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The blending of hydrogen generated using clean energy into natural gas pipeline networks is proposed
in order to utilize existing energy systems for their planned lifetimes while reducing their reliance on fos-
sil fuels. We formulate a system of partial differential equations (PDEs) that govern the flow dynamics
of mixtures of gases in pipeline networks under the influence of time-varying compressor and regulator
control actions. The formulation is derived for general gas networks that can inject or withdraw arbitrary
time-varying mixtures of gases into or from the network at arbitrarily specified nodes. The PDE formu-
lation is discretized in space to form a nonlinear control system that is used to prove that homogeneous
mixtures are well behaved and that heterogeneous mixtures may be ill behaved in the sense of monotone
ordering of solutions. We use numerical simulations to compute interfaces in the parameter region of sinu-
soidal boundary conditions that delimit monotonic, periodic, and chaotic system responses. The interfaces
suggest that any solution in the monotonic response region is not chaotic and will eventually approach a
periodic orbit. The results are demonstrated using examples for a single pipeline and a small test network.
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I. INTRODUCTION

Although natural gas is projected to be a primary fuel
source through the year 2050 [1], societies worldwide
are investing intensively to transition from fossil fuels
such as natural gas and coal to more sustainable and
cleaner resources. Hydrogen is an energy carrier that can
be cleanly produced [2] and can address climate change
because it does not result in carbon dioxide emissions or
other harmful emissions when it is burned. Several qual-
ities of hydrogen make it an attractive fuel option for a
variety of applications that include transportation and high-
temperature manufacturing. Hydrogen can also be used to
power turbines, which can potentially be used for aviation
and electric power production. Hydrogen can be produced
directly from fossil fuels, biomass, or direct electrolysis, by
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splitting water into its constituent components of hydrogen
and oxygen. After hydrogen is produced, it can be trans-
ported to end users economically by dedicated pipeline
systems.

Recent studies have proposed that natural gas pipelines
can safely transport mixtures of up to 20% hydrogen or
more by volume [3,4]. Hydrogen could be transported
through the existing infrastructure and then separated, or
the mixture could be burned directly as an end-use fuel.
Because the physical and chemical properties of hydrogen
and natural gas (primarily methane) differ significantly,
the mass and energy transport dynamics of inhomoge-
neous mixtures of these constituent gases are considerably
more complex than for a homogeneous gas [5]. The math-
ematical modeling of such mixtures is also considerably
more challenging than what has traditionally been done for
gas pipelines [6]. The introduction of substantial propor-
tions of much lighter hydrogen into natural gas pipelines
requires much closer spacing of gas compressors, and this
relationship has been characterized in an empirical study
[7]. Additionally, the pressure and flow dynamics in gas
networks have been proven to satisfy certain physically
intuitive and conceptually valuable monotonicity proper-
ties [8], which must be reexamined in the presence of
inhomogeneous gas mixing.
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The physical complexities of blending hydrogen in
natural gas pipelines present several mathematical chal-
lenges. Additional state variables are needed to account
for changes in mass fraction, which affect total density,
energy content, and flow dynamics. Modeling the flow of a
homogeneous gas on a network requires partial differential
equations (PDEs) for mass and momentum conservation
on each pipe, and a linear mass flow balance equation at
each network junction. Injection of a second gas into the
network requires the addition of another PDE on each pipe
and a bilinear nodal balance equation at each junction to
account for conservation of composition. This more than
doubles the state space of the continuous model. Moreover,
the faster wave speed corresponding to the lower density
of hydrogen worsens the numerical ill conditioning of the
dynamic model. Such issues have been highlighted by the
numerical simulations of hydrogen and natural gas flows
in pipelines [7,9–16].

One recent study has demonstrated conditions under
which pipeline pressures may exceed allowable upper lim-
its, and that the likelihood of this occurrence increases pro-
portionally with increasing hydrogen concentration [13].
Another study examined the effects of hydrogen blend-
ing on the detection and estimation of leaks [16], and
demonstrated that the amount of leak discharge increases
as the concentration of hydrogen increases. A moving grid
method and an implicit backward difference method for
tracking gas concentration were both shown to perform
well for numerical simulations, but the implicit difference
method may lose some finer detail due to numerical diffu-
sion [10]. The method of characteristics was also applied
for the numerical simulation of transient flows on cyclic
networks with homogeneous flow mixtures [12]. Modeling
networks of pipelines with composition tracking was the
focus of another recent study [7], although this model does
not include control actions of compressor units. In general,
these models demonstrate a simulation capability or sensi-
tivity study for a specific network. Addressing challenging
design, operational, and economic issues in the pipeline
transport of gas mixtures will require minimal and gener-
alizable mathematical models that adequately describe the
relevant physics, in addition to complex simulations with
comprehensive characterizations of pipeline flows.

