the 300 IEEE, have 118 and 300 nodes,
respectively. For each grid, in addition to the topology,
we highlight the bus-type assignment. More details on the
grids used in our work are given in Appendix A.

(a)

(b)

FIG. 2. The visualization of (a) the topology of the 118
IEEE network and (b) the topology of the 300 IEEE network.
The colors of the nodes reflect the bus-type assignment. Since no
geometric embedding has been given, the positions of the nodes
have been determined using a force-directed graph-drawing
algorithm [49].

C. Topological properties of power grids

A large body of literature (see, e.g., Refs. [12,29,30,51])
has examined various topological properties of real power
grids, which are instrumental in assessing the realism of
synthetic grids. After an analysis of the available grids
described and made available in Ref. [50], we now revisit
and discuss some of these key properties. All these quan-
tities for the considered grids are reported in Table V in
Appendix A.
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(a) Connectivity. Power grids are fully connected
graphs, which means that there exists a path between
any two nodes, except for rare emergency situations.
This is due to the requirements for the reliabil-
ity and security of the power-grid system. Indeed,
under normal operating conditions, electrical power
must be able to flow from any point on the grid
to any other point. Most real power grids have an
even stronger connectivity property, namely, they
are two-edge-connected graphs. This property is,
in fact, part of the standard contingency analysis
known as N − 1 security, which ensures that the
power grid can withstand the failure of any single
component (line, transformer, generator, etc.) with-
out losing the ability to supply power to all the
remaining loads.

(b) Average node degree and sparsity. It has been
shown that the average node degree 〈k〉 in real
power grids oscillates between 2 and 3 regardless
of the network size [35,51]. Therefore, power grids
are sparse graphs, which means that the number
of edges is of the same order of magnitude as the
number of nodes; informally, |E| = O(n). This can
be intuitively explained by the high costs of build-
ing and maintaining transmission lines, as well as
practical engineering constraints, such as avoiding
transmission-line crossings.

(c) Clustering coefficient and total number of triangles.
The average clustering coefficient C has been empir-
ically observed to be much higher than that of other
types of sparse graphs, which means that power
grids tend to have many more triangles than other
sparse graphs [12]. This could be due to the fact that
the removal of a single line should not disconnect
any node from the others and triangles are the sim-
plest subgraph structure that allows for this property.
We further investigate the clustering properties by
looking at the number of k-triangles of the power
grids in the publicly available data set [50]. Numeri-
cal evidence suggests that the number of triangles in
power grids grows linearly with the number of edges
(see Fig. 3). This result is consistent with the por-
tion of literature claiming that the power networks
follow the “small-world” property [8,12], which
implies a higher clustering coefficient compared to
other sparse random graphs with the same number
of nodes (cf. Table V in Appendix A). On the other
hand, the number of 2-triangles (and consequently
that of any k-triangle with k ≥ 2) is roughly con-
stant—in fact, often very close to zero—and does
not grow with the size of the network.

(d) Bus-type assignment. In Ref. [52], it is reported
that in a typical power grid, 20–40% are generation
buses, 40–60% are load buses, and about 20% are
interconnection buses. The authors also suggest that

there exists a correlation between bus-type assign-
ment and several network-topology metrics. Our
experimental analysis on the grids in Appendix A
have found more heterogeneous values for the bus
percentages; this might be due to the fact that the
grids came from different sources and have dif-
ferent degrees of resolution (some buses might be
aggregated together).

(e) Average degrees per node type. The degree distribu-
tion of the nodes in power grids has been shown to
be different for the nodes of different types [9], moti-
vating the introduction and the study of the average
node degree per bus type 〈kP〉, 〈kL〉, 〈kI 〉, where

〈ka〉 := 1
|a|

∑
i∈a

ki, a ∈ {P, L, I}. (7)

(f) Algebraic connectivity. In Ref. [9] it has been said
that algebraic connectivity scales as a power of the
network size n, i.e., λ2 ∼ np , with p said to be in
the range [−1.376, −1.06]. It is worth noting that
our experimental analysis on the grids reported in
Appendix A seems to suggest that the range or p
should be widened but for a rigorous claim on the
realistic values of λ2 for power grids, a larger data
set is needed.

(g) Average shortest path length. Assuming that power
grids follow the “small-world” property as claimed
by Albert and Barabasi [53] (but there is no con-
sensus in the literature, cf. Ref. [51]), then the APL
should grow proportionally to ln(m)/ ln(〈k〉).

(h) Graph diameter. The graph diameter dmax of real
power grids has been shown to scale roughly as

√
n

[3,16,31,54,55].

III. SYNTHETIC GRID GENERATION USING AN
EXPONENTIAL RANDOM GRAPH MODEL

In this section, we briefly discuss the probabilistic
details of the ERG model and the rationale behind the pro-
posed model formulation. We also state how graphs with
properties similar to those exhibited by power grids have
been modeled in the ERG literature.

A. General ERG model formulation

Let Gn be the collection of all undirected unweighted
simple graphs on n nodes. We denote by G a random vari-
able that takes values in Gn. An exponential random graph
(ERG) model [56] is a probability distribution on Gn of the
form

Pβ(G = G) = exp(Hβ(G))

Zβ

= exp
(∑r

i=1 βixi(G)
)

Zβ

, (8)
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FIG. 3. The number t1 of
triangles (in blue) and the
number t2 of 2-triangles
(in red) reported against
the number of edges for
various test networks (see
Table V).

where β ∈ Rr is a vector of parameters, xi : Gn �→ R are
graph statistics of interest, also known as the observ-
ables of the model, and Zβ := ∑

G∈Gn
eHβ (G) is a nor-

malizing constant. The function Hβ : Gn → R defined by
Hβ(G) := ∑r

i=1 βixi(G) is commonly called the Hamil-
tonian of the model. By definition, the density given in
Eq. (8) is positive for all graphs G ∈ Gn. Intuitively, graphs
G with large values of xi(G) become less (more) likely if
βi < 0 (βi > 0). By carefully choosing the parameters β,
the expected values (E[xi(G)])r

i=1 of all the observables
across the entire collection Gn can be tuned. In fact, the
ERG density in Eq. (8) is the unique probability density
P(G) over Gn that maximizes the Shannon entropy S(P),
defined as

S = −
∑
G∈Gn

P(G) ln P(G), (9)

subject to the constraints

E[xi(G)] = xi, i = 1, . . . , r, (10)

where xi is the desired average value of observable i. In
other words, the distribution given in Eq. (8) does not con-
tain more structured information than the constraints in
Eq. (10).

Assuming that the target values xi, i = 1, . . . , r, of the
chosen r observables are given, one can tune the param-
eters β by solving the following system of equations,
obtained by rewriting the constraints in Eq. (10) using
Eq. (8):

xi = E[xi(G)] = 1
Zβ

∑
G∈Gn

xi(G)eHβ (G)

= 1
Zβ

∂

∂βi

∑
G∈Gn

eHβ (G) = 1
Zβ

∂Zβ

∂βi

= ∂Fβ

∂βi
, i = 1, . . . , r, (11)

where Fβ := ln Zβ is the so-called free energy of the
model. However, this strategy requires having a closed-
form expression for the partition function Zβ or the free
energy Fβ , which crucially depends on the choice for
the Hamiltonian in Eq. (13) and is not available in most
cases.

