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Batteries, supercapacitors, and several other electrochemical devices charge by accumulating ions in the
pores of electrolyte-immersed porous electrodes. The charging of such devices has long been interpreted
using equivalent circuits and the partial differential equations these give rise to. Here, we discuss the
validity of the transmission line (TL) circuit and equation for modeling a single electrolyte-filled pore
in contact with a reservoir of resistance Rr. The textbook derivation of the pore-reservoir impedance,
Rr + Zp , from the TL equation does not correctly account for ionic current conservation at the pore-
reservoir interface. However, correcting this shortcoming leads to the same impedance. We also show that
the pore impedance, Zp , can be derived directly from the TL circuit, bypassing the TL equation completely.
The TL circuit assumes equipotential lines in an electrolyte-filled pore to be straight, which is not the case
near the pore entrance and end. To determine the importance of these regions, we numerically simulated
the charging of pores of different lengths, �p , and radii, �p , through the Poisson-Nernst-Planck equations.
We find that pores with aspect ratios beyond �p/�p � 5 have impedances in good agreement with Zp .
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I. INTRODUCTION

A. The physics of charging porous electrodes

Electrolyte-immersed porous electrodes are used in sev-
eral technologies, including in batteries [1], solid oxide
fuel cells [2], electrochemical sensors [3], supercapaci-
tors [4,5], and capacitive deionization devices [6]. In these
applications, the porous electrodes typically contain pores
of different shapes, widths, and lengths connected hierar-
chically. When a potential difference is applied between
two porous electrodes, migration of ions in electric fields
leads, in each electrode, to the accumulation of one type of
ion and an opposing electric charge on the electrode sur-
face, which together are called the electric double layer
(EDL) (see Fig. 1 for a schematic summary). Ions also
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diffuse if they pile up or dwindle locally and convect if the
applied potential drives electro-osmosis [7]. Lastly, nar-
row pores can contain only so many finite-sized ions, so
ionic fluxes are also affected by steric repulsions [8–10].
A theoretical model for all these effects should involve
at least the Poisson equation for the electrostatics, the
Navier-Stokes equation for the fluid flow, and modified
Nernst-Planck equations to describe the flux of finite-sized
ions; solvent-free ionic liquids would require a yet-to-be-
developed continuum model instead [11]. These equations
should be solved in a porous electrode’s 3D geometry,
resolving charge storage in nanometer-wide pores and
ionic fluxes through mesopores and between the electrodes
over micrometers. Currently, computational resources do
not allow one to do so. Many models for porous electrode
charging thus ignore their large-scale structure and instead
focus on the charging of idealized pores, usually either
a few nanometers or micrometers wide (see the second
box in Fig. 1). Fluid flow is also often neglected, which
is apposite for small applied potentials [12]. The result-
ing Poisson-Nernst-Planck (PNP) equations were solved
numerically [13–18] and analytically [16,17,19,20]. While
single-pore models oversimplify the charging of a porous
electrode, numerically solving the PNP equations in a sin-
gle pore is still computationally expensive, so the first
mentioned studies go back less than two decades.
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FIG. 1. Overview of modeling approaches to understand the
response of porous electrodes to an applied potential. The figure
mentions a few representative references by the first authors’
names; see Sec. I for more detailed information. New contribu-
tions from this article are indicated in green.

B. Single-pore equivalent circuit models

Historically, porous electrode charging was first stud-
ied through circuit models [21–23]. Again, rather than
an entire porous electrode, these works considered the
charging of a single pore. The electrolyte in a pore has a
resistance (Rp ) and the electrolyte-electrode interface has a
capacitance (C), but a pore does not charge like an RC cir-
cuit because the resistance and capacitance are distributed
over the pore, which can be represented by cutting up Rp
and C, and connecting the pieces in the transmission line
(TL) circuit—the ladder network shown in the third box
in Fig. 1. In the limit of infinitely many infinitesimally
small circuit elements, the TL circuit gives rise to the TL

equation [viz., Eq. (43)], a diffusion-type equation for the
potential drop across the capacitors of the circuit. de Levie
solved the TL equation for a case of a finite-length pore
of constant cross section and capacitance subject to a sinu-
soidal applied voltage of angular frequency ω, yielding the
pore impedance [24]:

Zp =
√

Rp

iωC
coth

√
iωRpC, (1)

where i = √−1. The mathematical form coth
√
(.)/

√
(.) is

typical for diffusion in bounded geometries—it also arises
for finite-length mass transfer of electroactive species to
a planar electrode, where it is called the Warburg open
impedance [25,26].

Equation (1) has been widely used to interpret electro-
chemical impedance spectroscopy (EIS) experiments on
porous electrodes, often in combination with other circuit
elements [27–30]. For instance, the impedance of a pore in
contact with an electrolyte reservoir of resistance Rr is

Z = Rr +
√

Rp

iωC
coth

√
iωRpC. (2)

When viewing Zp and Rr as circuit elements, Eq. (2) fol-
lows from Eq. (1) as the impedances of circuit elements
in series can be simply added. In terms of the underlying
physics, however, adding these separate pore and reser-
voir impedances makes less sense. de Levie’s derivation
of Eq. (1) employed a boundary condition correspond-
ing to a counter electrode placed at the pore entrance,
effectively setting the reservoir’s resistance to zero. So,
Eq. (2) reintroduces the reservoir resistance after first set-
ting it to zero. This procedure does not correctly account
for ionic flux conservation at the pore-reservoir inter-
face [see Sec. IV A]. Still, de Levie’s derivation of Eq.
(1) has been repeated unaltered in recent textbooks and
reviews [26,31,32]. Shortly after de Levie [23,24], Posey
and Morozumi used the correct boundary condition in their
study of the TL model’s step response [33]. One of the con-
tributions of this article is that we show that Eq. (2) also
follows from the TL equation using Posey and Morozumi’s
correct boundary condition.

Figure 2 is a “complex plane plot” of Eq. (2), showing its
real versus imaginary parts for different ω. The plot shows
a 45◦ line at high frequencies, characteristic of diffusion
in semi-infinite geometries, and a 90◦ line at low frequen-
cies, characteristic of capacitor charging. The transition
between these two regimes occurs around the frequency
ω� = π2/(2RpC) [34], and the other indicated formulas
follow from the limits Zp(ω → ∞) = √

Rp/(iωC) and
Zp(ω → 0) = Rp/3 + 1/iωC.

Equations (1) and (2) apply to a case where all the ele-
ments in the TL ladder circuit have the same resistance and
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FIG. 2. Complex plane plot of Eq. (2) for Rr/Rp = 0.2.

capacitance, that is, the resistance and capacitance are con-
stant along the pore. Hence, for a pore of length �p , surface
area As

p , and arbitrary but fixed cross-section area Ac
p , in

contact with a reservoir of length �r and fixed cross-section
area Ac

r , we have

Rp = 1
κ

�p

Ac
p

, Rr = 1
κ

�r

Ac
r
, C = cEDLAs

p , (3)

where κ is the electrolyte conductivity and cEDL is the
EDL capacitance per unit electrode area. To connect Eqs.
(1)–(3) to the charging of an electrolyte-filled pore, Rp , Rr,
and C must be expressed in terms of electrolyte proper-
ties and the pore and reservoir geometry. We follow the
choice of most authors and consider a cylindrical pore of
radius �p [4,27,28,35–39] and a cylindrical reservoir of
radius �r, so that Ac

p = π�2
p , Ac

r = π�2
r , and As

p = 2π�p�p .
However, we stress that the TL circuit may just as well be
applied to pores and reservoirs with noncircular cross sec-
tions. Here, we use the Poisson-Nernst-Planck equations to
model the response of dilute electrolytes to small applied
potentials. At steady state, this model yields the capaci-
tance cEDL = ε/λD, where ε is the electrolyte permittivity
and the Debye length, λD, is the characteristic width of the
equilibrium EDL. Moreover, the PNP equations apply to
electrolytes with a conductivity κ = εD/λ2

D, with D being
the ionic diffusivity, which is assumed to be equal among
cations and anions. Inserting all these expressions into Eqs.
(1) and (2) seemingly gives us a theoretical impedance for
arbitrary �p , �r, �p , �r, D, and λD. This is not the case. As
we explain in Sec. I D, underlying the derivation of Eqs.
(1) and (2) are several assumptions about the relationships

between these parameters, for instance, that the pore has a
large aspect ratio (�p � �p ) and thin EDLs (�p � λD).

C. Circuit models for porous electrode charging

Several papers extended the TL model to account for, for
instance, Faradaic processes [24], contact resistances, elec-
trodes with resistance [40], and various pore shapes [37,
41]. Zp and the impedances of other TL-like circuits were
also connected in “super” circuits to describe the charg-
ing of porous electrodes containing different-sized [39] or
hierarchically connected pores [42–44]. Others represented
porous electrodes by a parallel connection of m identi-
cal pores, for which the total impedance was Z = Rr +
Zp/m [25,26,35,36]. Identifying Rp/m = Rtot and Cm =
Ctot, however, yields

Z = Rr +
√

Rtot

iωCtot
coth

√
iωRtotCtot, (4)

which has the same form as Eq. (2), but a different
interpretation of its variables.

Equations (2) and (4) having the same functional
form signals a general problem of interpreting EIS data
from equivalent circuits: fitting parameters do not always
have clear interpretations. EIS on porous electrodes often
yields data with shapes similar to the one in Fig. 2
[27–30,45–47]. One can fit Eq. (4) to such data, for
instance, with impedance.py [48] or commercial soft-
ware, or one can quickly estimate Rtot ≈ 3{Re[Z(ω →
0)] − Re[Z(ω → ∞)]}, Rr ≈ Re[Z(ω → ∞)], and Ctot ≈
π2/(2Rtotω

�) from the limits and the 45◦-to-90◦ transition
of the complex plane plot. Either way, while the complex
plane plot of an electrode with thousands of pores may look
like that of Eq. (4), unless one has verified that all assump-
tions underlying its derivation are satisfied, it is unclear
how the fitting parameters Rtot, Rr, and Ctot relate to the
microscopic details of the system at hand. Through some
independent experiment(s), one should thus determine the
number of pores and their size and shape, verify that all
pores are the same, verify that there are no hierarchical
connections, etc. Until that time, the parameter Rtot, for
instance, is little more than a shorthand for 3{Re[Z(ω →
0)] − Re[Z(ω → ∞)]} [49].