The scope of the present study is threefold. First, we
extend general control system models for gas pipeline
networks [17] to account for heterogeneous mixtures of
hydrogen and natural gas. Similar lumped parameter mod-
eling has been well studied for pipeline simulation since at
least a decade ago [18,19]. The state variables are flows,
partial densities, and pressures throughout the network,
and the control variables are the actions of compressor and
regulator units. Control actions may be designed to min-
imize fuel consumption [20–22] or maximize economic
value [23]. The PDE control system of the mixture is dis-
cretized in space using a finite volume method [24] and

written in matrix form as a finite-dimensional control sys-
tem of nonlinear ordinary differential equations (ODEs).
Second, we prove that solutions to initial boundary value
problems (IBVPs) of a gas mixture have certain monotone-
ordering properties if the concentration is homogeneous
but, in general, do not have these properties if the concen-
tration is heterogeneous. The homogeneous monotonicity
result generalizes the pure natural gas monotonicity result
for obtaining control formulations that are robust to uncer-
tainty in pressure and withdrawal profiles [8,25]. Third, we
demonstrate that the solution of an IBVP may be irreg-
ular, in the sense of generating a continuous distribution
of harmonic modes, and may also be chaotic, in the sense
of being sensitive to initial conditions. Numerical simula-
tions are used to characterize flow solution behavior in a
phase space of periodic forcing functions and to identify
boundaries between the regions of monotonic, periodic,
and chaotic solution behavior. Transitions through such
fluid mixing phase regions were observed in oceanic wind
bursts [26,27] and in flame combustion of hydrogen and
air mixtures [28,29]. Inspection of the response interfaces
that we compute suggest that any solution in the monotonic
response region is not chaotic and will eventually approach
a periodic orbit. Simulation-based analyses such as those
presented here could be used to evaluate appropriate lim-
itations on blending of hydrogen into existing natural gas
pipeline networks.

The rest of this paper is organized as follows. The
PDEs that govern heterogeneous mixtures of hydrogen
and natural gas are presented in Sec. II. In Sec. III, the
PDE system is discretized in space to obtain a system
of ODEs. Section IV presents a derivation of equivalent
ODE systems in terms of other state variables of inter-
est. Section V contains a proof that each of the equivalent
systems have monotonic solutions if the concentration is
homogeneous, as well as a proof that the solutions are,
in general, nonmonotonic if the concentration is hetero-
geneous. In Sec. VI, we illustrate nonmonotonic system
responses using numerical simulations of flows through
a small test network that contains a loop, and which was
examined in a previous study [30]. Moreover, that section
illustrates that certain types of equivalent systems may
have more desirable monotone system behavior than oth-
ers in certain response regimes. Sections VII–IX describe
techniques to compute interfaces, in the region of boundary
condition parameters for flow in a single pipeline, between
regions that do and do not exhibit monotonic, periodic, and
chaotic properties, respectively. We provide concluding
remarks and an outlook for future work in Sec. X.

II. GAS NETWORK MODELING

A gas transport network is modeled as a connected and
directed graph (E ,V) consisting of edges E = {1, . . . , E}
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and nodes V = {1, . . . , V}, where E and V denote the num-
bers of edges and nodes, respectively. It is assumed that
the elements of these sets are ordered according to their
integer labels. The edges represent pipelines and the nodes
represent junctions or stations where gas can be injected
into or withdrawn from the network. The symbol k is
reserved for indexing edges in E and the symbols i and j
are reserved for indexing nodes in V . The graph is directed
by assigning a positive flow direction along each edge. It
is assumed that gas physically flows in only the direction
of positive flow, so that the mass flow and velocity val-
ues of the gas are positive quantities everywhere in the
network. The notation k : i �→ j means that edge k ∈ E is
directed from node i ∈ V to node j ∈ V . For each node
j ∈ V , we define (potentially empty) incoming and outgo-
ing sets of pipelines by �→j = {k ∈ E |k : i �→ j } and j�→ =
{k ∈ E |k : j �→ i}, respectively. All nomenclature is listed
in Appendix C.

A. Modeling physical flow in a pipe

Compressible flow of a homogeneous ideal gas through
a pipe is described using the one-dimensional isothermal
Euler equations [31],

∂tρ + ∂x(ρu) = 0, (1a)

∂t(ρu)+ ∂x(p + ρu2) = − λ

2D
ρu|u| − ρg

∂h
∂x

, (1b)

p = ρZRT = σ 2ρ, (1c)

where the variables u(t, x), p(t, x), and ρ(t, x) represent
velocity, pressure, and density of the gas, respectively.
Here, t ∈ [0, T] and x ∈ [0, �], where T denotes the time
horizon and � denotes the length of the pipe. The symbols
∂t and ∂x denote the differential operators with respect to
time t and axial location x, respectively. The above system
describes mass conservation (1a), momentum conservation
(1b), and the gas equation of state (1c). The variable h rep-
resents the elevation of the pipe. The dominant term in the
momentum equation (1b) is the phenomenological Darcy-
Weisbach term that models momentum loss caused by
turbulent friction, and is scaled by a dimensionless param-
eter λ called the friction factor. The remaining parameters
are the internal pipe diameter D, the wave (sound) speed
σ = √

ZRT in the gas, and the gravitational acceleration
g, where Z, R, and T are the gas compressibility factor,
specific gas constant, and absolute temperature, respec-
tively. Here, we assume that gas pressure p and gas density
ρ satisfy the ideal gas equation of state (1c) with wave
speed σ . While nonideal modeling is necessary in practice
to correctly quantify flows at pressures used in large gas
transport pipelines, ideal gas modeling still qualitatively
captures the flow phenomenology, so we use it for sim-
plicity of exposition. Extension to nonideal gas modeling

can be made by applying appropriate nonlinear transforms
[30].