B. Proposed ERG models

In this paper, we propose using a synthetic grid pro-
cedure that samples random graphs using the probability
distribution specified by an ERG model of the form given
in Eq. (8). Our choice of observables is driven by the
considerations made in Sec. II C and by a careful analy-
sis of publicly available data from real grids collected and
described in Ref. [50].

To fully introduce the model, we first need some pre-
liminary definitions and additional notation. Consider a
generic undirected graph G = (V, E) ∈ Gn with a fixed
number n of nodes. Consistent with Sec. II A, we fur-
ther assume that each node is (i) a generator node, (ii)
a load node, or (iii) an interconnection node. Denote by
P, L, I ⊂ V the three corresponding subsets of generator,
load, and interconnection nodes, respectively, so that V =
P ∪ L ∪ I . Given two types of nodes a, b ∈ {P, L, I}, we
denote by Eab(G) ⊂ E the subset of edges in the graph G
that connect a node of type a to one of type b. Since we
are working with an undirected graph, we have Eab(G) =
Eba(G). In this way, we obtain a partition of the edge set
E as E = EPP(G) ∪ EPL(G) ∪ EPI (G) ∪ ELL(G) ∪ ELI (G)

∪ EII (G).
For each pair of node types a, b ∈ {P, L, I}, we denote

the cardinality of the corresponding edge subset by
eab(G) := |Eab(G)|. Including these six edge counts as
observables in the Hamiltonian allows us to simultane-
ously tune the average edge density and the average degree
of the typical vertex of each bus type. However, as we will
illustrate later in Sec. V C, the ERG model obtained by
considering only these six edge counts as graph observ-
ables does not perform well, as the sampled graphs do
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not have many of the desired properties mentioned in
Sec. II C. In particular, this simple ERG model is unable
to realistically replicate the clustering structure of power
grids.

To overcome this limitation and capture the cluster-
ing properties of real power grids, we thus consider a
more involved Hamiltonian that also includes the num-
ber of triangles t1, as previously suggested in Ref. [57].
Recall from Sec. II A that the average clustering coefficient
is defined precisely using the number of triangles. How-
ever, the resulting Hamiltonian has been proven to lead to
degeneracy, i.e., the resulting ERG density assigns most
of the probability mass either on (nearly) fully connected
graphs or only on random bipartite graphs (see Ref. [58]),
depending on the sign of the parameter associated with the
triangle count.

Snijders et al. [59] have introduced a new class of mod-
els that exhibit the desired clustering coefficient and are not
prone to degeneracy: the main idea is to include a more
elaborate function of the number tk of k-triangles with
k ≥ 1 rather than just the number t1 of triangles. Specif-
ically, we consider the so-called alternating k-triangles
statistic of a graph G introduced in Ref. [59], which is
defined as

uζ (G)= 3t1(G)− t2(G)

ζ
+ t3(G)

ζ 2 − . . . +(−1)n−3 tn−2(G)

ζ n−3 ,

(12)

where ζ is a positive constant used to modulate the
contribution of each k-triangle count to the observable.
Intuitively, the alternating signs and decreasing weights
in uζ (G) compensate each other, leading to highly clus-
tered graphs that are not (nearly) fully connected or nearly
empty.

To develop a new ERG model to generate synthetic
power grids, some practical considerations are in order. For
most of the power-grid topologies that are publicly avail-
able, the number of triangles t1 increases linearly with the
number of edges, while the number t2 of 2-triangles grows
at a significantly lower rate (see Fig. 3). More generally, in
our analysis, we have found that the number of k-triangles
is close to 0 for all power grids when k > 2. For this rea-
son, rather than the involved alternating k-triangle statistic
uζ (G), we have chosen to include in the ERG Hamiltonian
two independent terms for the number of 1-triangles and
2-triangles (with two independent parameters β1t and β2t).
The rationale behind this choice is the following: by ignor-
ing all k-triangle counts for k > 2, we have enormously
reduced the computational effort required by the model,
while still maintaining the mitigating effect of the alter-
nating signs of the parameters by imposing β1t · β2t ≤ 0,
following [59]. The resulting Hamiltonian thus has r = 8

terms and reads

Hβ(G) = βPPePP(G) + βPLePL(G) + βPI ePI (G)

+ βLLeLL(G) + βLI eLI (G)

+ βII eII (G) + β1tt1(G) + β2tt2(G). (13)

This proposed ERG model assumes that the target values
for these eight observables are known. To work with real-
istic target values, in the rest of the paper we adopt the
following strategy: we consider a publicly available power
grid G0 with n nodes as a reference graph and use it to
compute the target values as

xi = xi(G0), i = 1, . . . , r. (14)

It is worth mentioning that, given the fact that the observ-
ables related to the edges in the Hamiltonian are negative,
we expect the number of edges in the graphs generated
with the model given in Eq. (13) to be on average directly
proportional to the number of nodes in the graph, which
is consistent with what has been observed for real power
grids, as stated in Sec. II.

The addition of the 1- and 2-triangle terms in the Hamil-
tonian results in a partition function Zβ that has no closed-
form expression, hence making it impossible to solve the
systems of Eqs. (11) algebraically. Moreover, the collec-
tion Gn on which we have defined all ERG models so
far contains many disconnected graphs, which are not of
interest when modeling power-grid topologies, as we have
argued in Sec. II C. However, it is not possible to explic-
itly take this requirement into account in the Hamiltonian,
as there is no simple algebraic expression of the adjacency
matrix that can capture the connectivity of the graph. Even
if we were able to find a suitable proxy for connectivity
to add as observable to the Hamiltonian, one should not
forget that the ERG density imposes only soft constraints
based on the observables. However, we want the connect-
edness of the graph to be a hard constraint, as the goal
is to sample connected synthetic power grids. To accom-
modate this, we restrict the ERG model to the subsets of
the connected graphs with n nodes, which we denote as
Gn,conn ⊂ Gn. This is equivalent to sampling from the same
ERG model in Eq. (13) but conditional on on the graph
being connected.

The density of the ERG model obtained when restricting
to a general subset S ⊂ Gn is

PβS (G = G) = exp(HβS (G))

ZβS
= exp

(∑r
i=1 βixi(G)

)
ZβS

,

(15)

for all G ∈ S , where ZβS := ∑
G∈S eHβ (G). We denote by

βS = (β1, . . . , βr) the new different set of parameters that
the ERG model needs to express the target average for
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each graph observable. In fact, when we restrict ourselves
to a general subset S ⊂ Gn, the system of equations that
determine the parameters given in Eq. (11) also changes.
In particular, we have

xi = E[xi(G)] = 1
ZβS

∑
G∈S

xi(G)eHβ (G)

= 1
ZβS

∂

∂βi

∑
G∈S

eHβ (G) = 1
Zβ

∂ZβS
∂βi

= ∂FβS
∂βi

, i = 1, . . . , r. (16)

In the special case with S = Gn,conn and the Hamiltonian as
in Eq. (13), it is not possible to retrieve ZβS analytically.
Therefore, a numerical estimate is required to obtain a set
of parameters that satisfy Eq. (16).