Another related problem of interpreting EIS spectra
using equivalent circuits is that two circuits accounting for
different mechanisms may have the same impedance. Con-
cretely, say one studies the effect of pore shape on porous
electrode charging and a particular complex plane plot can
be fitted well by the equivalent circuit model of Keiser
et al. [37] for the impedance of differently shaped pores.
Such a good fit, however, does not preclude some other
straight-pore model, accounting for additional physical
mechanisms, from fitting the same data.
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D. Microscopic models for single-pore charging

While there is a historical tradition of interpreting EIS
data through equivalent circuits, the above two exam-
ples show some of their limitations. Today’s computa-
tional methods and resources allow one to predict EIS
data through continuum models and molecular simulation
[10,50–52], which can capture hitherto neglected phenom-
ena like image charge interactions, finite ion size, and
nontrivial electrode geometries. The behavior of such com-
plex systems might sometimes still be caught by equivalent
circuits. Still, it is better to start from a first-principles
model and derive its reduced-order behavior than to pose
an equivalent circuit model and view its fitting to data as a
justification of the model itself.

Before one can understand the EIS response of elec-
trodes containing thousands of intricately connected dif-
ferent pores, one should understand the EIS response of
model geometries. In this regard, the mentioned single-
pore PNP modeling studies [10,13,15–20] helped to verify
and extend the classical circuit models of de Levie and
his contemporaries. In one of these works, we analytically
solved the PNP equations for the charging of a single slit
pore in contact with an electrolyte reservoir of negligible
resistance [20]. The case of small applied potentials and
thin EDLs yielded an expression of the same form as the
TL model’s potential relaxation [viz., Eq. (58)] [53]. In
place of the TL circuit’s RpC appeared �2

pλD/(hpD), with
hp being the pore’s width. The same expression results
from multiplying the pore’s capacitance, C = εhp�p/λD,
and electrolyte resistance, R = λ2

D�p/(εDhp), both per
unit length in the in-plane direction. Hence, in this case,
there is an exact analytical correspondence between the
microscopic 3D continuum model (PNP) and the reduced-
order TL model, with an exact expression of the circuit
parameters RpC in terms of the electrode and electrolyte
properties. This means that, in this case, the fitting param-
eters of the TL model relate unambiguously to microscopic
electrode and electrolyte properties. Other PNP modeling
studies focused on the step response of pores in contact
with an electrolyte reservoir [16–18]. In these studies, the
TL model predictions and continuum data agreed decently
but not precisely.

Despite these recent efforts, 60 years after de Levie’s
seminal papers, the charging of a single pore has still not
been fully characterized. Consider again the cylindrical
electrolyte-filled pore of length �p and radius �p filled
with an electrolyte with a Debye length λD and equal
ionic diffusivities D, subject to a small sinusoidal voltage
of angular frequency ω (ignore the electrolyte reservoir
for now). Of this model’s four length scales, �p , �p , λD,
and

√
D/ω, 12 dimensionless ratios can be constructed

(more will enter when an electrolyte reservoir, finite ion
size, etc. are introduced). However, only three dimension-
less ratios are independent, for instance, the Peclet-like

parameter,
√

D/ω/�p ; the EDL overlap, λD/�p ; and the
pore aspect ratio, �p/�p . de Levie [23] implicitly dis-
cussed the product of the first two of these three ratios.
For small ω, ions can keep up with the applied voltage,
and EDLs are in quasiequilibrium. For large ω, only the
region near the pore mouth is charged and discharged.
Accordingly, when we solve for the time-dependent poten-
tial in the pore [viz., Eq. (50)], we find that it varies over
a frequency-dependent length, �ω = �p/

√
iωRpC, called

the penetration depth [23]; hence, the dimensionless ratio
�ω/�p determines the extent to which the pore is charged.
With Eq. (3) and the expressions in the lines below it, we
find RpC = 2�2

pλD/(�pD) and

�ω

�p
=
√

1
2i

D
ω�2

p

�p

λD
. (5)

Hence, �ω/�p is a product of two of the three mentioned
dimensionless ratios. The EDL overlap parameter was
thus already implicit in de Levie’s work. Still, his results
can only hold for �p � λD, as overlapping EDLs cor-
respond to finite in-pore potential values at late times,
which cannot be captured by the TL circuit. EDL overlap
has only recently been thoroughly addressed by Henrique
et al. through analytical and numerical PNP calculations
[16,17]. The third independent dimensionless ratio, the
pore aspect ratio, �p/�p , is virtually unexplored [54]—so
far, most equivalent circuit and PNP studies of pore charg-
ing (implicitly or explicitly) have taken �p/�p � 1, for the
following reason. de Levie argued that, for the TL circuit
to describe pore charging, equipotential lines in the elec-
trolyte should be straight [23] and short pores do not satisfy
this condition (see page 372 of Ref. [24]). The second
box in Fig. 1 shows equipotential lines based on numer-
ical simulations described in Sec. VI. This figure shows
that equipotential lines are not straight near a finite-length
pore’s entrance. This region will play a larger role in the
charging of short pores, so, indeed, the impedance of such
pores cannot follow TL model predictions.

E. Overview

We comprehensively discuss single-mesopore charging
through ladder circuits and delineate the validity of such
circuits by PNP modeling. Section II shows that the pore
impedance, Zp , can be analytically derived from its cor-
responding TL circuit—we also discuss several popular
TL-circuit extensions. Our derivations entirely bypass the
TL equation-type modeling usually employed. Section III
reviews two ways to go from the different ladder cir-
cuits to their corresponding TL equations. In particular,
we generalize Ref. [55] to a case with Faradaic pro-
cesses at the electrode surface. In Sec. IV, we derive the
impedances of different pore-reservoir systems from their
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Rr + r1 r2 rn−1 rn

c1 c2 cn−1 cn

FIG. 3. Standard TL circuit.

corresponding TL equations using Posey and Morozumi’s
pore-reservoir boundary condition. In Sec. V, we relate
a pore’s impedance to its response to a step potential.
Section VI presents numerical results for the PNP equa-
tions in blocking mesopores. We determine the impedance
of pore-reservoir systems with pores of different lengths
and compare them to Eq. (2). While we focus on single-
pore charging, we also discuss porous electrodes in Sec.
VII. We conclude in Sec. VIII. In Fig. 1, we indicate in
green the locations of the new contributions of this work.
We refer readers interested in practical applications of
the TL model and its extensions to recent review papers
[1,32,56] and textbooks [25,26,31,57].

II. IMPEDANCE FROM CIRCUITS

A. Standard TL circuit

The TL model partitions the resistance, Rp , and capac-
itance, C, of a pore into n pieces of resistance rk and
capacitance ck, with k = 1, . . . , n. These elements are then
connected as shown in Fig. 3. The top line in this circuit
represents the pore’s metallic surface, which is subjected to
a small sinusoidal potential, 
(t) = 
0 sin(ωt). The bot-
tom row represents the electrolyte in the pore and in a
reservoir of resistance Rr.

To determine the impedance of the circuit, we start at the
last branch (n) and work our way to the reservoir resistor.
The impedance of the last ladder rung is

Zn = rn + 1
iωcn

. (6)

Likewise, the impedance of the kth rung is

Zk = rk + 1
iωck + Z−1

k+1

, k = 1, . . . , n − 1. (7)

The impedance of the complete circuit is then Z = Rr +
Z1; note that Z1 accounts for all ladder rungs.

The first-order rational difference Eq. (7) was previ-
ously reported by Keiser et al. [37]. That article considered
noncylindrical pores, such that rk and ck varied along the
circuit. We consider here the simpler case of a straight and
homogeneous pore, for which ck = c and rk = r, and thus,

Rp = rn and C = cn. We rewrite Eqs. (6) and (7) with the
scaled angular frequency, ω̄ = ωrc (throughout, bars indi-
cate dimensionless quantities), and Zk = rak/bk, with ak
and bk to be determined, as

an

bn
= iω̄ + 1

iω̄
,

ak

bk
= (iω̄ + 1)ak+1 + bk+1

iω̄ak+1 + bk+1
. (8)

The same expressions result if one takes the ratio of the top
and bottom elements of the following vectors:

[
an
bn

]
∝ B

[
1
0

]
,

[
ak
bk

]
∝ B

[
ak+1
bk+1

]
, (9a)

with B ≡
[

iω̄ + 1 1
iω̄ 1

]
. (9b)

Equation (9) implies that
[

a1
b1

]
∝ Bn

[
1
0

]
. (10)

By diagonalizing B as Bu± = λ±u±, where

λ± = 1 + iω̄
2

±
√

iω̄ − ω̄2

4
, u± =

[
λ± − 1

iω̄

]
, (11)

and by using Bn = PDnP−1, where P = [
u+ u−

]
, we

rewrite Eq. (10) as
[

a1
b1

]
∝

[
λ+−1 λ− − 1

iω̄ iω̄

] [
λn

+ 0
0 λn

−

] [
iω̄ 1 − λ−

−iω̄ λ+−1

] [
1
0

]

=
[
(λ+−1)λn

+ − (λ−−1)λn
−

iω̄(λn
+ − λn

−)

]
. (12)

Hence, Z1 = ra1/b1 amounts to

Z1 = n
iωC

(λ+−1)λn
+ − (λ−−1)λn

−
λn+ − λn−

. (13)

Next, using ω̄ = ωRpC/n2, we rewrite the eigenvalues as

λ± = 1 ±
√

iωRpC
n

+ O
(

1
n2

)
, (14)

which, inserted into Eq. (13), yields

Z1 =
√

Rp

iωC
λn

+ + λn
−

λn+ − λn−
+ O

(
Rp

n2

)
. (15)

Using limn→∞(1 ± x/n)n = exp (±x), we find

lim
n→∞ Z1 =

√
Rp

iωC
coth

√
iωRpC, (16)
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that is, Zp [Eq. (1)]. The impedance of the circuit, including
the reservoir resistance, then amounts to Eq. (2).

B. Contact resistance

To account for the resistance between a porous electrode
and a current collector, we extend the TL circuit with a
resistor of resistance r in the ladder’s last rung; see Fig. 4.
The impedance of the last rung is now

Zn = r + 1
iωc + r−1 . (17)

We rewrite Eq. (17) as

an

bn
= iω̄ + 2

iω̄ + 1
⇐⇒

[
an
bn

]
∝ B

[
1
1

]
, (18)

with the same B as in Eq. (9b). Instead of Eq. (10), now

[
a1
b1

]
∝ Bn

[
1
1

]
, (19)

which yields

Z1 = n
iωC

× λn
+(λ+−1)(1 − λ−+iω̄)+ λn

−(λ−−1)(λ+−1 − iω̄)
λn+(1 − λ−)+ λn−(λ+−1)

,

(20)

and, in turn,

lim
n→∞ Z1 =

√
Rp

iωC
tanh

√
iωRpC, (21)

which we denote as Zcon hereafter. The total resistance is
thus

Z(ω)
Rp

= Rr

Rp
+ tanh

√
iωRpC√

iωRpC
. (22)

1 2 n Ψ(t)

Rr + r r r

c c c r

FIG. 4. TL circuit with contact resistance.