It is standard to use the per-area mass flux ϕ = ρu, and
assume that gas flow is an isothermal process, that flow is
turbulent and has high Reynolds number, and that the flow
is adiabatic, i.e., there is no heat exchange with the ground
[32]. For slowly varying boundary conditions, the kinetic
energy term ∂x(ρu2) and the inertia term ∂t(ρu) in Eq. (1b)
may be omitted [31]. With these assumptions, and given
no elevation changes, Eqs. (1) can be reduced to

∂tρ + ∂xϕ = 0, (2a)

∂x(σ
2ρ) = − λ

2D
ϕ|ϕ|
ρ

, (2b)

where ρ and ϕ denote density and mass flux (in per-area
units). The above set of equations has been used in sev-
eral previous studies [8,33], and we refer the reader there
for further justifications. Here, we extend these equations
to the case of a mixture of two constituent gases, whose
partial pressures, partial densities, partial fluxes, and mass
fractions are denoted by p (m), ρ(m), ϕ(m), and η(m), respec-
tively, where m = 1 and m = 2 are used to identify the two
distinct gases. The fraction of mass of each gas is related to
the partial density variables by η(m) = ρ(m)/(ρ(1) + ρ(2)).
The propagation of either mass fraction quantity η(m) can
be modeled by the convection-diffusion equation with
diffusion terms omitted [10], i.e.,

∂tη
(m) + ϕ

ρ
∂xη

(m) = 0. (2c)

It follows from the relation η(1) = (1 − η(2)) that only
one mass fraction variable should be modeled if there are
exactly two distinct gases in the mixture. It can be shown
that η(1) solves Eq. (2c) if and only if η(2) does. Partial
densities ρ(m) and partial fluxes ϕ(m) are proportional to
their total counterparts ρ = (ρ(1) + ρ(2)) and ϕ = (ϕ(1) +
ϕ(2)) with the mass fraction being the coefficient of pro-
portionality. In particular, ρ(m) = η(m)ρ and ϕ(m) = η(m)ϕ.
However, proportionality according to the mass fraction
does not generally hold for pressure. The ideal equation of
state for each constituent gas is defined by p (m) = σ 2

mρ
(m),

where σ1 and σ2 are the wave speeds of the two gases.
Using Dalton’s law [34], the total pressure of the mixture
is defined to be the summation of partial pressures given by

p = p (1) + p (2) = σ 2
1 ρ

(1) + σ 2
2 ρ

(2) = σ 2ρ,

where σ 2 = (σ 2
1 η

(1) + σ 2
2 η

(2)). It follows that the local
wave speed σ of the mixture depends on the local mass
fraction of the gases. Moreover, the total pressure and
partial pressure variables are related through the volu-
metric concentration defined by ν(m) = σ 2

mρ
(m)/(σ 2

1 ρ
(1) +

σ 2
2 ρ

(2)). In particular, p (m) = ν(m)p . From here onward, we
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use the terms mass fraction and concentration interchange-
ably, and specifically refer to volumetric concentration
where that quantity is examined.

In our application of energy transport, superscripts “(1)”
and “(2)” will henceforth identify correspondence of vari-
ables to natural gas and hydrogen, respectively. The wave
speeds of natural gas and hydrogen are respectively defined
by σ1 and σ2. We note that natural gas is itself a mixture
composed of several distinct gases, and its composition has
historically been modeled as constant and homogeneous in
the majority of academic pipeline simulation studies. This
simplification is accepted because the composition of pro-
cessed pipeline quality gas is at least 90% methane and
typically 95% methane by molar mass, and with ethane
comprising the majority of the other constituents [35]. The
calorific content of methane from different sources may
vary somewhat [36], and numerical methods for pipeline
simulation that account for variation in gas composition
are well developed [10]. In contrast, the calorific values
and molecular masses of hydrogen and natural gas both
differ by an order of magnitude. In this study, we sup-
pose that natural gas has a nominal homogeneous and
constant composition, and focus on the phenomenology
of dynamic pipeline response to injection of much less
dense hydrogen gas with variation in time and by loca-
tion. In general, although our focus here is on blending two
gases in a network of pipelines, the models and theory here
can be extended to mixtures of more than two gases with
additional equations and variables corresponding to super-
scripts “(m)” for m = 1, . . . , M , where M would denote the
total number of gas components of the mixture.

B. Gas mixture dynamics on a network

With the above assumptions, the flow dynamics through
the horizontal pipeline of index k ∈ E is modeled with the
friction-dominated PDEs

∂tρ
(m)
k + ∂x

(
ρ
(m)
k

ρ
(1)
k + ρ

(2)
k

ϕk

)
= 0, (3)

∂x(σ
2
1 ρ

(1)
k + σ 2

2 ρ
(2)
k ) = − λk

2Dk

ϕk|ϕk|
ρ
(1)
k + ρ

(2)
k

, (4)

where Eq. (3) is defined for both m = 1 and m = 2. We
leave it to the reader to verify that Eqs. (3) and (4) defined
in terms of partial densities ρ(1) and ρ(2) and total flow ϕ

are equivalent to Eq. (2) defined in terms of total density
ρ, total flow ϕ, and one concentration variable η(2). The
wave speeds, σ1 and σ2, and the diameter Dk, length �k,
and friction factor λk associated with each pipeline k ∈ E
are the parameters of the system.