IV. PARAMETER ESTIMATION USING THE
EQUILIBRIUM EXPECTATION ALGORITHM

In this section, we introduce a new method that we have
used to estimate the parameters β that satisfy Eq. (16) for
an ERG model formulation that includes a hard constraint
as in Eq. (15). Before doing so, we briefly discuss the lit-
erature on ERG parameter estimation and relate it to our
scheme.

A. Methods for ERG parameter estimation

Parameter estimation for ERG models in the presence
of an intractable partition function is still an open prob-
lem [56]. The use of mean-field techniques gives unreliable
results in related models such as spin glasses [60] and has
been shown to work for ERG models only for specific val-
ues of the parameters that make them almost Erdős-Rényi
models [58,61].

Many parameter-estimation approaches are based on
MCMC methods. Such methods are widely used to sam-
ple from ERG models [62] and more generally from
any probability distribution π . The Metropolis-Hastings
(MH) algorithm [63] is an MCMC scheme that is partic-
ularly suitable when the target probability distribution π

is known up to a constant factor, such as in the case of a
Gibbs distribution or the ERG model given in Eq. (8).

The MH algorithm produces a sequence of samples from
a Markov chain {Xt}t∈N with specific transition probabili-
ties that are obtained as the results of two steps, a proposal
step and a subsequent acceptance step, each character-
ized by a different distribution. The proposal distribution T

specifies the conditional probability T(s, s′) of going from
state s to state s′; the acceptance distribution A specifies
the probability A(s, s′) of accepting the proposed state s′ if
the chain previously resided in s. The transition probability

can thus be rewritten as

Pβ(s, s′) = T(s, s′)A(s, s′). (17)

We will now specify the MH algorithm that we consider
to estimate the parameters of the ERG model. Consider a
general ERG model of the form given in Eq. (8), defined
over a state space S ⊆ Gn. The target probability density
π from which we want to sample is the ERG density Pβ

given in Eq. (8).
In the classical MH algorithm for ERG models [62],

only moves that prescribe the addition or removal of a
single edge are allowed. In terms of the proposal dis-
tribution, this means that for every pair of graphs Gt =
(V, Et), Gt+1 = (V, Et+1) ∈ S ,

T(Gt, Gt+1) > 0 ⇐⇒ |Et

�
Et+1| ≤ 1. (18)

We consider the following simple proposal distribution
T(Gt, Gt+1). We randomly choose a pair of nodes uni-
formly (i, j ) ∈ V × V and if (i, j ) �∈ Et, then we add the
corresponding edge, obtaining a new set of edges Et+1 =
Et ∪ {(i, j )}. Otherwise, we remove the selected edge and
obtain a new graph with edge set Et+1 = Et \ {(i, j )}. It is
clear that this proposal distribution satisfies the condition
given in Eq. (18).

Once a move is proposed, the acceptance probability
is calculated using the desired target distribution given in
Eq. (8) by

Aβ(Gt, Gt+1) = min
{

1,
Pβ(Gt+1)

Pβ(Gt)

}
, (19)

with Pβ being the ERG probability distribution defined in
Eq. (8). Note that computing the acceptance probability
does not require knowledge of the partition function, since

Pβ(Gt+1)

Pβ(Gt)
= eHβ (Gt+1)

eHβ (Gt)
, (20)

and, thus, it is possible to simplify the expression for the
acceptance probability into

Aβ(Gt, Gt+1) = min
{

1, eHβ (Gt+1)−Hβ (Gt)
}

. (21)

We denote by {X (β)
t }t∈N the Markov chain on the state

space S defined by the MH algorithm. Note that the steady-
state distribution π of {X (β)

t }t∈N exists and is unique since
the chain is reversible. Furthermore, the use of Eq. (21)
guarantees that π corresponds to the ERG density in
Eq. (8).

A disadvantage of MCMC methods is that the chain
must be close to stationarity to produce samples from the
desired ERG distribution Pβ . In practical terms, this means
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that the chain needs to run for a sufficiently large number
of steps, commonly referred to as the mixing time of the
chain, so that the empirical distribution of the chain is close
to its steady-state distribution.

One of the most widely used parameter-estimation
approaches based on MCMC is the so-called Markov-
chain Monte Carlo maximum likelihood introduced by
Geyer [64]. The idea behind this procedure is to use
samples from an MCMC as defined above, with an arbi-
trarily chosen set of parameters β0 to approximate the
log-likelihood of the distribution Lβ with an empirical one
LN ,β0 , where N is the number of samples drawn from
the steady-state distribution of the chain, to retrieve the
set of parameters that satisfy Eq. (11). This method the-
oretically guarantees the asymptotic convergence of LN ,β0
to Lβ when the number of samples N approaches infin-
ity. However, the convergence is slow if β0 is too far
from the target one. If this happens, the literature sug-
gests reiterating the procedure many times, using the end
point of the previous iteration as the starting parameter
for the next iteration. Although coming with asymptotic
convergence guarantees, the maximum-likelihood estima-
tion through MCMC can be computationally unfeasible
in our context, especially when the number of nodes is
too large. At each iteration of the method with differ-
ent parameters, a large number of samples must be taken
from the steady-state distribution of the chain after it has
reached the mixing time. This could be impractical for
large n. For ERG models for dense graphs, the mixing
time has been shown to be of the order O(n2 log n) [65];
however, currently there are no similar results for ERG
models on sparse graphs, i.e., ERG densities the ensem-
ble of which has an average number of edges 〈m〉 of the
order O(n).

From a Bayesian perspective, there are many possi-
ble methods that have been proposed and used in the
literature to tackle this issue (see, e.g., Ref. [66]) but
they are known to scale poorly as the number of nodes
increases. Nevertheless, the MCMC maximum-likelihood
method is widely used in the ERG community, being also
the main method used in popular estimation libraries for
ERGMs such as the ERGM package [67,68] for the R soft-
ware [69]. This package estimates the parameters of the
models using maximum-likelihood estimation, which is
approximated using either the MCMC MLE, which we
described before, or the maximum-pseudolikelihood esti-
mation (often referred to as MPLE, first introduced in
Ref. [70]), or combination of the two. However, using
any of these approaches while working in the space
of connected graphs Gn,conn is highly nontrivial. More-
over, enforcing sparsity in the graphs while also impos-
ing the hard constraint of connectivity could be com-
putationally unfeasible for the aforementioned methods,
motivating the need for new procedures for this specific
problem.

ALGORITHM 1. Equilibrium Expectation for a constrained
chain.

B. Estimation algorithm for constrained chains

In view of the above considerations, we have decided to
resort to a variation of the equilibrium-expectation (EE)
algorithm [71] to estimate the parameters of our ERG
model. The EE algorithm uses a modified MH MCMC
model, as defined in Eq. (17), in which the parameters β

of the ERG model are dynamically adjusted. In contrast to
other MCMC methods, it is based on the properties of the
chain at equilibrium rather than on drawing a large num-
ber of samples from the chain itself, thus decreasing the
computational burden. The pseudocode for the designed
algorithm is given in Algorithm 1.