Ψ(t)

Ψ − Ψ1 Ψ − Ψ2 Ψ − Ψn

Rr + r Ir
1 r Ir

2 Ir
nr

rF

Ic
1

c rF

Ic
2

c rF

Ic
n

c

FIG. 5. “Leaky” TL circuit for a pore with both capacitive and
Faradaic charging.

C. Faradaic processes at the electrode-electrolyte
interface

The circuit in Fig. 5 models a pore with Faradaic (charge
transfer) currents at its surface [24,29,30,58] and no dc
gradients in potential and ion concentrations [59,60]. The
associated charge transfer resistance, RF , is partitioned into
n pieces, so that RF = rF/n. (The same circuit is used in
the EIS analysis of solar cells and thin film diffusion [61];
in that context, RF is the recombination resistance.) In this
case,

Zn = r + 1

iωc + r−1
F

, (23a)

Zk = r + 1

iωc + r−1
F + Z−1

k+1

, k = 1, . . . , n − 1. (23b)

With γ = r/rF , Eq. (23) reduces to

an

bn
= iω̄ + γ + 1

iω̄ + γ
, (24a)

ak

bk
= (iω̄ + γ + 1)ak+1 + bk+1

(iω̄ + γ )ak+1 + bk+1
, (24b)

By writing iω̄′ = iω̄ + γ and dropping primes, we recover
Eq. (8). Hence, Eq. (13) again holds, but the eigenvalues
are now

λ± = 1 ±
√

iωRpC + Rp/RF

n
+ O

(
1
n2

)
, (25)

where we use γ = r/rF = (Rp/n)/(RFn) = O(n−2). We
thus find

lim
n→∞ Z1 =

√
RpRF

1 + iωRFC
coth

√
Rp

RF
(1 + iωRFC), (26)

which is implicit in Eqs. (96), (103), and (104) of Ref.
[24] and which we call the Faradaic pore impedance, ZF ,
hereafter.
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The total resistance is thus

Z(ω)
Rp

= Rr

Rp
+

coth
√

Rp
RF

+ iωRpC√
Rp
RF

+ iωRpC
. (27)

Figure 6 shows a complex plane plot of Eqs. (2), (22), and
(27) for Rp/Rr = 10 and Rp/RF = 1.

D. Further extensions

1. Ladders with large rungs

In his famous lectures, Feynman derived the impedance
of an infinite LC ladder [62]. Feynman argued that, for
large k, the impedance of successive rungs should be
the same: Zk+1 = Zk. Barbero and Lelidis repeated this
analysis for the TL circuit [63] with infinitely many R
and C elements. Replacing r → R and c → C and set-
ting Zk+1 = Zk in Eq. (7) yields Z2

k − RZk − R/(iωC) = 0.
The positive root of this quadratic equation is Zk = R/2 +
R
√

1/4 + 1/(iωRC) [64], which, for small ωRC, displays
Warburg-like scaling, Z ∝ R/2 + √

R/(iωC). The crucial
difference between the analyses of Barbero and Lelidis
[63] and our derivation in Sec. II A is that we consider a
pore for which the overall resistance, Rp , and capacitance,
C, are fixed (and finite)—taking n → ∞, the resistors,
r = Rp/n, and capacitors, c = C/n, in our circuit become
ever smaller. We can recover Barbero’s result by replacing

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Re(Z/Rp)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

−I
m

(Z
/R

p
)

Rr/Rp

Rr + Zp

Rr + Zcon
Rr + ZF

FIG. 6. Complex plane plot of a reservoir resistor connected
to pore impedance Zp [Eq. (2), dotted line] and extensions of the
TL circuit accounting for contact resistance Zcon [Eq. (22), solid
line] and Faradaic processes ZF [Eq. (27), dashed-dotted line].
We set Rp/Rr = 10 and Rp/RF = 1.

all r → R and c → C. In this case, Eq. (13) changes into

Z1 = 1
iωC

(λ+−1)λn
+ − (λ−−1)λn

−
λn+ − λn−

, (28)

with

λ± = 1 + iωRC
2

±
√

iωRC − (ωRC)2

4
. (29)

We write these eigenvalues in polar form, λ± = |λ±|eiϕ± ,
with ϕ± being the arguments of complex λ±; hence, λn

± =
|λ±|neinϕ± . From Eq. (29), one finds

|λ+|2 − |λ−|2 ≥
√

4ωRC + (ωRC)3

2
[
16 + (ωRC)2

]1/4

≥ 0, (30)

where the equality holds for ω = 0. Hence, |λ+| > |λ−| for
ω > 0, which implies that, for ω > 0,

lim
n→∞ Z1 = 1

iωC
(λ+−1) = R

2
+ R

2

√
1 + 4

iωRC
, (31)

in agreement with the result obtained by Feynman’s
method.

2. Distributed inductance

The derivation in Sec. II A allows us to study an LC net-
work, not with finite L and C elements like Feynman did,
but with an overall L and C distributed over n elements,
such that, again, C = cn and now also L = ln. Replac-
ing the small resistors of Fig. 3 with small inductors of
impedance iωl, we can again use Eq. (1) but replace Rp →
iωL; hence, Z = √

L/C coth
√−ω2LC, in agreement with

Eq. (66) of Ref. [63].

3. Electrode resistance

Paasch et al. [40] studied a transmission line with resis-
tances in both channels; see Fig. 7. Such a circuit corre-
sponds to a case where not only the electrolyte but also the
electrode has a finite resistance, Rs = nrs, where rs is the
small resistance of the resistors in the top line of the circuit.
The derivation of a recursion relationship like Eq. (7) for
this circuit probably requires repeated use of Y- transfor-
mations. We have not yet been able to do so, so we leave
this problem for future research.

4. Pores with varying section

Keiser et al. [37] numerically solved the recursion rela-
tionship, Eq. (7), for pores with varying sections, for which
ck and rk in Fig. 3 are not constant along the circuit. Analyt-
ically solving Eq. (7) for pores with varying sections will
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1 2 n

rs rs rs

Ψ(t)

Rr + r r r

c c c

FIG. 7. TL circuit with electrode resistance.

be difficult. Zk can still be written as Eq. (9), but iω̄ will
depend on k. Hence, a product of k different matrices will
appear, and we can no longer use Bk = PDkP−1. Progress
may be possible for the particular case of a groove, for
which de Levie found an analytical expression [41].

III. FROM CIRCUITS TO DIFFERENTIAL
EQUATIONS

We review two ways of extracting a TL equation from
its corresponding equivalent circuit. We focus on the leaky
TL circuit (Fig. 5) for concreteness.

A. de Levie’s argument

de Levie’s derivation [23] of the TL equation is as
follows. Figure 8 is a magnification of Fig. 5 without a
specified start or end. Again, the top line in this circuit
represents the electrode, which is at 
(t) everywhere. The
bottom row represents the electrolyte phase, which has a
centerline potential, ψc, that varies along the pore. The
voltage drop, dψc, over a differential resistor is

dψc = ∂ψc

∂z
dz = −IR dz,

∂ψc

∂z
= −IR,

(32)

with R being the electrolyte resistance per unit length.
For ψc increasing in the z direction, the electric field and,
hence, the ionic current, point in the −z direction, which
explains the minus sign in Eq. (32).

To express the current, dI , that flows into the bottom
line in Fig. 8, it is useful to introduce the potential drop,
ψd(z, t) = 
(t)− ψc(z, t), between the pore wall, which is
at 
(t), and the center of the pore, which is at ψc(z, t); see
Fig. 9. The current that goes into a parallel-connected resis-
tor and capacitor, with infinitesimal resistance, RF/ dz,
and capacitance, C dz, respectively, is then

dI = C dz
∂ψd

∂t
+ ψd

RF
dz,

∂I
∂z

= C ∂ψd

∂t
+ ψd

RF
.

(33)

z z z

ψc

+ d Ψ(t)

ψc + dψc

I R dz I − dI

RF

dz
C dz

dI

FIG. 8. Leaky TL circuit for a pore with capacitive and
Faradaic charging, with capacitance and resistances per unit
length.

Rewriting Eq. (32) in terms of ψd, taking a z derivative,
and inserting Eq. (33), we find

RC ∂ψd

∂t
= ∂2ψd

∂z2 − ψd
R
RF

, (34)

which is the TL equation for a case with homogeneous
Faradaic surface conduction.

Once we introduce the pore’s length, �p , we can
express the per-unit-length resistances and capacitance,
R = Rp/�p , RF = RF�p , and C = C/�p . Still, the down-
side of the above argument is that, while it yields the
correct TL equation, it does not inform on the bound-
ary conditions that should be used. As a result, different
authors solved the TL equation for different boundary
conditions. Conversely, drawing a particular circuit includ-
ing the first and last rungs of the ladder (like we did in
Figs. 3–5 and 7) fixes the boundary conditions—as we
show in Sec. III B, there is no room for variation.

z

porereservoir

ψc(z, t)

Ψ(t)

ψd(z, t) = Ψ − ψc

FIG. 9. Schematic showing the centerline potential, ψc(z, t),
and potential drop, ψd(z, t), in a reservoir-pore system, drawn
with numerical data from Sec. VI. The TL model only models
the pore region and accounts for the reservoir through a boundary
condition.
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B. Ref. [55] argument

One of us [55] showed how the TL equation, includ-
ing its boundary conditions [viz., Eq. (48)] could be
directly related to the TL circuit. The argument given there
revolved around a finite-difference expression of the TL
equation, including correct boundary conditions, which,
in the limit n → ∞ was identical to a matrix differential
equation that could also be derived directly from the TL
circuit. Here, we repeat the argument for the slightly more
involved circuit in Fig. 5 (and briefly discuss the case of a
circuit with a contact resistance; see Fig. 4).