Compressor and regulator stations are critical compo-
nents that actuate the flow of gas through the network

and reduce pressure in the direction of the flow, respec-
tively. For convenience, we assume that a compressor is
located at the inlet and a regulator is located at the out-
let of each pipeline, where inlet and outlet are defined
with respect to the oriented positive flow direction. For
each pipeline k ∈ E , compression and regulation are mod-
eled with multiplicative control variables μ

k
(t) ≥ 1 and

μk(t) ≥ 1, respectively. That is, discharge pressure and
density are μ

k
(t) times larger than the suction pressure and

density.
The boundary conditions for a mixture of gases allow

for more degrees of freedom than those for a single gas,
and are formulated here to enable definition of a range
of potential scenarios. All of the flow quantities defined
in this paragraph are, in general, time varying, but we
suppress time dependence for readability. The network
nodes are partitioned into slack nodes Vs ⊂ V and non-
slack nodes Vd ⊂ V . Slack (pressure) nodes are typically
used to represent large sources of gas, at which pressure
and concentration are specified and inflow to the network
is a dependent variable that is determined by solving the
network flow equations defined below. At nonslack (flow)
nodes, the withdrawal flow from the network is speci-
fied, and the pressure and mass fraction are determined by
solving the initial boundary value problem. Alternatively,
injection can be specified at a nonslack (flow) node if con-
centration is also provided. Slack nodes are assumed to be
ordered in V before nonslack nodes, so that i < j for all
i ∈ Vs and j ∈ Vd. A mixture of gas is injected into the net-
work at each slack node i ∈ Vs. The boundary conditions
at the slack nodes i ∈ Vs are defined by specifying indi-
vidual densities s(1)i and s(2)i . Alternatively, pressure (ps)i

and concentration α(m)i may be specified at slack nodes
i ∈ Vs. The relations (ps)i = (σ 2

1 s(1)i + σ 2
2 s(2)i ) and α(m)i =

s(m)i /(s(1)i + s(2)i ) can then be used to determine the corre-
sponding partial densities that will achieve the specified
pressures and concentrations. Nonslack nodes are parti-
tioned into injection nodes Vq ⊂ Vd and withdrawal nodes
Vw ⊂ Vd. We order the nonslack nodes Vd with injec-
tion nodes enumerated before withdrawal nodes, so that
i < j for all i ∈ Vq and j ∈ Vw. A mixture is withdrawn
from the network at each withdrawal node j ∈ Vw with
boundary conditions specified by mass outflow wj ≥ 0.
At each injection node j ∈ Vq, a mixture is injected into
the network with boundary conditions specified by both
the mass inflow qj , with qj ≥ 0, and the concentration
β
(m)
j . Although a mass inflow is specified at each injec-

tion node j ∈ Vq with concentration β(m)j , this does not, in
general, imply that the concentration flowing from node j
into outgoing edges is equal to β(m)j , because the nodal con-
centration is a mixture of flows entering node j either by
injection or from incoming pipelines. Boundary condition
designations are illustrated for a small example network in
Fig. 1.
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FIG. 1. Configuration of the boundary conditions. Here, j ∈
Vw, k1 : i1 �→ j with i1 ∈ Vs, and k2 : i2 �→ j with i2 ∈ Vq.

For each nonslack node j ∈ Vd, the nodal partial
density variables are denoted by ρ(m)j and the dependent
concentration variables are denoted by η(m)j = ρ(m)j /(ρ

(1)
j +

ρ
(2)
j ) for m = 1 and m = 2. All of the nodal quantities in

this study are identified with bold symbols. Inlet and outlet
edge variables are defined by attaching underlines below
and overlines above the associated edge variables, respec-
tively. For example, ϕ

k
(t) = ϕk(t, 0) and ϕk(t) = ϕk(t, �k).

Let us denote the cross-sectional area of edge k ∈ E by
χk = πD2

k/4. The boundary conditions for the flow of the
mixture are defined for m = 1 and m = 2 by

ρ(m)
k

= μ
k
s(m)i , ρ

(m)
k = μkρ

(m)
j , (5)

ρ(m)
k

= μ
k
ρ
(m)
i , ρ

(m)
k = μkρ

(m)
j , (6)

γ
(m)
j dj =

∑
k∈�→j

χkη
(m)
k ϕk −

∑
k∈j�→

χkη
(m)
k
ϕ

k
, (7)

where Eq. (5) is defined for k : i �→ j with i ∈ Vs, Eq. (6) is
defined for k : i �→ j with i, j ∈ Vd, and Eq. (7) is defined
for j ∈ Vd with the condition that γ (m)j dj = η

(m)
j wj if j ∈

Vw and γ
(m)
j dj = −β(m)j qj if j ∈ Vq. The conditions in

Eqs. (5) and (6) are multiplicative relations between the
partial densities at the boundaries of pipelines and the aux-
iliary “nodal” variables for partial densities that are internal
to the nodes at each end (see Fig. 1). The multiplicative
factors are used as control variables that represent gas com-
pression and regulation. The condition for the conservation
of mass through each nonslack node in Eq. (7) depends on
whether the node is an injection node or a withdrawal node.
For injection, we specify both the concentration of the mix-
ture and the mass flow being injected into the node, but for
withdrawal, we specify only the mass outflow. The con-
centration of the withdrawn gas is determined by solving
the network flow equations.