The initial state X0 = G0 of the Markov chain associ-
ated with the EE algorithm must be drawn from the desired
steady-state distribution to exploit the properties of the
chain at equilibrium. In our setting, this requirement is sat-
isfied by taking as an initial state the graph corresponding
to the power grid used as a reference for the Hamiltonian
given in Eq. (13).

At step t of the chain, the parameters β are updated
according to some update rule if t ≡ 0 (mod θ), with θ

being a user-defined variable that controls how often the
update occurs. The update rule proposed in Ref. [71] works
as follows. Let β t = (β t

1, . . . , β t
r) be the parameters associ-

ated with the observables x1(G), x2(G), . . . , xr(G) at time t.
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At step t + 1, the parameters are updated as

β t+1
i = β t

i + α · max(|β t
i |, c) · sign[xi(G0) − xi(Gt)] (22)

if t ≡ 0 (mod θ) and β t+1
i = β t

i otherwise. The parameter
α > 0 is the learning rate and c > 0 is a control parame-
ter that ensures that the algorithm does not get stuck when
|β t

i | � 1.
This approach alone does not allow for sampling from a

constrained space such as Gn,conn. To overcome this, we
combine the EE algorithm with the modified MH-type
algorithm proposed by Grey et al. in Ref. [72], designed
specifically to sample from constrained sets of graphs.

Consider a nonempty connected subset S ⊂ Gn and a
Hamiltonian Hβ with r observables. We will prove that if
the Markov chain {Xt}t∈N on S defined by the EE algorithm
(i) satisfies Eq. (18) and

T(G, G′) = 0 ∀ G ∈ S , ∀ G′ /∈ S , (23)

and (ii) uses the acceptance rule as in Eq. (21), then as
t → ∞, the parameter process β t converges to the solution
βS of the equations

xi(G0) = 1
Z

∑
G∈S

xi(G)eHβS (G), i ∈ {1, . . . , r}. (24)

In our case, we take S to be the set of connected graphs of
size n, i.e., S = Gn,conn. For Eq. (23) to hold, the Markov
chain should be defined to have nonzero transition prob-
abilities only between connected graphs. To this end, we
choose the following proposal density T(Gt, Gt+1): either
an edge chosen uniformly from the set of missing edges
E \ Et is added or an edge chosen uniformly among the
edges in Et that can be removed without disconnecting the
graph is removed.

This algorithm takes as input a starting graph G0 for the
chain, the number of steps θ of the Markov chain after
which the parameters are updated, the starting parame-
ters β0, the hyperparameters α and c used for the update
rule given in Eq. (22), and the maximum number of itera-
tions T. The EE algorithm works as follows: each proposed
move is either the addition of an edge or the removal of an
existing edge that does not disconnect the graph. In either
case, the move is accepted according to the standard MH
acceptance rule.

After every θ transitions of {Xt}t∈N, each parameter βi
is updated simultaneously using the update rule given in
Eq. (22). The limit of the sequence β t generated by the
EE algorithm does not depend on the initial values β0. In
fact, later, in Theorem 1, we will show that the limit is
unique. However, the choice of β0 in general affects the
convergence speed of the algorithm but we have not inves-
tigated this numerically. The starting values of β0 could be

obtained by using, e.g., the contrastive-divergence method,
as suggested in Ref. [71].

The following theorem summarizes the results concern-
ing the convergence of the method.

Theorem 1. Consider the coupled stochastic processes
(Xt, β t)t∈N returned by Algorithm 1. Let {Xt}t∈N be a
Markov chain with transition probabilities defined as in
Eq. (17) on a nonempty and connected subset of graphs
S ⊆ Gn, with a proposal T as in Eq. (18) and acceptance
probability Aβt as in Eq. (21) and let {β t}t≥0 be the r-
dimensional stochastic process describing the evolution of
the ERG parameters over time using the update rule given
in Eq. (22). If the starting point X0 is drawn from the
steady-state distribution of {Xt}t∈N and the learning rate α

in the update rule is small enough, then for any β0,

lim
T→∞

β̄(T) = lim
T→∞

1
T

T∑
t=1

β t = βS , (25)

where βS is the set of parameters satisfying Eq. (16).

Proof. In this proof, we will write Pβ and Aβ instead of
Pβt and Aβt , making the time dependency of the parame-
ters β implicit to keep the notation light. Similarly, we will
write χi(t + 1, t) instead of (xi(Gt+1) − xi(Gt))

First, we prove that the chain defined by the algorithm
in the restricted state space S is irreducible and aperiodic.
The key observation is that starting from any graph, it is
possible to reach the complete graph Kn in a finite num-
ber of moves by adding all the missing edges one by one.
These trajectories are possible in the subspace S since it is
closed with respect to edge additions. Furthermore, since
every edge addition can be “reversed,” the corresponding
symmetric edge removal is allowed in S . For any pair of
connected graphs G, G′ ∈ S , we can build a trajectory in S
between them by first connecting G to Kn using the trajec-
tory described above and then using the reverse trajectory
from Kn to G′. This property is independent of the choice
of parameters β t; therefore, the considered Markov chain
{Xt}t∈N is thus irreducible. The aperiodicity readily follows
from the way in which we have defined Aβ , which assigns
a strictly positive probability to stay in one configuration
for more than one step.

Our algorithm fits within the framework of Ceperley and
Dewing [73], which we now briefly discuss. The goal of
Ref. [73] is to determine an explicit expression for the
acceptance probability in MCMC in such a way that the
algorithm still samples from the desired (stationary) dis-
tribution π in the setting where the energy difference �

between the current state and the next proposed state is
perturbed by noise. This also fits our setting; we have
� = Hβt+1(Gt+1) − Hβt(Gt) and for each parameter βj we
have that (β t

j ) for t = 0, 1, 2, . . . , T is a sequence of random
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variables. Note that each β t
j is adapted to the filtration gen-

erated by the initial condition and the acceptance choices
up to time t. Consequently, the energy difference between
graphs Gt and Gt+1,

� = �(Gt, Gt+1) :=
r∑

j =1

β t
j χj (t + 1, t), (26)

is also random. More specifically, as stated in Ref. [73],
a central-limit theorem argument suggests that for large
enough T, for each j , the distribution of β t

j is approxi-
mately normally distributed with mean βj and variance
α2. This is indeed confirmed by the numerical experi-
ments with the update rule given in Eq. (22) conducted
in Ref. [74]. Assuming that (β t

j )
r
j =1 are jointly normally

distributed (with a nontrivial covariance matrix), we have

� ∼ N (μ�, σ 2
�), (27)

where μ� := ∑r
j =1 βj χj (t + 1, t). The variance of � is

σ 2
� := Var

( r∑
j =1

β t
j χj (t + 1, t)

)
=

r∑
j =1

Var
(
β t

j χj (t + 1, t)
)

+
∑
i�=j

Cov
(
β t

iχi(t + 1, t), β t
j χj (t + 1, t)

)
. (28)

We now aim to find an upper bound on the variance. Con-
sider the case in which the sum of the covariance terms in
Eq. (28) is greater than 0. Applying the Cauchy-Schwarz
inequality, we have the following result:∑

i�=j

Cov
(
β t

iχi(t + 1, t), β t
j χj (t + 1, t)

)

≤
∑
i�=j

√
Var

(
β t

iχi(t + 1, t)
)

· Var
(
β t

j χj (t + 1, t)
)

.