1. Combining Ohm’s and Kirchhoff’s laws for all rungs
of a ladder circuit

For the circuit in Fig. 5, Ohm’s law states that

I r
1(t)(Rr + r) = 
(t)−
1(t), (35a)

I r
k (t)r = 
k−1(t)−
k(t), k = 2, . . . , n, (35b)

where 
(t) is the potential of an external voltage source,

k is the potential drop over the kth rung of the ladder,
and I r

k (t) is the current through the kth resistor. Kirchhoff’s
junction rule gives

I c
k (t) = I r

k (t)− I r
k+1(t), k = 1, . . . , n − 1, (36a)

I c
n (t) = I r

n(t). (36b)

Now, the current into the kth rung is

I c
k (t) = 1

rF

k(t)+ c
̇k(t), k = 1, . . . , n, (37)

where 
̇k(t) is the time derivative of the voltage drop
across this rung. The above setup deviates from our pre-
vious work [55] in two places. First, the 1/rF term on the
right-hand side in Eq. (37) was absent in Ref. [55], as we
neglected surface conduction there. Second, the circuit in
Ref. [55] contained Rr rather than Rr + r in the leftmost
resistor. As a result, Ohm’s law corresponding to Eq. (35a)
did not contain r. For consistency with Sec. II, we maintain
this r.

Combining Eqs. (37) and (36a) gives

1
rF

k(t)+ c
̇k(t) = I r

k (t)− I r
k+1(t), k = 1, . . . , n − 1.

(38)

Next, inserting Eq. (35b), for k = 2, . . . , n − 1, gives

r
rF

k(t)+ rc
̇k(t) = 
k−1(t)− 2
k(t)+
k+1(t). (39)

For k = 1, we have to insert Eq. (35a) instead, giving

r
rF

1(t)+ rc
̇1(t) = r

Rr + r

(t)

−
(

1 + r
Rr + r

)

1(t)+
2(t). (40)

Finally, for k = n, we combine Eqs. (35b), (36b), and (37)
and find

r
rF

n(t)+ rc
̇n(t) = 
n−1(t)−
n(t). (41)

By writing�(t) = [
1(t), . . . ,
n(t)]ᵀ and e1 = [1, 0, . . . ,
0]ᵀ, we can now collect Eqs. (39)–(41) into the following
matrix differential equation:

RpC�̇(t) = n2Rp

nRr + Rp

(t)e1 + n2M1�(t)− Rp

RF
�(t),

(42a)

M1 =

⎡
⎢⎢⎢⎢⎣

−1 − r/(Rr + r) 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −1

⎤
⎥⎥⎥⎥⎦ . (42b)

The matrix M1 ∈ R
n×n can be diagonalized analytically,

with its eigenvalues and eigenvectors expressed using
Chebyshev polynomials. Equation (42) can thus be solved
analytically, with its solution expressed in terms of these
eigenvalues and eigenvectors [55].

2. Finite-difference formulation of the TL equation

At the limit n → ∞, Eq. (42) turns out to be equal to a
finite difference scheme of the following equation:

RpC∂tψd = �2
p∂

2
zψd − Rp

RF
ψd, z ∈ [0, �p ], (43a)

ψd(z, 0) = 0, (43b)

�p∂zψd(0, t) = Rp

Rr
[ψd(0, t)−
(t)], (43c)

∂zψd(�p , t) = 0. (43d)

To show the connection between Eqs. (43) and (42),
we discretize z but not t. Partitioning [0, �p ] into m
pieces of width h = �p/m yields a uniform grid of m + 1
grid points, at zi = ih with i ∈ {0, . . . , m}. On these grid
points, the continuous electrostatic potential is approxi-
mately ψi = ψd(zi). A central difference approximation
now gives ∂2

zψd(zi) � (ψi−1 − 2ψi + ψi+1)/h2. To imple-
ment the Robin boundary condition at z = 0, we introduce
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a ghost grid point at z = −h and corresponding ψ−1.
Now, by approximating the z derivative through a back-
ward difference of ∂zψ(0) � (ψ0 − ψ−1)/h, the Robin
boundary condition yields ψ−1 = ψ0 + ξ [
(t)− ψ0]/m,
with ξ = Rp/Rr. Similar reasoning and a forward differ-
ence yield ψm+1 = ψm for the Neumann condition [65].
After grouping the above expressions and writing ψ(t) =
[ψ0(t), . . . ,ψm(t)]ᵀ, Eq. (43) is approximated by

RpCψ̇(t) = m
Rp

Rr

(t)e1 + m2M2ψ(t)− Rp

RF
ψ(t), (44a)

M2 =

⎡
⎢⎢⎢⎢⎣

−1 − r/Rr 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −1

⎤
⎥⎥⎥⎥⎦ , (44b)

with M2 ∈ R
m+1×m+1. After setting m + 1 = n, differences

between Eqs. (42) and (44) are of subleading order in n. In
Ref. [55], where we did not add r to the reservoir resistance
[Eq. (35b)], we had M1 = M2. Still, differences subleading
in n between the prefactors on the right-hand sides of Eqs.
(42) and (44) remained for that choice as well.

3. TL equation for the TL circuit with contact resistance

We can use the above arguments to find the correspond-
ing equations for the circuit with a contact resistance; see
Fig. 4. In this case, we should omit the 
k(t)/rF term from
Eq. (39) and set rF = r in Eq. (41). We find

RpC�̇(t) = n2Rp

nRr + Rp

(t)e1 + n2M3�(t), (45a)

M3 =

⎡
⎢⎢⎢⎢⎣

−1 − r/(Rr + r) 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2

⎤
⎥⎥⎥⎥⎦ , (45b)

with M3 ∈ R
n×n. Similar to the above, we can show that

Eq. (45b) corresponds to

RpC∂tψd = �2
p∂

2
zψd, z ∈ [0, �p ], (46a)

ψd(z, 0) = 0, (46b)

�p∂zψd(0, t) = Rp

Rr
[ψd(0, t)−
(t)], (46c)

ψd(�p , t) = 0. (46d)

Using the same notation as before, in a finite difference
scheme of Eq. (43), the boundary conditions of Eqs.
(46c) and (46d) reduce to ψ−1 = ψ0 + ξ [
(t)− ψ0]/m
and ψm = 0, respectively. The latter condition modifies

the finite difference for the second derivative at zm−1
as ∂2

zψd(zm−1) ≈ ψm−2 − 2ψm−1. Combining the nonzero
values of ψi in the vector ψ(t) = [ψ0(t), . . . ,ψm−1(t)]ᵀ,
one can approximate Eq. (46) as

RpCψ̇(t) = m
Rp

Rr

(t)e1 + m2M4ψ(t), (47a)

M4 =

⎡
⎢⎢⎢⎢⎣

−1 − r/Rr 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2

⎤
⎥⎥⎥⎥⎦ , (47b)

with M4 ∈ R
m×m. After setting m = n, differences between

Eqs. (45) and (47) are of subleading order in n.

IV. IMPEDANCE FROM TL EQUATIONS

Having derived TL equations from their corresponding
circuits in Sec. III, we now derive the pore impedances,
Zp , Zcon, and ZF , from these TL equations. We highlight
the differences between our derivations and those found in
the literature.

A. Zp from the TL equation for the standard TL
circuit

We start by considering a case without surface conduc-
tion (Rp/RF = 0), for which the TL equation [Eq. (43)]
reduces to

RpC∂tψd = �2
p∂

2
zψd, z ∈ [0, �p ], (48a)

ψd(z, 0) = 0, (48b)

�p∂zψd(0, t) = ξ [ψd(0, t)−
(t)], (48c)

∂zψd(�p , t) = 0. (48d)

In the case of impedance spectroscopy with no bias poten-
tial, the wall potential is 
(t) = 
0 sin(ωt). By perform-
ing Laplace transformations [for a general function, f (t),
we write f̂ (s) ≡ L {f (t)} ≡ ∫∞

0 dtf (t) exp (−ts)] and using
L {∂tf (x, t)} = sf̂ (x, s)− f (x, 0), we find

sRpCψ̂d = �2
p∂

2
z ψ̂d, z ∈ [0, �p ], (49a)

�p∂zψ̂d(0, s) = ξ [ψ̂d(0, s)− 
̂(s)], (49b)

∂zψ̂d(�p , s) = 0, (49c)

the solution of which is

ψ̂d(z, s) = 
̂(s) cosh[
√

sRpC(z/�p − 1)]

ξ−1
√

sRpC sinh
√

sRpC + cosh
√

sRpC
. (50)

We can now find the current into the pore with Î(s) =
−�p∂zψ̂d(0, s)/Rp [see the discussion below Eq. (53)],
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giving

Î(s) = 
̂(s)
Rp

√
sRpC sinh

√
sRpC

ξ−1
√

sRpC sinh
√

sRpC + cosh
√

sRpC
.

(51)

This yields the impedance:

Ẑ(s) ≡ 
̂(s)

Î(s)
= Rr + Rp

coth
√

sRpC√
sRpC

. (52)

Generally, the complex Laplace variable can be written
as s = ς + iω. We set ς = 0, as we are interested in the
steady state. Equation (52) is then identical to Eq. (2).

This derivation of Rr + Zp differs from the one found
in the literature (both old [23] and recent [26,32]) in one
crucial point: the boundary condition of Eq. (48c). We
showed in Sec. III how Eq. (48) was equivalent to a
matrix differential equation based on combining Ohm’s
and Kirchhoff’s laws for all the nodes of the TL circuit.
Hence, the Robin boundary condition, Eq. (48c), physi-
cally signals the conservation of ionic current. It is easier
to see this if we rewrite Eq. (48c) in terms of the centerline
potential, ψc(z, t) = 
(t)− ψd(z, t), as

ψc(0, t)
Rr

= �p

Rp
∂zψc(0, t). (53)

Here, the left-hand side gives the ionic current from the
reservoir into the pore (z = 0−). As the TL model does not
explicitly account for the reservoir at z < 0, Ohm’s law
for this region is expressed in terms of the total potential
drop over the reservoir [ψc(0, t)]. The right-hand side of
Eq. (53) represents the ionic current in the pore at z = 0+.
A partial derivative appears here, as the ionic current in the
pore is driven by an electric field, −∂zψc(z, t), which varies
in the pore. Equation (53) is thus a statement of current
conservation.

Instead of Eq. (48c), de Levie applied a Dirich-
let boundary condition at the pore-reservoir interface
[23], ψd(0, t) = 
(t). As this corresponds to the ξ →
∞ limit of Eq. (48c), we immediately find Î(s) =
(
̂(s)/Rp)

√
sRpC tanh

√
sRpC from Eq. (51) in the limit

ξ → ∞. The impedance of the pore then amounts to
Ẑ(s) = Rp coth(

√
sRpC)/

√
sRpC, which is identical to Zp .

In turn, the reservoir can be reintroduced by connecting Zp
in series with Rr, yielding Eq. (52). The problem with this
derivation is that the Dirichlet boundary condition fixes the
local potential drop at z = 0, but one cannot enforce the
potential there. Experimentally, one controls the potential
difference between the pore wall and some faraway counter
(and reference) electrode. Moreover, with the Dirichlet
boundary condition, the physical interpretation of current
conservation between the pore and the reservoir to which

it is attached is lost. Interestingly, even though the usual
derivation of Eq. (52) used incorrect boundary conditions
for the pore-reservoir connection, fixing this error led to
the same impedance, Zp .