The initial conditions of partial density are assumed
to be a steady-state solution given for all k ∈ E and

x ∈ [0, �k] by

ρ
(m)
k (0, x) = �

(m)
k (x). (8)

The steady-state configuration is defined to be the solution
of the system in Eqs. (3)–(7) when the boundary condition
profiles are time invariant (i.e., equal to the initial values
of the time-varying boundary profiles). More details on the
initial condition for the discretized system are provided
in the following section. Mass flux is not initially spec-
ified because it is uniquely determined from the density.
We assume standard conditions for well posedness [37],
and specifically that the boundary conditions are smooth,
slowly varying, bounded in their respective domains, and
compatible with the initial conditions to ensure the exis-
tence of a smooth, slowly varying, bounded solution. The
flow of the mixture of gases in the network is defined
by the initial-boundary value system of PDEs defined by
Eqs. (3)–(8).

III. SPATIAL DISCRETIZATION

To analyze the system of PDEs (3)–(8) on the graph
(E ,V), we have developed a process of discretization,
which includes a refinement of the graph, approximation of
the PDE system by an ODE system using a finite volume
approach, and a reformulation in terms of variable vectors
and parameter matrices. The vectors include variables that
represent the states and boundary condition profiles, and
the matrices incorporate network model parameters, the
incidence structure of the graph, and the control values.

Graph refinement.—A refinement (Ê , V̂) of the graph
(E ,V) is created by adding auxiliary nodes to V in order to
subdivide the edges of E so that �k ≤ � for all k ∈ Ê , where
� is sufficiently small [18]. Henceforth, we assume that
� ≤ 1 (km), and will use that threshold for computational
studies as well. The refined graph inherits the prescribed
orientation of the parent graph. Assuming sufficiently fine
network refinement, the relative difference of the density
variables of adjacent nodes in the solution to the IBVP
(3)–(8) can be made arbitrarily small in magnitude because
of continuity of the solution to the system given well-posed
conditions [37]. We assume for all k ∈ Ê that

|ρ(m)k − ρ(m)
k

|
ρ
(m)
k

< ε,
|ρ(m)k − ρ(m)

k
|

ρ
(m)
k

< ε, (9)

where 0 ≤ ε 	 1. The proofs that follow only require ε ≤
1. We assume that the graph has been sufficiently refined
to satisfy Eq. (9) and that the hat notation may be omitted
moving forward.

Finite volume approximation.—The system of ODEs is
obtained by integrating the dynamics in Eqs. (3) and (4)
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along the length of each refined pipeline segment so that
∫ �

0
∂tρ

(m)dx = −
∫ �

0
∂x

(
ρ(m)

ρ(1) + ρ(2)
ϕ

)
dx,

∫ �

0
∂x(σ

2
1 ρ

(1) + σ 2
2 ρ

(2))dx = − λ

2D

∫ �

0

ϕ|ϕ|
ρ(1) + ρ(2)

dx,

where edge subscripts have been removed for readabil-
ity. The above integrals of space derivatives are evaluated
using the fundamental theorem of calculus. The remaining
integrals are evaluated by approximating pipeline density
by outlet density and pipeline flux by inlet flux. These
approximations are independent of x and may be factored
out of the integrals. The above equations become

�ρ̇
(m) = η(m)ϕ − η(m)ϕ, (10)

2∑
n=1

σ 2
n (ρ

(n) − ρ(n)) = − λ�

2D

ϕ|ϕ|
ρ(1) + ρ(2)

, (11)

where a dot above a variable represents the time derivative
of the variable.

Matrix form.—We now write the discretized system in
matrix-vector form. Define E × E diagonal matrices L and
X with diagonal entries Lkk = �k and Xkk = χk. Define the
time-varying (transposed) incidence matrix M of size E ×
V componentwise by

Mkj =

⎧⎪⎨
⎪⎩
μk(t), edge k ∈�→ j enters node j ,
−μ

k
(t), edge k ∈ j�→ leaves node j ,

0, otherwise.
(12)

Define the E × Vs submatrix Ms of M by the removal of
columns i ∈ Vd, the E × (V − Vs) submatrix Md of M by
the removal of columns i ∈ Vs, and the positive and nega-
tive parts of Md by M d and M d so that Md = (M d + M d)/2
and |Md| = (M d − M d)/2, where Vs denotes the number
of slack nodes and |A| denotes the componentwise abso-
lute value of a matrix A. Define the signed matrices Qd =
sign(Md), Qd = sign(M d), Q

d
= sign(M d), and similarly

for Ms. These signed matrices are well defined by the
lower-bound constraints on compression and regulation.
The incidence matrix provides a compact representation
of the network structure that can be used to specify the
dynamical equations for all of the refined edges. More-
over, the signed incidence matrix is used to produce the
first-order finite difference approximation of the spatial
derivative of each component of the vector on which it
acts. The absolute values of the positive and negative
parts of the weighted incidence matrix apply the multi-
plicative boost in compression and reduction in regulation,
respectively, to the vectors on which they act.