(29)

By plugging Eq. (29) into Eq. (28), we obtain an upper
bound that depends only on the variances of the single
differences in the Hamiltonian given in Eq. (30):

Var
( r∑

j =1

β t
j χj (t + 1, t)

)

≤
r∑

j =1

Var
(
β t

j χj (t + 1, t)
)

+
∑
i�=j

√
Var

(
β t

iχi(t + 1, t)
)

Var
(
β t

j χj (t + 1, t)
)

.

(30)

Now note that the terms χj (t + 1, t) are bounded for each
j and for every t, since they represent time differences in

graph statistics the maximum of which can be easily com-
puted given the j th statistic formula. In fact, we can bound
the differences in the observables by writing

|xj (Gt+1) − xj (Gt)| ≤ Qmax, ∀j , ∀t, (31)

where Qmax is the maximum absolute difference of any
observable between two graphs differing by one edge. In
our formulation, with the Hamiltonian defined in Eq. (13),
we expect Qmax to be equal to the maximum number of 2-
triangles that can be created or removed by the addition or
removal of a single edge, which is of the order O(k2

max),
where kmax is the maximum node degree of Gt. Since we
are in a sparse regime, we expect kmax to be of order o(n)

(as stated in Sec. II C, for power grids it has been observed
that 2 < 〈k〉 < 3).

Thus, we can substitute their contribution in the variance
with the constant Qmax, obtaining

Var
( r∑

j =1

β t
j χj (t + 1, t)

)
≤

r∑
j =1

Q2
maxVar

(
β t

j

)

+
∑
i�=j

Q2
max

√
Var

(
β t

i

)
· Var

(
β t

j

)
. (32)

Now note that the upper bound for the variance depends
solely on the variances of the parameters. With the update
rule described in Eq. (22) and Algorithm 1, the variances
of the parameters, as stated in Ref. [74], can be assumed to
be approximately equal to the square of the learning rate α,
leading to the following upper bound:

Var
( r∑

j =1

β t
j χj (t + 1, t)

)
≤

r∑
j =1

Qmaxα
2 +

∑
i�=j

Qmaxα
2.

(33)

In Ref. [73], the authors determine an acceptance proba-
bility that satisfies the average detailed balance equation
of the chain. In our setting, the average detailed balance
equation is

π(Gt)Aβ(Gt, Gt+1) = π(Gt+1)Aβ(Gt+1, Gt), (34)

where Gt and Gt+1 differ by one edge. When Gt and Gt+1
differ by more than one edge, the average detailed bal-
ance equations are always trivially satisfied. In Eq. (34),
Aβ(Gt → Gt+1) is the average acceptance probability of
the transition from Gt to Gt+1, where the expectation is
taken with respect to the law of (β t

i )
r
i=1. The results in

Ref. [73] imply that, when �(Gt, Gt+1) follows a nor-
mal distribution with known variance σ 2

�, the acceptance
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probability

Aβ(Gt, Gt+1; σ�) = exp (−�(Gt, Gt+1) − σ 2
�/2) ∧ 1

(35)

solves Eq. (34).
The issue with this is that, in general, σ� in Eq. (35)

cannot be computed explicitly. However, given the upper
bound for the variance described in Eq. (33), if one chooses
a small enough learning rate α (possibly at the cost of a
larger t), the term σ 2

� can be neglected, leading to the usual
acceptance probability,

Aβ(Gt, Gt+1) = exp (−�(Gt, Gt+1)) ∧ 1. (36)

With the acceptance probability defined by Eq. (36) and the
constraint that every state of the chain trajectory should lie
in the subspace S described before, we can follow the same
steps as in Ref. [72]. First, since each state of the trajectory
is required to lie in S , we have the following:

Pβ(Gt+1)

Pβ(Gt)
= Pβ(G = Gt+1|G ∈ S)

Pβ(G = Gt|G ∈ S)
, (37)

which can be rewritten as

Pβ(G = Gt+1, G ∈ S)

Pβ(G = Gt, G ∈ S)
· Pβ(G ∈ S)

Pβ(G ∈ S)

= Pβ(G = Gt+1, G ∈ S)

Pβ(G = Gt, G ∈ S)
. (38)

By definition of the moves in Algorithm 1, we have
Pβ(G = G, G ∈ S) = Pβ(G = G) because the trajectory
is always restricted to lie inside S . Therefore, we rewrite
Eq. (38) as follows:

Pβ(Gt+1)

Pβ(Gt)
= Pβ(G = Gt+1)

Pβ(G = Gt)
, (39)

which in turn can be plugged into Eq. (36), leading to the
following acceptance probability:

Aβ(Gt, Gt+1) = min
{

1,
Pβ(G = Gt+1)

Pβ(G = Gt)

)}
, (40)

which is the same acceptance probability as for the
MH algorithm without constraint. By construction, this
acceptance probability guarantees that π(G) = PβS (G =
G|G ∈ S), which coincides with the desired probability
distribution given in Eq. (15). Hence, since the chain is
irreducible and aperiodic for t → ∞, Algorithm 1 con-
verges to the distribution of interest given in Eq. (15) if
the learning rate α is close to 0 with the update rule as
in Eq. (22) and with the acceptance probability given in
Eq. (40). �

ALGORITHM 2. Connected graph generation [72].

After having estimated the set of parameters β̄ using
Algorithm 1, we can then use Ref. [72, Algorithm 2] to
obtain an ensemble of graphs sampled from the proba-
bility distribution PβS as in Eq. (15). This algorithm is
a modified MH algorithm that generates only connected
graphs; for completeness, we report the pseudocode in
Algorithm 2.

V. NUMERICAL RESULTS

In this section, we give details on the tuning of the pro-
posed ERG model and present some numerical results.
More specifically, in Sec. V A, we detail our implementa-
tion of the proposed variant of the EE algorithm, while in
Sec. V B, we report several statistics of the synthetic grids
obtained with the proposed ERG-based procedure against
the reference topology. Lastly, in Sec. V C, we compare the
performance of our proposed ERG model with the simpler
ERG model the Hamiltonian of which does not have the 1-
and 2-triangle terms.

Our implementation and all our experiments are avail-
able at [75]. We believe that there is room for significant
computational speed-ups in our implementation but these
are beyond the scope of our paper and are left for future
work. The experiments in this section have been performed
on a laptop with an Intel® CoreTM i7 CPU and 16 GB of
RAM.
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TABLE I. The hyperparameters used for the EE algorithm
when using the 300 IEEE network as reference grid.