B. Zcon from the TL equation for the TL circuit with
contact resistance

The circuit with a contact resistance [Fig. 4] is gov-
erned by Eq. (46) [different from Eq. (48) in the boundary
condition at z = �p ], which is solved by

ψ̂d(z, s) = − 
̂(s) sinh[
√

sRpC(z/�p − 1)]

ξ−1
√

sRpC cosh
√

sRpC + sinh
√

sRpC
,

(54)

instead of Eq. (50). Again, calculating the current with
Î(s) = −�p∂zψ̂d(0, s)/Rp , we find the impedance:

Ẑ(s) = Rr + Rp
tanh

√
sRpC√

sRpC
, (55)

in agreement with Eq. (22).

C. Faradaic pore impedance, ZF , from the TL
equation for the leaky TL circuit

The TL equation of the leaky TL circuit was stated in
Eq. (43). Tracing the steps we set in Sec. IV A, we see that
Eq. 49a changes to

sRpCψ̂d = �2
p∂

2
z ψ̂d − Rp

RF
ψ̂d, z ∈ [0, �p ]. (56)

By writing s′ = s + 1/(RFC), we find that Eq. (52) again
holds, but with s replaced by s′, which is identical to Rr +
ZF [Eq. (27)].

V. IMPEDANCE FROM THE STEP RESPONSE

A system’s impedance, Ẑ(s) = 
̂(s)/Î(s), is usually
measured by subjecting it to a small-amplitude sinusoidal
voltage. One can also find the same impedance using any
other voltage perturbation, as long as (1) it contains all fre-
quencies, and (2) the perturbation is small [66] (see also
Ref. [67] and Sec. 3.7 of Ref. [26]). Hence, the impedance
also follows from the current in response to a potential
step, 
step(t) = 
0�(t), with �(t) being the Heaviside
step function:

Ẑ(s) = L {
step(t)
}

L {Istep(t)
} = 
0

s
1

L {Istep(t)
} . (57)

In Sec. VI, we use Eq. (57) to numerically determine
the impedance of a continuum pore model from its
step response. But first, we show how the TL model’s
impedance follows from its step response.
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A. TL equation step response

Posey and Morozumi [33] solved Eq. (48) for the case

(t) = 
step(t) and found

ψc(z, t)

(t)

=
∑
j ≥1

4 sinαj cos
[
αj
(
1 − z/�p

)]
2αj + sin 2αj

exp

(
− α2

j t

RpC

)
,

(58)

where αj with j = 1, 2, . . . were the solutions of the tran-
scendental equation:

αj tanαj = ξ . (59)

The current, I(t) = �p∂zψc(0, s)/Rp , into the pore amounts
to

Istep(t) = 
0

Rp
�(t)

∑
j ≥1

4αj sin2 αj

2αj + sin 2αj
exp

(
− α2

j t

RpC

)
. (60)

Inserting Eq. (60) into Eq. (57), we find

Ẑ(s)
Rp

=
⎛
⎝∑

j ≥1

4αj sin2 αj

2αj + sin 2αj

sRpC
α2

j + sRpC

⎞
⎠

−1

. (61)

While it is not clear how Eq. (61) relates to Rr + Zp [Eq.
(2)], Fig. 10 shows that they overlap. This overlap can be
understood for the case ξ = Rp/Rr → ∞, when αj = (j −
1/2)π solves Eq. (59), and Eq. (61) simplifies to

Ẑ(s)
Rp

=
⎛
⎝∑

j ≥1

2sRpC
(j − 1/2)2π2 + sRpC

⎞
⎠

−1

. (62)

Now, inserting the Weierstrass factorization of the hyper-
bolic cosine with complex argument [68]

cosh(z) =
∞∏

j =1

(
1 + z2

(j − 1/2)2π2

)
, (63)

into the right-hand side of

coth z
z

= 1
z

(
∂ ln cosh z

∂z

)−1

, (64)

yields

coth z
z

=
⎛
⎝∑

j ≥1

2z2

(j − 1/2)2π2 + z2

⎞
⎠

−1

. (65)

For z = √
iωRpC, we then recover Zp on the left-hand side

and Eq. (62) on the right-hand side.

0.0 0.2 0.4 0.6 0.8 1.0
Re(Z/Rp)

0.0

0.2

0.4

0.6

0.8

1.0

−I
m

(Z
/R

p
)

Rr + Zp [Eq. (2)]

Eq. (62)

FIG. 10. Plot of Eqs. (2) and (61) for Rp/Rr = 10.

B. Overlapping EDLs

The regular TL equation describes the charging of a pore
with EDLs that are much thinner than the pore radius,
λD � �p . Henrique et al. studied the charging of pores
with an arbitrary EDL thickness [16]. Specifically, they
analytically solved the PNP equations [viz., Eq. (69)] for
a cylindrical pore subject to a small applied potential, for
which they found the centerline potential:

ψc(z, t)

(t)

= I0

(
�p

λD

)−1

+
[

1 − I0

(
�p

λD

)−1
]

×
∑
j ≥1

4 sinαj cos
[
αj
(
1 − z/�p

)]
2αj + sin 2αj

× exp

(
−α

2
j t

τ

)
, (66)

where τ = 2�2
pλD/(�pD)× I1

(
�p/λD

)
/I0

(
�p/λD

)
and

αj , with j = 1, 2, . . ., are the solutions of the transcenden-
tal equation:

αj tanαj = �p

�r

�2
r

�2
p

. (67)

Equation (66) does not relax to ψc(z, t) = 0 at late times
when �p/λD ∼ 1. Therefore, when Henrique et al. inter-
preted their PNP model in terms of a TL-like ladder circuit,
they had to include an interfacial resistance that grew
monotonously over time [16]. Moreover, they argued that
the conductivity of the electrolyte in the pore changed from
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κ to κH = κI0
(
�p/λD

)
/[I0

(
�p/λD

)− 1]. Hence, while
the right-hand side of Eq. (67) looks like the ratio of the
pore-to-reservoir resistance, this interpretation only holds
for �p � λD, as the Bessel function factor in κH then tends
to unity. (In Ref. [16], the right-hand side of Eq. (67) also
contained the ratio of reservoir-to-pore diffusivities, which
we considered here to be unity.)

Retracing our steps from Sec. V A, we now find

Ẑ(s)
Rp

=
⎛
⎝∑

j ≥1

4αj sin2 αj

2αj + sin 2αj

sτ
α2

j + sτ

⎞
⎠

−1

, (68)

where we absorb a factor of I0
(
�p/λD

)
/[I0

(
�p/λD

)− 1]
into Rp . Apart from that factor, we see that EDL overlap
leads to a shift of frequencies (through τ ) compared to Eq.
(61).

VI. NUMERICAL STUDY OF PORE CHARGING

A. Setup

We delineate the validity of the pore impedance, Zp ,
for pores of various aspect ratios by numerical sim-
ulations of their charging. As we are interested in a
pore’s impedance—its response to a small-amplitude volt-
age—we ignore fluid flow, as the electroconvective term
in the Navier Stokes equations is quadratic (and thus,
subleading) in the electric field [12]. We first discuss
numerical PNP simulations of pore charging in response
to applied step potentials, much like Yang et al. [18]. From
these data, we determine the corresponding impedance,
Ẑ(s), using the method from Sec. V.

Figure 11 shows our system of interest. We consider two
cylindrical pores of radius �p and length �p connected on
either side of a cylindrical reservoir of radius �r and length
�r; all the cylinders’ axes are aligned, so the whole system
is axisymmetric. We use a cylindrical coordinate system,
r = (ρ, z, θ), with ρ and z being the radial and longitudi-
nal coordinates, respectively. We set z = 0 at the entrance
of the right pore to make comparisons with the TL model
easier, as that model treats only the pore explicitly, with the
effect of the reservoir captured in the boundary condition
at z = 0.

We model the spatiotemporal evolution of the local
electrostatic potential, ψ(r, t), and the local cationic and
anionic densities, c±(r, t), in our setup through the PNP
equations:

ε∇2ψ = −e(c+−c−), (69a)

∂tc± = −∇ · j±, (69b)

j± = −D (∇c± ± c±βe∇ψ) , (69c)

where ε is the electrolytic permittivity, e is the unit charge,
D is the ionic diffusion coefficient (taken to be equal

�p

�r

�p

�r

z

ρ
Γ1

Γ2

Γ3

Γ4

Γ5

Γ6

Γ7

Γ8

FIG. 11. Schematic (not to scale) of an axisymmetric superca-
pacitor model consisting of two pores (left and right) connected
to a reservoir (middle). Our two-dimensional numerical domain
is colored gray, with the coordinate system’s origin set to the
right pore’s entrance.

among cations and anions), and j± are the cationic and
anionic fluxes. Moreover, β = 1/(kBT) is the inverse ther-
mal energy, where kB is Boltzmann’s constant and T is the
temperature.

We consider all pore and reservoir walls blocking and
set the initial ionic densities to c0 throughout the system. At
time t = 0, we apply a potential difference, 2
0, between
the pores, which, due to the symmetry of our setup, is
shared evenly between the pores. The following initial and
boundary conditions thus apply:

c±(r, t = 0) = c0, (70a)

−ψ∣∣
�2

= ψ
∣∣
�6

= 
0, (70b)

∇ψ · n
∣∣
�1,�3,�4,�5,�7,�8

= 0, (70c)

j± · n
∣∣
�1,�2,�3,�4,�5,�6,�7,�8

= 0, (70d)

with n being the outwards pointing normal vector at each
boundary. Equation (70c) states that the respective bound-
aries are uncharged, which applies to dielectric materials.
In Sec. VI C 4, we discuss a case where the boundaries �1
and �7 are conducting instead.