We define the Vd × Vd identity matrix I , the Vd × Vq
submatrix Iq of I by the removal of columns j ∈ Vw, and

the Vd × Vd matrix Iw by replacing columns j ∈ Vq of I
with the zero vector. Here, Vd and Vq denote the numbers
of nonslack nodes and nonslack injection nodes, respec-
tively. We also define inlet and outlet edge mass flux
vectors by ϕ = (ϕ

1
, . . . ,ϕ

E
)T and ϕ = (ϕ1, . . . ,ϕE)

T, and
similarly for inlet and outlet edge concentrations η and η.
Then, let us define the vectors ρ(m) = (ρ

(m)
Vs+1, . . . , ρ(m)Vd

)T,
α(m) = (α

(m)
1 , . . . ,α(m)Vs

)T, and β(m) = (β
(m)
Vs+1, . . . ,β(m)Vq

)T,
where the subscripts of the vector components are indexed
according to the node labels in V . Similarly, define the vec-
tors η(m) = (η

(m)
Vs+1, . . . , η(m)Vd

)T and d = (dVs+1, . . . , dVd)
T.

Recall that the components of d are positive for those
corresponding to nonslack withdrawal nodes and nega-
tive for nonslack injection nodes. Define the function f :
R

E × R
E → R

E componentwise for k ∈ E by

fk(y, z) = −sign(zk)�k|ykzk|1/2, (13)

where �k = √
2Dk/(λk�k). This function is used to

express ϕ in Eq. (11) in terms of density and its spatial
derivative so that we may eliminate flux from the dynamic
equations. Using the function in Eq. (13), the discretized
flow in Eqs. (10) and (11) together with the boundary con-
ditions in Eqs. (5)–(7) may be expressed in matrix-vector
form as

LM dρ̇
(m) = η(m) 
 F − η(m) 
 ϕ, (14)

γ (m) 
 d = Q
T
dX (η(m) 
 ϕ)+ QT

d
X (η(m) 
 F), (15)

where “
” is the Hadamard product and

F = f
(

M d(ρ
(1) + ρ(2)),

∑
m

σ 2
m(Mss(m) + Mdρ

(m))

)
.

(16)

We suppose that regulators vary slowly so the time deriva-
tive of M d is insignificant, justifying its removal from
Eq. (14).

The interested reader is encouraged to sketch a small
network such as that in Fig. 1; label the edges, nodes,
compressors, and regulators; and construct the associ-
ated weighted incidence matrix, its submatrices, and their
signed correspondences. Upon substituting these matrices
into Eq. (14) and performing the matrix multiplications,
we should observe that each component of the resulting
vector equation is simply Eq. (10) corresponding to the
edge component. Likewise, the components of Eq. (16)
reduce to Eq. (11) after some algebraic rearrangements.
Multiplying both sides of Eq. (14) on the left by Q

T
dX

and using Eq. (15), we may combine Eqs. (14) and (15)
to form the equation Q

T
dXLM dρ̇

(m) = [QT
dX (η(m) 
 F)−

γ (m) 
 d], where we have used Qd = (Q
d
+ Qd). By writ-

ing edge concentrations in terms of nodal concentrations,
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and nodal concentrations in terms of concentrations of
flows into the nodes, the system in Eqs. (14)–(16) may be
written for both m = 1 and m = 2 as

Rρ̇(m) = QT
dX [(|Q

s
|α(m) + |Q

d
|η(m))
 F]

− (Iqβ
(m) + Iwη

(m))
 d, (17)

where R = Q
T
dXLM d. The system in Eq. (17) will be called

the partial density system of ODEs. Each row k of M d con-
tains exactly one nonzero component given by M kj = μk
for k ∈�→ j . Using the additional fact that X and L are
diagonal, it can be shown that the mass matrix R on the
left-hand side of Eq. (17) is diagonal with positive diago-
nal components given by rj = ∑

k∈�→j χk�kμk for j ∈ Vd.
Therefore, matrix R may be readily inverted to obtain a
nonlinear control system in the usual, although compli-
cated, ODE form. The initial condition in Eq. (8), sampled
at the refined nodes of the network, is the time-invariant
solution of the system in Eq. (17) with d = d(0), α(m) =
α(m)(0), and β(m) = β(m)(0). We assume that this steady-
state solution is the initial condition of the partial density
system.