T α c θ

20 000 000 0.001 0.001 100

A. ERG parameter tuning

In this section, as an illustration, we briefly show how
we have tuned the parameters for an ERG model that
aims to generate synthetic power grids with topologi-
cal properties similar to a grid given in input. The grid
taken as reference is the 300 IEEE network, a medium-
sized benchmark grid with 300 nodes and 409 edges (see
Table V).

In Table I, we report the hyperparameters of Algorithm
1 used for the estimation of the parameters of the ERG
model with Hamiltonian as in Eq. (13) and the topology of
the 300 IEEE network as reference for the values of the
observables.

Since we have no knowledge of the distribution given
in Eq. (15) before parameter estimation, in all our exper-
iments we use as a starting point for the estimation
in Algorithm 1 the topology of the reference grid G0.
Furthermore, the statement of Theorem 1 holds asymp-
totically as T → ∞ but, in practice, we need to resort
to an approximation of Eq. (25). If T is large enough,
we can estimate the target parameters as in Ref. [74],
using

β̄ = 1
T − tB

T∑
t=tB+1

β t, (41)

where tB is the so-called burn-in time, i.e., a time after
which we say that the chain {β(t)}t∈N is roughly indepen-
dent of the initial condition β0.

For simplicity purposes, in all of our experiments, we
pick the burn-in time in a heuristic way by setting tB =
0.75 · T, effectively keeping only the last quarter of the
trajectories to estimate β̄.

In Fig. 4, we show the trajectories of the various com-
ponents of the vector β t obtained using Algorithm 1. For
illustration purposes, we display the values only after each
nontrivial update [i.e., βk·θ , k ∈ N, cf. Eq. (22)], effec-
tively displaying only the nonpiecewise constant parts of
the trajectories. For this experiment, the percentage of
accepted moves is approximately 1.5%, and the percent-
age of rejected proposals due to the connectivity constraint
is approximately 0.3%.

Looking at Fig. 4, the burn-in time can be graph-
ically interpreted as the number of update iterations t̄
after which each parameter trajectory has passed the
“elbow point” and starts to oscillate around a constant
value.

B. Topological properties of generated synthetic grids

We present here the results of our proposed sampling
method on a few benchmark grids of different sizes. For
each grid, we sample new graph topologies using the
Markov chain described in Algorithm 2, with grid-specific
parameters β̄ tuned with Algorithm 1.

To reduce undesirable correlations among the sampled
graphs, we have applied a standard chain-thinning crite-
rion to the list of graphs produced by Algorithm 2. More
specifically, we progressively scan this list of samples and
retain only the graphs the adjacency matrix of which is at a
Hamming distance of at least 2n from the adjacency matrix
of the last retained graph.

In Table II, we compare the sampled graphs with
the initial reference power grids G0, with respect to
various topological properties described in Sec. II. We
report the average of each quantity over the collection
of sampled graphs, as well as the corresponding standard
deviation. The whole procedure, complete with param-
eter estimation and grid ensemble generation, took 25
min for the 118 IEEE network, 70 min for the 300
IEEE network, and 250 min for the 1354 PEGASE
network.

All generated synthetic topologies are connected, have
a realistic bus-type assignment as defined in Refs. [10,37],
and exhibit average values close to those of the grid of ref-
erence for all observables included in the Hamiltonian. We
observe that for the topological properties that were not
explicitly included in our Hamiltonian, e.g., the average
path length and the algebraic connectivity, the obtained
average values, although not exactly matching the real
ones, are within the range of values considered as realistic
in previous literature (see Ref. [11,38]) and are comparable
to those observed in the real grids of similar size reported
in Appendix A. A direct comparison with other models
in the literature is difficult due to the different grids used
as reference and the different scope (comparing a spatially
embedded model with a purely topological one would be
uninformative at best, due to the differences in the prob-
lems considered). However, we emphasize that our results
for the topological properties of interest are consistent
with those obtained by topological methods using refer-
ence grids of similar size to the one we have considered
[5,31,38].

As mentioned above, our approach only considers the
bus-type assignment and does not take into account any
other electrical properties. This is because we believe that
attempting to include such properties in an ERG formu-
lation would be highly challenging and inefficient. To
effectively include these properties in the generated grids,
one could rely on the methods proposed in the litera-
ture that can be used to incorporate electrical parameters
into an existing topology in a realistic way [76,77]. These
approaches typically involve sampling operational data
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(a)

(b)

(c)

(d)

FIG. 4. The trajectories of the βk·θ , k ∈ N process describing the ERG model parameter updates over time using the EE algorithm
when using the 300 IEEE network as the reference grid. (a) The evolution over time of the parameters βPP (left) and βPL (right). (b)
The evolution over time of the parameters βPI (left) and βLL (right). (c) The evolution over time of the parameters βLI (left) and βII
(right). (d) The evolution over time of the parameters β1t for the number of triangles (left) and β2t for the number of 2-triangles (right).

from probability distributions estimated from real grids
and attaching the sampled values to the topology, while
ensuring that realism constraints are satisfied. The same
methods could be applied to the topologies generated by
our model.

C. Ablation study

To show the crucial role that including the number of
1- and 2-triangles as observables in the Hamiltonian plays,
we present here a simpler ERG model that only accounts
for the edge count and bus-type assignment. Specifically,
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TABLE II. A comparison of the synthetic grid statistics obtained from the ERG model with the corresponding actual values in the
reference grid G0. The reported graph observables are as follows: m, average number of edges; 〈kP〉, average degree of generators;
〈kL〉, average degree of loads; 〈kI 〉, average degree of interconnections; APL, average shortest path length; λ2, algebraic connectivity;
C, clustering coefficient. The averages and deviations have been computed on an ensemble composed of 1100 samples, obtained after
chain thinning.

Power grid G0 Metric type m 〈kP〉 〈kL〉 〈kI 〉 APL λ2 C

118 IEEE Actual 179 3.56 2.5 3.25 6.3 0.027 0.165
Sample average 180 3.61 2.52 3.33 4.67 0.10 0.11
Sample standard (6.89) (0.36) (0.20) (0.70) (0.42) (0.04) (0.03)

300 IEEE Actual 409 1.95 3.00 2.15 9.93 0.009 0.085
Sample average 413 1.93 3.06 2.16 6.44 0.049 0.076
Sample standard (10) (0.13) (0.17) (0.24) (0.39) (0.019) (0.015)

1354 PEGASE Actual 1710 2.58 1.08 2.53 11.15 0.005 0.056
Sample average 1723 2.53 1.16 2.51 9.56 0.022 0.051
Sample standard (29) (0.09) (0.17) (0.04) (0.27) (0.007) (0.006)

we consider the following Hamiltonian:

Hβ(G) = βPP|EPP| + βPL|EPL| + βPI |EPI |
+ βLL|ELL| + βLI |ELI | + βII |EII |, (42)

which is the same formulation as in Eq. (13) but without
the counts of the 1- and 2-triangles as observables. This
simpler Hamiltonian allows us to calculate the partition
function Zβ explicitly and thus derive in a close form the
optimal parameters given the target observables. In fact,
the partition function of this simpler model is

Zβ =
∏
i∈I

(1 + eβi)M (Ei), (43)

where I = {PP, PL, LI , LL, LI , II} and M (Ei) is a function
that computes the maximum possible number of edges of
type i. The theoretical details of the derivations of Eq. (43)
are presented in Appendix B. In other words, if Ei = Eab is
the subset of edges that connect nodes of type a with nodes
of type b, then

M (Ei) = M (Eab) :=
{

|a| · |b|, if a �= b,
|a| · (|a| − 1), if a = b.