In our axisymmetric setup, all θ dependence drops, so
that ψ = ψ(ρ, z, t), c± = c±(ρ, z, t), j± = jρ,±(ρ, z, t)ρ̂ +
jz,±(ρ, z, t)ẑ (in this section alone, symbols with hats refer
to unit vectors, not Laplace transformed variables), and Eq.
(69) changes to

ρ−1∂ρ(ρ∂ρψ)+ ∂2
zψ = −e

ε
(c+−c−), (71a)

∂tc± = −ρ−1∂ρ(ρjρ,±)− ∂zjz,±, (71b)

jρ,± = −D
(
∂ρc± ± c±βe∂ρψ

)
, (71c)

jz,± = −D (∂zc± ± c±βe∂zψ) . (71d)
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In our setup, the normal vector amounts to n = ρ̂ on
�2,�4, and �6; to n = −ρ̂ on �8; to n = −ẑ on �1 and �3;
and to n = ẑ on �5 and �7. Hence, Eqs. (70c) and (70d)
amount to

∂ρψ |�2,�4,�6,�8 = ∂zψ |�1,�3,�5,�7 = 0, (72a)

jρ,±
∣∣
�2,�4,�6,�8

= jz,±
∣∣
�1,�3,�5,�7

= 0. (72b)

We scale all lengths by the pore radius, z̄ = z/�p and
ρ̄ = ρ/�p , with the bar notation indicating dimensionless
quantities. We also use the dimensionless time, t̄ = Dt/�2

p ;
potential, ψ̄ = βeψ ; ion densities, c̄± = c±/c0; and fluxes,
j̄± = j±�p/(Dc0). When inserted into Eqs. (70)–(72), we
obtain the dimensionless PNP equations:

ρ̄−1∂ρ̄(ρ̄∂ρ̄ψ̄)+ ∂2
z̄ ψ̄ = −1

2

�2
p

λ2
D
(c̄+−c̄−), (73a)

∂t̄ c̄± = −ρ̄−1∂ρ̄(ρ̄j̄ρ̄,±)− ∂z̄ j̄z̄,±, (73b)

j̄ρ̄,± = −∂ρ̄c̄± ∓ c̄±∂ρ̄ψ̄ , (73c)

j̄z̄,± = −∂z̄ c̄± ∓ c̄±∂z̄ψ̄ , (73d)

and associated initial and boundary conditions:

c̄±(ρ̄, z̄, t̄ = 0) = 1, (74a)

−ψ̄∣∣
�2

= ψ̄
∣∣
�6

= 
̄0, (74b)

∂ρ̄ψ̄ |�4,�8 = ∂z̄ψ̄ |�1,�3,�5,�7 = 0, (74c)

j̄ρ̄,±
∣∣
�2,�4,�6,�8

= j̄z̄,±
∣∣
�1,�3,�5,�7

= 0. (74d)

In Eq. (73a), λD = 1/
√

8πλBc0 is the Debye length (the
characteristic width of the EDL), where λB = βe2/(4πε)
is the Bjerrum length.

We solve Eqs. (73a) and (73b) by the finite element
method (FEM). To do so, we multiply them with test func-
tions v and q, respectively; integrate over the domain; and
apply the boundary conditions of Eq. (74). This yields their
variational formulations:

∫
�2,�6

∂ρ̄ψ̄v dz̄ −
∫
�

∂ρ̄ψ̄∂ρ̄vρ̄ dρ̄ dz̄ −
∫
�

∂z̄ψ̄∂z̄vρ̄ dρ̄ dz̄

= −1
2

�2
p

λ2
D

∫
�

(c̄+−c̄−)vρ̄ dρ̄ dz̄ (75)

and

∫
�

q∂t̄ c̄± ρ̄ dρ̄ dz̄ =
∫
�

j̄ρ̄,±∂ρ̄qρ̄ dρ̄ dz̄ +
∫
�

j̄z̄,±∂z̄qρ̄ dρ̄ dz̄.

(76)

We discretized Eqs. (75) and (76) using linear elements
and solved them implicitly and coupled using a Newton
solver from the FEniCS library [69]. The mesh is generated
using Gmsh [70], with the spatial resolution at the pore
wall being 0.001�p , resolving the Debye length by at least
10 grid points. The solver code and the script to generate
the mesh are found in the GitHub repository [71].

We study pore-reservoir systems with a fixed reser-
voir size of �r/�p = 20 and �r/�p = 10 and pore lengths
of �p/�p = 1, 2.5, 5, 10, and 25. The ratio λD/�p repre-
sents the EDL overlap—we consider cases for which the
EDLs are thin (λD/�p = 0.01) and overlapping (λD/�p =
1). The dimensionless applied potential is set to 
̄0 = 0.1
throughout, corresponding to about 2.5 mV for systems at
room temperature.

B. Step response

Figures 12(a) and 12(c) show numerical solutions to
Eqs. (73) and (74) for the local potential ψ(ρ, z, t) in a
pore-reservoir system with λD/�p = 1/100 at t̄ = 0.039
and λD/�p = 1 at t̄ = 52, respectively. The figure shows
that isopotential lines are not parallel to the pore’s wall
close to its entrance and end. At the early time of Fig.
12(a), the pore has attracted counterions and developed
EDLs near the reservoir-pore interface. Figures 12(b) and
12(d) correspond to the same parameters as in panels (a)
and (c), respectively, and show the diffusive (red arrows)
and electromigrative (blue arrows) contributions to the
ionic fluxes, that is, the first and second terms on the right-
hand side of j̄ρ̄,+ − j̄ρ̄,− = −∂ρ̄(c̄+ − c̄+)− (c̄+ + c̄−)∂ρ̄ψ̄ .
Note that, only in panel (b), corresponding to the same
early time as in panel (a), we stretch the red arrows a hun-
dredfold to make them visible compared to the blue arrows.
Hence, the ionic fluxes are almost entirely caused by the
electric field, not by diffusion. In panel (d), corresponding
to the same parameters as in panel (c) (overlapping EDLs
and a late time), the strongest diffusive and electromigra-
tive fluxes are near the pore-reservoir interface, where they
nearly balance each other.

From the local potential ψ(ρ, z, t), we find a pore’s
centerline potential and potential drop, previously stud-
ied through the TL model, from ψc(z, t) = ψ(ρ = 0, z, t)
and ψd(z, t) = 
 − ψ(ρ = 0, z, t), respectively. Figure 13
shows FEM solutions (lines) for ψc(z, t) for various times,
thin EDLs (�p/λD = 100), and various pore lengths in
the different panels. The colors in all panels refer to the
same times in units of �2

p/D, where we pick colors from
purple to yellow, spanning the longest pore’s (�p/�p =
25) relaxation. The shorter pores relax faster, so they are
more purple. Figure 13 also shows Posey and Morozumi’s
TL model solution, Eq. (58). As expected, discrepancies
between both methods are most apparent for short pores.
To draw Eq. (58), we needed to specify Rp/Rr for the dif-
ferent geometries. We approximated the pore’s resistance,
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(a) (c)

(b) (d)

FIG. 12. Snapshot of numerical PNP solutions, displaying the electrostatic potential (a),(c) and contributions to the ionic flux (b),(d)
in a pore-reservoir system for �r = 20�p , �r = 10�p , �p = 5�p , and λD/�p = 1/100 at t̄ = 0.039 (a),(b) and λD/�p = 1 at t̄ = 52
(c),(d). In (b), the diffusive flux vector is scaled 100 times larger than the electromigrative flux vector. Only one pore and the immediate
vicinity of the reservoir are shown here.

Rp , and (half) the reservoir’s resistance, Rr, by

Rp = �p

κπ�2
p

, (77a)

Rr = �r

2κπ�2
r

+ 1
4κ�p

, (77b)

where κ is the electrolyte conductivity. The first term in
Rr is the resistance of a cylindrical resistor between two
flat plates; this term is the exact resistance for cases where
�r = �p . The second term in Rr is Newman’s resistance
between a conducting disk and an infinitely large hemi-
spherical electrode [72]. The same resistance was later
found by Hall, who identified it as the entrance resistance
for ions entering a pore from a semi-infinite reservoir [73].
By approximating Rr with the two terms in Eq. (77b), we
ensure we properly capture the reservoir resistance in the
opposite limits of narrow and wide reservoirs.

Yang et al. [18] also studied the charging of a pore
in response to a step potential through the PNP equa-
tions but did not incorporate the Newman-Hall term in Rr.

They noted that Eq. (58) did not capture a pore’s early
time charging, especially near the pore-reservoir inter-
face. We found that adding the Newman-Hall resistance
to Rr yielded better agreement between FEM solutions and
Eq. (58), even at early times; see Figs. 13(d) and 13(e).
Still, our expression for Rr is an ad hoc combination of
resistance expressions. The discrepancies that are still vis-
ible between both methods may be further reduced by
using a better expression for Rr and Rp . Nevertheless, the
impedance results discussed below [viz., Fig. 15] suggest
that the TL model will never entirely capture the center-
line potential’s relaxation, even if one could have exact
expressions for Rr and Rp .

Figure 14 is the same as Fig. 13, except for a different
EDL overlap, �p/λD = 1. We now compare the FEM sim-
ulations of the PNP equations (lines) to Eq. (66) (dotted
lines). To account for the Newman-Hall entrance resis-
tance, we replaced the right-hand side of Eq. (67) with
the ratio of Eqs. (77a) and (77b). Different from the case
of thin EDLs, for overlapping EDLs, the late-time center-
line potential transitions between z/�p ≈ −4 and z/�p ≈ 2
from a small value in the reservoir to a finite value in the
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FIG. 13. Pore’s centerline potential from PNP (lines) and the
TL model Eq. (58) (dotted) for a case with thin EDLs. We
set λD/�p = 1/100 and �r = 20�p , �r = 10�p and �p = �p (a),
�p = 2.5�p (b), �p = 5�p (c), �p = 10�p (d), and �p = 25�p (e).
Colors in all panels refer to the same times in units of �2

p/D.
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FIG. 14. Same as Fig. 13, except we consider over-
lapping EDLs, λD/�p = 1, and plot Eq. (66) instead
of Eq. (58).
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pore. Equation (66) predicts that value to be 1/I0
(
�p/λD

)
,

which amounts to 0.79 for �p/λD = 1, as considered here.
As for pores with thin EDLs, for long pores with thick
EDLs, the FEM solutions and Eq. (66) agree decently.
For shorter pores, we see that Eq. (66) overestimates the
centerline potential. The transition region between z/�p ≈
−4 and z/�p ≈ 2—visible for all pores—is not resolved
by Eq. (66).

C. Impedance

1. Numerical method

To calculate the impedance from the step response data,
we modify Eq. (57) to

Ẑ(s) = 
0

iω
1

Lnum
{
Istep(t)

} , (78)

where Lnum is a numerical realization of the Laplace
transform defined by

Lnum{I(t)
} =

∫ tmax

0
I(t)e−iωt dt, (79)

where tmax is the last time of our numerical simulations.
Integrating Eq. (79) by parts and using I = dQ/ dt, we find

Lnum{I(t)
} = Q(tmax)e−iωtmax − Q(0)+ iωLnum{Q(t)

}
.

(80)

As tmax → ∞, the first term on the right-hand side drops
and Eq. (80) reduces to a known Laplace transform iden-
tity.