IV. EQUIVALENT SYSTEMS

The system in Eq. (17) is expressed in terms of partial
densities at nonslack nodes. Equivalent systems expressed
in terms of other variables of interest may be derived
from Eq. (17) using appropriate transformations, such
as that performed in the continuous case going from
Eqs. (2a)–(2c) to Eqs. (3) and (4). In fact, such transforma-
tions exist even for homogeneous gas systems. For exam-
ple, the equations of natural gas flow may be expressed in
terms of pressure and velocity, in terms of density and mass
flux, or in terms of their dimensionless quantities. Define
vectors ρ, p, ν(m), and E of nodal values for density, pres-
sure, volumetric concentration, and energy, respectively, at
nonslack nodes by

ρ = ρ(1) + ρ(2), (18)

p = σ 2
1 ρ

(1) + σ 2
2 ρ

(2), (19)

ν(m) = σ 2
mρ

(m)

σ 2
1 ρ

(1) + σ 2
2 ρ

(2)
, (20)

E = (|QT
d |X ϕ)
 (r(1)η(1) + r(2)η(2)), (21)

where r(1) = 44.2 (MJ/kg) and r(2) = 141.8 (MJ/kg).
Equivalent systems may be expressed in terms of any
two vector variables from the set {ρ(m), η(m), ν(m), ρ, p, E},
excluding pairs from the subset {η(1), η(2), ν(1), ν(2)}
because variables in the latter subset would reduce to con-
stant vectors in the case of homogeneous mixtures. The
choice of which equivalent system to use may depend

on the sought application, although some systems have
better conditioning with fewer nonlinear operations than
others. Define (potentially time-varying) localized wave
speed vectors a = (σ 2

1 α
(1) + α2

2α
(2))1/2 and b = (σ 2

1 β
(1) +

σ 2
2 β

(2))1/2, where the square root is applied componen-
twise. The transformation from partial densities to total
density and pressure is obtained by superimposing Eq. (17)
for m = 1, 2 to obtain an equation for ρ̇ and linearly com-
bining Eq. (17) for m = 1, 2 with coefficients σ 2

1 and σ 2
2 to

obtain an equation for ṗ. This transformation produces the
system

Rρ̇ = QT
dXF − d, (22)

Rṗ = QT
dX

((
|Q

s
|a2 + |Q

d
|p
ρ

)

 F

)

−
(

Iqb2 + Iw
p
ρ

)

 d, (23)

where F = f (M dρ, Msps + Mdp). The system in
Eqs. (22)–(23) will be called the total density and pressure
system of ODEs. We do not derive other equivalent sys-
tems. Instead, we compute the solution of the partial den-
sity system of ODEs numerically, and, thereafter, obtain
the other variables of interest by subsequently applying the
appropriate transformations.

If η(m) is a constant vector then the system of total den-
sity and pressure decouples into two isolated subsystems
that are equivalent to one another because, for constant
concentration, we have p = c2 
 ρ, where c = (σ 2

1 η
(1) +

σ 2
2 η

(2))1/2 is a constant vector. In particular, the total den-
sity and pressure system in Eqs. (22) and (23) reduces by
half its dimension to the isolated system

Rṗ = QT
dX

(
(|Q

s
|a2 + |Q

d
|c2)
 f

(
M d

p
c2 , Msps + Mdp

))

− (Iqb2 + Iwc2)
 d. (24)

The system in Eq. (24) is called the isolated total pres-
sure system of ODEs. Equivalent isolated subsystems
expressed in terms of one vector variable from the set
{ρ(m), ρ, E} may be derived. Each isolated subsystem is
only applicable if the concentration vector η(m) is constant.
Rigorous definitions and proofs of conditions on α(m), β(m),
q, w, and network topology that would result in η(m) being
constant are outside the scope of this study.

V. MONOTONICITY

The monotonicity properties of solutions to initial
boundary value problems for flows of a homogeneous gas
through an actuated transport network were examined as a
means to reduce the complexity of optimization and opti-
mal control of natural gas networks in the presence of
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uncertainty [8]. Here, we examine how such concepts can
be extended to the transport of inhomogeneous gas mix-
tures, and specifically to characterize the acceptable extent
and variability of hydrogen blending into a natural gas
pipeline. We first present some analytical results before
proceeding with numerical simulations in the next section.

A nonlinear input-to-state initial-value system of ODEs
may be generally expressed as

ẋ = g(x, u, d), x(0) = y, (25)

where x(t) ∈ X ⊂ R
n is the state vector, u(t) ∈ U ⊂ R

m is
the control input vector, and d(t) ∈ D ⊂ R

r is the param-
eter input vector defined for t ∈ [0, T]. It is assumed that
the subsets X , U , and D are compact and convex and
that the function g : X × U × D → X is Lipschitz in
X × U × D.

Definition.—Suppose that two independent state solu-
tions {x1(t), x2(t)} ⊂ X exist (and are thus unique because
g is Lipschitz) with initial conditions {y1, y2} ⊂ X , and
which correspond to the piecewise-continuous control
inputs {u1(t), u2(t)} ⊂ U and piecewise-continuous param-
eter inputs {d1(t), d2(t)} ⊂ D for t ∈ [0, T]. For the given
set of control inputs, the system in Eq. (25) is said to
be monotone ordered with respect to d(t) if x1(t) ≤ x2(t)
for t ∈ [0, T] whenever y1 ≤ y2 and d1(t) ≤ d2(t), where
inequalities for vectors are taken componentwise. In this
case, the solution states x1 and x2 are said to be monotone
ordered. For simplicity, we say that a monotone-ordered
system and a set of monotone-ordered solutions are mono-
tone, monotonic, and have the property of monotonicity.
An n × n matrix A is called Metzler if all of its off-diagonal
elements are non-negative, i.e., Aij ≥ 0 for all i �= j . An
n × m matrix is called non-negative if all of its entries are
non-negative.