(44)

Using Eq. (43), we can then easily derive the following
closed-form expression for the free energy:

Fβ = log Zβ = log
∏
i∈I

(1 + eβi)M (Ei)

=
∑
i∈I

M (Ei) log (1 + eβi). (45)

Deriving Eq. (45) with respect to each βi, we can then cali-
brate the parameters to match the target value as described
in Eq. (11). The theoretical details of the derivations of
Eq. (45) are presented in Appendix B. However, these

close-form parameters do not account for the fact that we
are interested only in sampling from the subspace of con-
nected graphs S = Gn,conn. Therefore, even for this simpler
model, we need to estimate the parameters using the EE
algorithm in Algorithm 1. It is insightful to compare the
parameters obtained using the closed-form expression of
the free energy as in Eq. (45) (hence, without taking into
account the connectivity constraint) with those obtained
using the EE algorithm in the subspace of connected
graphs.

In Table III, we report the values of the different param-
eters for the two methods when G0 is the topology of
the 300 IEEE network. Not surprisingly, enforcing con-
nectivity encourages a less sparse solution and thus the
parameter values of the edge counts are lower to account
for this. Furthermore, we have noted that the number of
edges in a specific edge subset seems to be correlated with
the steepness of the decrease in the value of the associated
parameter. Understanding exactly how hard constraints,
such as connectivity, affect the parameters of an ERG
density is, to the best of our knowledge, still an open
problem.

We show in Table IV that, in fact, the graphs generated
by the simpler model cannot, on average, capture the tran-
sitivity of the real power grids. We compare the average

TABLE III. A comparison of parameters for the simpler model
in Eq. (43) obtained taking the 300 IEEE topology as refer-
ence grid G0, using either the closed-form expression of the free
energy or the EE algorithm.

Observable G0 value Free-energy β EE β Change (%)

ePP 8 −5.68 −6.19 −9.0
ePL 110 −4.84 −5.22 −7.7
ePI 9 −5.33 −5.83 −9.4
eLL 240 −4.45 −4.60 −3.4
eLI 35 −5.05 −5.38 −6.5
eII 7 −3.89 −4.59 −17.0
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TABLE IV. A comparison of the average values of the topological properties of interest between the simpler model arising from
Eq. (42) and the one that includes the triangles arising from Eq. (13) with respect to the real values observed for the 300 IEEE
topology.

Model m 〈kP〉 〈kL〉 〈kI 〉 T1 T2 APL λ2 C

Reference grid 300 IEEE 409 1.95 3.00 2.15 34 14 9.93 0.009 0.085
ERG model without T1 and T2 407 1.88 3.00 2.13 2.7 0.08 6.00 0.067 0.005
ERG model with T1 and T2 413 1.93 3.06 2.16 35 15 6.44 0.049 0.076

results obtained with the model specification as in Eq. (42)
with that obtained with the specification given in Eq. (13),
once again using the 300 IEEE topology as a reference
grid G0. The simpler model produces graphs with an aver-
age degree per bus-type close to the desired ones but none
of the transitivity metrics (i.e., clustering coefficient and
the related triangle counts) are consistent with the observed
ones.

VI. CONCLUSIONS AND FUTURE WORK

Exponential random graphs (ERGs) are some of the
most well-studied random graph models. However, to the
best of our knowledge, these have never been used in
the context of the generation of synthetic power grids.
The advantage of using ERG models in this domain is
that desirable local and global topological properties can
be introduced simultaneously as soft constraints in the
sampling density. The proposed methodology allows the
efficient generation of large and diverse samples of syn-
thetic grids starting from a real power grid given as input.
In this work, we have introduced the ERG mathematical
framework, presented an approach to tackle some crucial
technical issues, including a general estimation procedure
for the parameters which allows for even more flexibil-
ity while using the ERG models, and presented some
numerical results for synthetic power-grid generation.

Since only a single reference grid is needed as input to
generate an ensemble of weakly correlated topologies that
share, on average, the desired properties, our method can
be efficiently used to produce a large collection of realis-
tic grids. These grids in turn, following the rationale of the
power grids from a network-of-networks perspective pro-
posed in Ref. [32], can be used as “fragments,” i.e., build-
ing blocks to be reassembled to generate larger and more
heterogeneous grids, as done in Refs. [3–5]. This approach
could be used in an iterative fashion, using reassembled
grids as a starting point of reference for Algorithm 1.

Possible future research directions include investigating
the dynamics of the chain generated in Algorithm 1 more
in depth so that we can identify how well our method scales
as the size of the network increases. This would help us to
identify the mixing time, and thus an appropriate burn-in
time tB, in a more theoretically sound way.

An alternative approach would be to use a different chain
to sample the ERG distribution. One promising example is

the chain proposed in Ref. [78] to study the distribution of
disordered spin systems.

As mentioned in Sec. I, the Boltzmann formulation
of the ERG model allows for a straightforward form of
compositional modeling, especially in the context of com-
positional generation using energy-based models [2]. We
consider particularly interesting the possibility of using an
ERG model tailored to a specific generation task, such as
the one presented in this paper, as a form of guidance or
conditioning for a deep-generative energy-based model, in
a fashion similar to the work in Ref. [1].

Finally, since our scheme is rather general, it would
be interesting to investigate its application in contexts
different from the analysis of power grids.
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APPENDIX A: LIST OF ANALYZED GRIDS

The transmission grids used in this study are those
collected and described in Ref. [50], which have been
made available in a MATPOWER testcase format [79] in
the POWER-GRID-LIB library [80] and that we have parsed
using the PGLIB-OPF-PYPARSER library [81]. For each avail-
able grid, we derive a simple, undirected, and unweighted
graph object. The bus types have been inferred as follows:
the generators are retrieved directly from the generator list
available in the MATPOWER file, the interconnections are
the buses with no power generation or demand, while the
remaining nodes have all been labeled as loads. In Table
V, we present some topological properties used during the
analysis for all connected power grids.

APPENDIX B: PROOF OF THE CLOSED-FORM
EXPRESSION OF THE SIMPLER MODEL

Theorem 2. Consider a simple undirected unweighted
graph G = (V, E), and let A = (

Aij
)

be the symmetric
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TABLE V. The investigated properties of the analyzed grids from Ref. [50]. The properties reported in the table are those described
in Secs. II B and II C.