To determine Q(t) from our ψ̄(z̄, ρ̄, t̄) data, we note
that Gauss’s law gives access to the boundary condition
between a charged conductor next to an insulator, eσ =
−εn · E, with σ (m−2) being the surface charge number
density, E = −∇ψ being the local electric field, and n
being the normal vector into the conductor. We have n = ρ̂

on �6, so eσ = ε∂ρψ
∣∣
�6

or, in terms of the dimensionless
potential,

σ = 1
4πλB

∂ρψ̄
∣∣
�6

. (81)

The total charge on one pore, Q = e
∫
�6

dA σ , is thus

Q = �pe
4πλB

2π
∫ �p/�p

0
dz̄∂ρ̄ψ̄(ρ̄ = 1, z̄, t̄). (82)

Our numerical solutions to the PNP equations give access
to the dimensionless integral: Q̄ = 2π

∫ �p/�p
0 dz̄∂ρ̄ψ̄(ρ̄ =

1, t̄). Putting Eqs. (78), (80), and (82) together, we find

Ẑ(s) = 4πλB

�pe

�2
p

D
1
βe

Ẑnum, (83a)

Ẑnum ≡ 
̄0

iω̄

[
Q̄(tmax)e−iω̄t̄max − Q̄(0)+ iω̄L̄num{Q̄

}]−1
,

(83b)

where ω̄ = ω�2
p/D and L̄num { } = Lnum { } D/�2

p . Using
λB = 1/(8πc0λ

2
D) and because, in our PNP framework, the

electrolyte’s conductivity is κ = 2e2Dβc0, we find

Ẑ(s) = π
�p

κπ�2
p

�3
p

�pλ
2
D

Ẑnum. (84)

In �p/(κπ�
2
p), we recognize the resistance of an ideal

cylindrical pore filled with a dilute electrolyte, Rp
[Eq. (77a)]. Therefore, for thin EDLs, we can com-
pare Ẑ(s)/Rp = π�3

p/(�pλ
2
D)Ẑnum directly to (Zp + Rr)/Rp

[Eq. (2)]. For thick EDLs, we compare Ẑ(s)/Rp =
π�3

p/(�pλ
2
D)Ẑnum to Eq. (68). Note that, in numerically per-

forming the Laplace transform in Ẑnum, we use Q(t) data
for many more times than we have plotted in Fig. 13.
Moreover, we note that the initial surface charge, Q̄(0), in
Eq. (83b) is nonzero. Physically, one applies a potential
difference at t = 0 between pores by connecting them to a
voltage source. The time it takes to apply this potential is
set by the speed of electric signals in the external wiring.
Meanwhile, the electric field in our geometry will relax
accordingly on the dielectric relaxation time of the solvent,
which is orders of magnitude faster than the ionic dynam-
ics [52]. We thus interpret Q̄(0) as the surface charge after
the potential has been applied but before ions have moved.
We determine Q̄(0) of the different pore-reservoir systems
by a separate simulation of the Laplace equation—Eq.
(73a), with its right-hand side set to zero, subject to Eqs.
(74b) and (74c).

2. Impedance for thin EDLs

Figure 15 shows the numerically determined
impedances (black lines) for the same parameters as those
used in Fig. 13. This figure also shows Eq. (2) (black dot-
ted lines), with Rp/Rr determined similarly to that in Sec.
VI B. The TL model decently approximates the impedance
of finite-length pores for aspect ratios beyond �p/�p >

5. For smaller aspect ratios and at high frequencies, the
numerical impedances deviate from the 45◦ phase angle
associated with Zp , tending towards a pure capacitance
(90◦). Note that the high-frequency discrepancies nicely
correspond to the early time discrepancies of Fig. 13, as
high frequencies in EIS correspond to fast processes. This
means that improved models for Rr and Rp cannot fix all
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FIG. 15. Impedance, Z, of pores with different aspect ratios, �p/�p , with thin EDLs (λD/�p = 0.01) and other parameters as in
Fig. 13. Data correspond to Eq. (2) (dotted and dashed lines) and PNP step voltage solutions for insulating (black lines) and conducting
(green lines with circles) pore ends. Pore impedance [Eq. (2)] is scaled to the pore resistance, Rp ; PNP data are scaled to �p/(κπ�

2
p),

i.e., the resistance of an isolated cylindrical electrolyte-filled pore.

the TL model’s problems, as changing Rr/Rp will merely
shift Zp horizontally and not affect the high-frequency
phase angle. Improved TL models should instead model
the early time nonlinear potential in the reservoir.

We compare the high-frequency limits of the numeri-
cal data and analytical predictions in Table I. The sec-
ond column shows Re(Z(ω̄max))/Rp as obtained by PNP,
where we use ω̄max = 104, at which point Im(Z) is negli-
gible. The third column lists the high-frequency limit of
(Rr + Zp)/Rp , that is, Rr/Rp , which we determine for the
respective parameters by Eq. (77). In line with our obser-
vations of Fig. 15, deviations between these two methods
are larger for smaller aspect ratios. Next, we performed
complex nonlinear least squares fits of (Rr + Zp)/Rp [Eq.
(2)] to the numerical PNP data using impedance.py [48],
with Rr/Rp and RpC as fitting parameters. Representative
fits are shown for �p/�p = 1 and 2.5 with purple dashed
lines. We also performed fits for all other aspect ratios, for
which we list the fitting parameter, Rr/Rp , in the last col-
umn of Table I. Even for the large aspect ratio, �p/�p = 25,
numerical data and the Rr/Rp fitting parameter differ sub-
stantially. Hence, even for the system for which the TL
model is devised—a long pore subject to a small potential,
in contact with an electrolyte reservoir filled with dilute
electrolyte—there is no one-to-one relationship between
the TL model’s fitting parameters Rr/Rp and RpC, on one
hand, and the microscopic parameters characterizing the
pore geometry and electrolyte properties, on the other.

Figure 16 shows the same PNP data for Z as in
Fig. 15 but now scaled to Re(Z(ω → ∞)) instead of
Rp . This data representation corresponds more clearly
to experiments on porous electrodes of various widths
[4,30,42,47]. Moreover, this data representation shows
that decreasing the pore length leads to a smaller pore

resistance; in the TL model, the pore’s resistance is set by
the difference between the high- and low-frequency lim-
its of the impedance, Rp = 3{Re[Z(ω → 0)] − Re[Z(ω →
∞)]}. We conclude that decreasing pore length leads to
impedance curves that progressively move towards that of
a pure capacitor, as (1) the 45◦ line becomes shorter, and
(2) the high-frequency regime deviates from 45◦ (better
visible in Fig. 15).

3. Impedance for thick EDLs

Figure 17 shows the numerically determined impedances
(black lines) and Eq. (68) (black dotted lines) for the same
parameters as in Fig. 14. Again, the theoretical predic-
tion performs decently for large aspect ratios but not for
smaller ones. Overall, taking �p/�p = 5 as an example,
the fit between numerics and theory is better in Fig. 15
than in Fig. 17. In our discussion of Fig. 14, we noted that
EDL overlap led to more involved centerline potentials
than in the nonoverlapping case (Fig. 13): ψc(z, t) transi-
tioned at the reservoir-pore interface from a small value

TABLE I. Values of the high-frequency limit of Z/Rp , which,
according to Eq. (2), should be Rr/Rp . We present data for
Z(ω̄max)/Rp , with ω̄max = 104, from Eq. (77), and a complex
nonlinear least squares fit of Eq. (2) to the numerical PNP data
using impedance.py [48].

�p/�p Z(ω̄max)/Rp Rr/Rp [Eq. (77)] Rr/Rp (impedance.py)

1 1.065 0.885 0.948 ± 0.005
2.5 0.441 0.354 0.379 ± 0.002
5 0.218 0.177 0.184 ± 0.001
10 0.110 0.0885 0.0900 ± 0.0004
25 0.0450 0.0354 0.0359 ± 0.0001
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FIG. 16. Impedances, Z, of pores of different lengths, deter-
mined from PNP step voltage solutions. These are based on the
same data as the black lines in Fig. 15, but now all curves are
scaled to their high-frequency limit, Re(Z∞) = Re(Z(ωmax)).

in the reservoir to a finite value in the pore, even at late
times. Henrique et al.’s model captured the late-time in-
pore centerline potential well. Conversely, the transition at
the pore-reservoir interface was not captured, and the late-
time centerline potential of short pores was overestimated.
These two points may have led to the larger discrepancies
between numerics and theory for short pores in Fig. 17 than
in Fig. 15.

4. Impedance of pores with conducting ends

So far, we have discussed pores with a cylindrical sur-
face that is conducting, but the ends (�1 and �7 in Fig. 11)
are insulating. That boundary condition corresponds to
the experiments of Eloot et al. [74] on pores drilled into
stainless steel and insulating plexiglass at their ends. Con-
versely, pores in supercapacitors have conducting carbon
surfaces on all sides, except the opening. To describe such
pores, we change Eqs. (70b) and (70c) into

−ψ∣∣
�1

= −ψ∣∣
�2

= ψ
∣∣
�6

= ψ
∣∣
�7

= 
0, (85a)

∇ψ · n
∣∣
�3,�4,�5,�8

= 0. (85b)

As a result, Eqs. (74b) and (74c) change into

−ψ̄∣∣
�1

= −ψ̄∣∣
�2

= ψ̄
∣∣
�6

= ψ̄
∣∣
�8

= 
̄0, (86a)

∂ρ̄ψ̄ |�4,�8 = ∂z̄ψ̄ |�3,�5 = 0. (86b)

Equation (75) changes into

−
∫
�1

∂z̄ψ̄vρ̄ dρ̄ +
∫
�2,�6

∂ρ̄ψ̄v dz̄ +
∫
�7

∂z̄ψ̄vρ̄ dρ̄

−
∫
�

∂ρ̄ψ̄∂ρ̄vρ̄ dρ̄ dz̄ −
∫
�

∂z̄ψ̄∂z̄vρ̄ dρ̄ dz̄

= −1
2

�2
p

λ2
D

∫
�

(c̄+−c̄−)vρ̄ dρ̄ dz̄, (87)

Equation (81) changes into

σ =
{

1
4πλB

∂ρψ̄ on �6 ,
1

4πλB
∂zψ̄ on �7 ,

(88)

and Eq. (82) for the total charge on one pore, Q =
e
∫
�6,�7

dAσ , becomes

Q = �pe
2λB

(∫ �p/�p

0
dz̄∂ρ̄ψ̄(1, z̄, t̄)

+
∫ 1

0
dρ̄ρ̄∂z̄ψ̄(ρ̄, �p/�p , t̄)

)
. (89)

Figures 15 and 17 show the impedance of pores with con-
ducting ends of various lengths (green lines with circles),
as obtained from PNP solutions. For �p/�p = 10 and 25,
these data hardly differ from the impedance of pores with
insulating ends. For shorter pores, differences between
both boundary conditions appear, which makes sense, as
a larger part of the pore’s charged surface area comes from
its end. For short pores and thin EDLs [Fig. 15], data differ
mainly at low frequencies; for thick EDLs [Fig. 17], they
differ mainly at high frequencies.