Name Number Number 〈k〉 〈kP〉 〈kL〉 〈kI 〉 P (%) C (%) I (%) Number of Number of λ2 C APL
of of triangles 2-triangles

buses branches

case30_as 30 41 2.73 2 2.77 4.5 20 73 7 6 0 0.212 0.235 3.306
case30_ieee 30 41 2.73 2 2.77 4.5 20 73 7 6 0 0.212 0.235 3.306
case39_epri 39 46 2.3 1.1 2.79 0 25 72 2 1 0 0.076 0.038 4.749
case57_ieee 57 78 2.74 3.86 2.62 2 12 82 5 9 2 0.088 0.122 4.954
case73_ieee_rts 73 108 2.96 2.88 3.11 2 45 51 4 3 0 0.04 0.025 5.983
case118_ieee 118 179 3.03 3.56 2.5 3.25 46 47 7 23 11 0.027 0.165 6.309
case179_goc 179 222 2.48 1 2.45 3.65 16 61 22 19 13 0.007 0.089 12.382
case200_activ 200 245 2.45 1 2.91 3.25 24 74 2 13 4 0.023 0.037 8.223
case240_pserc 240 348 2.89 1 3.44 0 22 78 0 49 33 0.017 0.114 8.824
case300_ieee 300 409 2.73 1.96 3.06 2.15 23 68 9 34 14 0.009 0.086 9.935
case500_goc 500 651 2.6 1.38 3.22 2.1 30 64 6 52 24 0.007 0.061 9.75
case588_sdet 588 677 2.3 2.54 2.18 2.87 21 72 7 7 0 0.004 0.011 13.495
case793_goc 793 904 2.28 2.61 2.15 2.48 22 70 8 9 0 0.003 0.01 15.331
case1354_pegase 1354 1710 2.53 2.58 1.08 2.53 19 1 80 87 14 0.005 0.056 11.151
case2000_goc 2000 2810 2.81 1.15 3.08 2.78 13 81 6 232 129 0.001 0.063 16.363
case2312_goc 2312 2830 2.45 2.01 2.51 2.71 18 70 12 52 11 0.004 0.017 15.009
case2383wp_k 2383 2886 2.42 3.01 2.33 0 14 86 0 26 3 0.003 0.009 12.759
case2736sp_k 2736 3495 2.55 3.44 2.45 3 10 90 0 56 5 0.003 0.014 13.399
case2737sop_k 2737 3497 2.56 3.56 2.45 3.5 9 91 0 57 5 0.003 0.014 13.397
case2742_goc 2742 4005 2.92 3.67 2.91 2.07 2 98 1 152 8 0.003 0.033 15.979
case2746wop_k 2746 3505 2.55 3.2 2.45 2.8 14 86 0 59 5 0.003 0.014 13.317
case2746wp_k 2746 3505 2.55 3.16 2.45 0 14 86 0 58 5 0.003 0.014 13.302
case3012wp_k 3012 3566 2.37 2.96 2.29 1.22 12 88 0 24 1 0.002 0.01 14.529
case3120sp_k 3120 3684 2.36 2.92 2.3 1.22 11 89 0 25 1 0.003 0.009 14.262
case3970_goc 3970 5712 2.88 3.34 2.86 2.54 3 97 0 156 1 0.002 0.026 17.206
case4020_goc 4020 6089 3.03 3.74 3.02 2.49 2 97 1 248 3 0.003 0.038 14.679
case4601_goc 4601 6305 2.74 3.33 2.72 3.24 3 97 0 117 1 0.001 0.017 17.409
case4619_goc 4619 7337 3.18 3.78 3.19 2.5 3 93 4 492 50 0.001 0.067 18.015
case4661_sdet 4661 5751 2.47 2.45 2.43 2.78 20 70 10 92 12 0.004 0.019 15.671
case4837_goc 4837 6622 2.74 3.22 2.72 2.54 3 96 1 250 3 0.001 0.048 23.93
case4917_goc 4917 6187 2.52 1.85 2.71 2.85 25 65 10 240 147 0.001 0.035 21.466
case6468_rte__api 6468 8065 2.49 1.83 2.6 3.27 15 84 1 351 79 0.002 0.051 14.961
case6468_rte 6468 8065 2.49 1.83 2.6 3.27 15 84 1 351 79 0.002 0.051 14.961
case6470_rte 6470 8066 2.49 1.81 2.59 4.82 15 84 1 352 80 0.002 0.052 14.985
case6495_rte 6495 8084 2.49 1.78 2.56 5.95 16 83 1 352 80 0.002 0.052 14.952
case6515_rte 6515 8104 2.49 1.77 2.57 5.9 16 83 1 352 80 0.002 0.051 14.952
case9591_goc 9591 14 042 2.93 3.74 2.92 2.43 2 97 1 557 30 0.001 0.034 17.107
case10000_goc 10 000 12 742 2.55 1.33 2.69 3.57 14 81 5 606 334 0.001 0.031 23.273
case10480_goc 10 480 16 107 3.07 3.74 3.05 3.02 3 94 2 840 81 0.001 0.053 18.606
case19402_goc 19 402 29 751 3.07 3.75 2.99 3.46 2 85 13 1152 89 0 0.04 20.883
case24464_goc 24 464 34 693 2.84 3.33 2.9 2.8 3 21 76 1346 102 0 0.048 35.994
case30000_goc 30 000 35 233 2.35 1.54 2.36 3.75 8 89 4 824 448 0 0.016 34.085

adjacency matrix associated with G. Assume that a par-
tition E1, . . . , EK of all possible node pairs V × V is given,
and let A1, . . . , AK be the corresponding block decomposi-
tion of the adjacency matrix A such that Ak = (

Aij
)
(i,j )∈Ek

.
Consider the ERG model on G ∈ Gn with Hamiltonian

Hβ(G) =
K∑

k=1

βk|Ek(G)|, G ∈ Gn, (B1)

where |Ek(G)| indicates the number of nonzero entries in
the submatrix Ak for the graph G, i.e., how many edges
from the pairs in the subset Ek graph G actually has. Then,
the partition function Zβ associated with Hβ is of the form

Zβ =
K∏

k=1

(1 + eβk )M (Ek), (B2)
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where M (Ek) is the total number of entries in the submatrix
Ak.

Proof. In view of the structure of the Hamiltonian given
in Eq. (B1), the corresponding partition function is

Zβ =
∑
G∈Gn

e
∑K

k=1 βk |Ek |. (B3)

Since we sum over all possible graphs G ∈ Gn, each block
Ak of the adjacency matrix can be considered as an inde-
pendent matrix and Ek represents the number of edges in
the portion of the graph associated with Ak. Thus, we can
rewrite Eq. (B3) as

Zβ =
∑
G∈Gn

K∏
k=1

∏
Aij ∈Ak

eβkAij .

Note that since we consider undirected and unweighted
graphs, the entries of the adjacency matrix can only take
values 0 or 1, i.e., Aij ∈ {0, 1} for all i, j . As described in
Ref. [56], since all considered observables are functions
of the entries Aij of the adjacency matrix A, we can sum
over all possible graphs G ∈ Gn by summing over all pos-
sible combinations of values for each Aij . By doing so, we
obtain

Zβ =
K∏

k=1

∏
Aij ∈Ak

(1 + eβk ) =
K∏

k=1

(1 + eβk )M (Ek).
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