VII. DISCUSSION

A. The term “diffusion impedance”

In the context of pore charging through EDL formation
at blocking electrodes, the commonly used terminology
diffusion impedance is a misnomer [56]. As we show in
Fig. 12 [see also Fig. (3) of Ref. [16] and [75] ], ions
flow into a pore by electromigration not diffusion. Drop-
ping the all-important electromigration terms in the PNP
equations yields a regular ionic diffusion equation. Hence,
solving the ionic diffusion equation to find an electrode’s
impedance, as was done, for example, in Ref. [76], does
not account for the relevant physics (as these authors
acknowledged). Nevertheless, Ref. [76] found sensible
impedances from the perturbed ion densities. How can this
be? We have seen in this article that de Levie’s transmis-
sion line model, a diffusion-type equation for the potential
drop, ψd, accurately described the relaxation of a pore’s
centerline potential. Solving a diffusion equation for ionic
species and determining the impedance from the perturbed
densities yields the correct impedance, as the mathematical
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FIG. 17. Impedances, Z, of pores of different aspect ratios, �p/�p , with overlapping EDLs (λD/�p = 1) and other parameters as in
Fig. 14. Data correspond to Eq. (68) (dotted lines) and PNP step voltage solutions for insulating (black lines) and conducting (green
lines with circles) pore ends. Impedance Eq. (68) is scaled to the pore resistance, Rp [into which we absorb an EDL overlap dependent
prefactor, see below Eq. (68)], and PNP data are scaled to �p/(κπ�

2
p), i.e., the resistance of a cylindrical pore with an electrolyte at

infinite dilution.

form of all the equations is the same as the ones we used
to derive the pore impedance, Zp , from the TL equation
(but in 3D). Hence, Ref. [76] solved the correct diffusion-
type equation, but the diffusing quantity was the centerline
potential, ψd, not the ions.

B. Towards porous electrodes: m parallel pores versus
stack electrode model

So far, we have discussed charging a single cylindrical
pore in contact with a large reservoir. Different models
were proposed to go from known single-pore charging
behavior to predict the charging of a complete porous elec-
trode. Here, we compare two models for an electrode with
m pores.

Several papers treated porous electrodes as a bundle of
m cylindrical pores connected in parallel [26,35,36]; see
Fig. 18(a). In this case, the impedance of both electrodes
and reservoir amounts to

Ztot = Rr + 2
m

Zp . (90)

The current in response to a step potential, for which

̂(s) = 
0/s, is then I(t) = 
0L−1 {1/(sZtot)}. The relax-
ation time of this system is set by the zeros of Ztot, that is,
by the solution to

coth
√

sRpC√
sRpC

+ mRr

2Rp
= 0. (91)

Substituting sRpC = −α2
j gives

αj tanαj = 2Rp

mRr
, (92)

which, up to the factor m, is the same as in Ref. [55] [and
Eq. (59) here]. An approximate solution based on Padé
approximation is α−1

j ≈ √
1/3 + mRr/(2Rp), which yields

the relaxation time:

τ = RpC
α2

j
≈ 1

3
RpC + m

2
RrC. (93)

With Rp = �p/(κπ�
2
p), C = ε2π�p�p/λD, and κ = εD/

λ2
D, we find RpC = 2λD�

2
p/(D�p). To express the reservoir

resistance, Rr = �r/(κAc), we equate the reservoir’s cross-
section area, Ac (perpendicular to the pores), to that of the
pore-bundle electrode. Assuming no space is left between
the pores, each having a radius �p , yields Ac = mπ�2

p .
Collecting terms, we find

τ = λD�
2
p

D�p

(
2
3

+ �r

�p

)
, (94)

which, notably, does not depend on m.
Lian et al. [77] recently proposed an alternative model

for porous electrode charging. In their “stack electrode”
model [Fig. 18(b)], the two porous electrodes of a super-
capacitor, separated by 2L and both of width H , are
represented by m flat electrode “sheets” spaced h apart
[so that H = h(m − 1)] [77–79]. Of these sheets, the outer
ones are blocking, while the others are fully permeable
to ions. Upon applying a potential difference to the two
porous electrodes, with each sheet in an electrode at the
same potential, ions move perpendicular to the sheets and
through them, forming EDLs on both sides of each sheet
(except the outer sheets). When the lateral size of the sheets
is much larger than the width, 2H + 2L, of the setup, the
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FIG. 18. m parallel pores (a) and stack electrode model (b).

potential and ion densities depend only on the coordinate
z perpendicular to the sheets. Lian et al. [77] solved the
PNP equation in this effectively one-dimensional geometry
to determine each sheet’s time-dependent surface charge.
They showed that the stack electrode model relaxed, for a
small applied potential, on the same timescale as a discrete
TL circuit (Fig. 3) with m rungs, with ri = r and ci = 2c for
i = 1, . . . , m − 1 and cm = c; total resistance R = ∑

i ri;
and total capacitance C = ∑

i ci. For m � 1, this circuit
relaxes on almost the same timescale as the regular finite-m
TL circuit, the timescale of which is [55]

τ ≈ 1
3

RC + RrC. (95)

Using R/Rr = L/H , C = c(2m − 1), R = r(m − 1), c =
2εA/λD, r = h/(κA), and κ = εD/λ2

D, one finds that the
stack electrode model relaxes on a timescale of

τ = (2m − 1)
λDL

D

(
1 + H

3L
)

. (96)

Comparing the two models in Fig. 18 and identifying L →
�r/2, H → �p , and h → �p , Eq. (94) becomes

τ = 2(m − 1)
λDL

D

(
1 + H

3L
)

, (97)

obviously, with differences from Eq. (96) being sublead-
ing in m. For a stack electrode model where the last plate

is permeable as well, both models have identical charging
times.

The m parallel pores and stack electrode models both
utilize the TL circuit, but they do so differently. The m par-
allel pores model uses Zp , which we derived in Sec. IIA
from the TL circuit in the n → ∞ limit. In other words,
the m parallel pore model uses the n → ∞ circuit m times.
By contrast, m is kept finite in the stack electrode model,
with no corresponding n → ∞ limit.

While the relaxation times of both models are thus the
same, their impedances are not, as we saw when we numer-
ically compared Eq. (90) to Rr + 2Z1, with Z1 from Eq.
(13). This is unsurprising, as the parameter m plays dif-
ferent roles in both models. In the m parallel pore model,
increasing m corresponds to using electrodes with a larger
cross-section area. The stack electrode model, by contrast,
is one dimensional, so it models a porous electrode per
unit cross-section area. Increasing m in the stack electrode
model corresponds to using thicker electrodes (if the pore
width, h, is kept fixed) or using narrower pores (if the
electrode thickness, H , is kept fixed).

VIII. CONCLUSIONS

We derived the pore impedance, Zp , directly from its
corresponding TL circuit, side-stepping the TL equation
or other diffusion-type equations, for the first time. While,
in this article, we focused on EDL capacitors with block-
ing porous electrodes, our method of determining the
impedance of ladder circuits could be useful more broadly,
as similar circuits are used to interpret the charging
of, for instance, batteries and fuel cells [1,2,80]. Future
work could generalize our calculations to determine the
impedance of a groove [41], an arbitrarily shaped pore
[37], or to find the impedance of a case with finite electrode
resistance [40].

There are at least four length scales relevant to the charg-
ing of a cylindrical pore: its length, �p , and radius, �p ; the
width, λD, of the EDL; and the combination,

√
D/ω, of

the ionic diffusion constant and the angular frequency of
the harmonic voltage source. Two of the three indepen-
dent dimensionless combinations of these length scales had
been characterized. de Levie showed that a dimensionless
penetration depth, ∝

√
D�p/(ω�2

pλD), set the characteris-
tic length until ionic density profiles in a pore were per-
turbed [23]; Henrique et al. studied the effect of the EDL
overlap, �p/λD, on pore charging. This left one dimension-
less ratio, the pore aspect ratio, �p/�p , which had received
little attention. Accordingly, we studied the charging of
pores of various aspect ratios by numerical simulations
of the PNP equations. We found that impedances of long
pores agreed well with Zp . By contrast, deviations were
visible at high frequencies for pores with aspect ratios
lower than �p/�p = 5. Our findings are thus in qualitative
agreement with those of Eloot et al. [74], who found that
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their experimental pore impedance data could not be fitted
by equivalent circuits when �p/�p < 2.

The shapes of the impedance curves that we found
are not unique to short pores; similar curves resulted, for
instance, from an equivalent circuit model accounting for
the outer surface of a porous electrode through a paral-
lel connection of Zp and another capacitor [28]. Figure
20 of that article contained experimental impedance data
for a porous gold electrode; the shape of their impedance
was very similar to ours in Fig. 15 for �p/�p = 2.5.
Hence, above 45◦, high-frequency phase angles may be
explained by at least two distinct phenomena: the pore
aspect ratio or outer surface capacitance. Deciding which
applies would require further impedance spectroscopy on
different electrodes or different experiments.

We see the following directions for future work. First,
an outstanding challenge is to analytically solve the PNP
equations we solved numerically in Sec. VI. In previ-
ous work, we analytically solved the PNP equation for a
long pore and negligible reservoir resistance [20]. Relax-
ing these restrictions to describe a short pore next to
a non-negligible reservoir will be challenging. Second,
the boundary conditions of the PNP equations can be
adapted to pores with curved [37], rough [41,81–85],
or nonblocking surfaces [86,87]. Third, the PNP model
should be extended with finite ion sizes and dispersion
and image charge interactions when pores are very nar-
row [10,88] or large potentials are applied, for instance,
when probing a system’s nonlinear impedance [89,90] or
its impedance around a large bias voltage. Large applied
potentials cause diffusive salt transport not captured by the
TL model [20], so a pore’s impedance will deviate from
Zp . Last, this article aimed to bring equivalent circuit and
continuum modeling of electrolyte-filled pores closer
together. It would be interesting to do the same for equiv-
alent circuit models and molecular dynamics simulations
[91–93], that is, to pinpoint the meaning of fitting param-
eters when the TL model is fitted to molecular dynamics
data.
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