Theorem 1 (Monotonicity [38,39]).—The nonlinear sys-
tem in Eq. (25) is monotone if and only if the Jacobian
matrices ∂g/∂x and ∂g/∂d are respectively Metzler and
non-negative almost everywhere in X × U × D.

A. Homogeneous concentration

The equivalent systems described in Sec. IV are first
reformulated in terms of the monotone system definitions
above. In steady state [8], the pressure p increases com-
ponentwise with decreasing withdrawal w ≥ 0 and with
increasing injection −q ≤ 0. In reference to Eq. (25), we
assume that all nonslack nodes are injection nodes and
define the input parameter by d = {ps, d} = {ps, −q}.

Proposition 1 (Monotonicity of the total pressure and
density).—Assume that

(i) all nonslack nodes are injection nodes,
(ii) gas flows only in the positive direction through each

edge according to its orientation in the network
graph,

(iii) pressure is positive in each node, and
(iv) Eq. (9) is satisfied.

Suppose that the concentration vector η(2) is constant and
that there exist two state solutions p1, p2 of the system in
Eq. (24) with respective initial conditions π1, π2, slack
node pressures (ps)1, (ps)2, and nonslack injection flows
q1, q2 for a given fixed set of control inputs {μ,μ}. Here,
the vector subscripts denote the first and second solutions
and not the refined nodes. If π1 ≤ π2, (ps)1(t) ≤ (ps)2(t),
and q1(t) ≥ q2(t) componentwise for all t ∈ [0, T], then
p1(t) ≤ p2(t). Consequently, ρ1(t) ≤ ρ2(t), where ρ1 and
ρ2 are the total densities of the two solutions.

Proof.—Throughout this proof, the state and input sub-
scripts correspond to the nodes of the refined graph.
Because flow is in the positive oriented direction, it fol-
lows from Eq. (4) that μ

k
pi(t) > μkpj (t) for all i, j ∈ V

with k : i �→ j . Thus, the sign and absolute value opera-
tions in Eq. (13) are unnecessary. The j th state dynamics
in Eq. (24) for j ∈ Vd may be written as

rj ṗj =
∑

k:i�→j

σ 2
i χk�k

cj
(μkpj (μk

pi − μkpj ))
1/2

−
∑

k:j �→i

c2
j χk�k

ci
(μkpi(μk

pj − μkpi))
1/2 + b2

j qj ,

(26)

where pi = (ps)i and σ 2
i = a2

i if i ∈ Vs, whereas σ 2
i = c2

i if
i ∈ Vd. It is clear from this expanded form that the func-
tion on the right-hand side of Eq. (24) is continuously
differentiable (hence Lipschitz) in the state and input vari-
ables over the domain of positive flow and pressure. In
reference to Theorem 1, we first show that the state Jaco-
bian matrix is Metzler, i.e., ∂ṗj /∂pi is non-negative for all
i, j ∈ Vd with i �= j . If i and j are nonadjacent with i �= j
then clearly ∂ṗj /∂pi = 0. Suppose that i and j are adjacent
with k : j �→ i. Substituting Eqs. (5) and (6) into Eq. (9)
and using the relation between pressure and partial densi-
ties, we can show that (μkpi − μ

k
pj ) > −μkpi. Thus, the

Jacobian component

∂ṗj

∂pi
= c2

j χk�kμk(2μkpi − μ
k
pj )

2rj ci(μkpi(μk
pj − μkpi))1/2

(27)

is positive. Suppose that i and j are adjacent with k : i �→ j .
Then

∂ṗj

∂pi
= σ 2

i χk�kμk
μkpj

2rj cj (μkpj (μk
pi − μkpj ))1/2

> 0. (28)

Because j ∈ Vd is arbitrary, it follows that the state Jaco-
bian matrix is Metzler. We now show that the parameter
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Jacobian matrix is non-negative. The above computa-
tion can be extended to show that ∂ṗj /∂(ps)i is non-
negative for i ∈ Vs. With respect to mass inflow param-
eters, the Jacobian components ∂ṗj /∂qi = b2

j /rj δi,j are
non-negative (δi,j is the Kronecker delta). We conclude
from Theorem 1 that the system in Eq. (24) is monotone.
Because pj = c2

j ρ j for j ∈ Vd, it follows that the isolated
total density system is monotone as well. �

Corollary 1 (Monotonicity of equivalent systems).—
Assume that the conditions hold from Proposition 1. Then
ρ
(m)
1 (t) ≤ ρ

(m)
2 (t) componentwise for all t ∈ [0, T], where

ρ
(m)
1 and ρ(m)2 are the partial densities of the two solutions.
Proof.—The mass fraction η(m) is constant; therefore, it

follows from Proposition 1 that ρ(m)1 = η(m) 
 ρ1 ≤ η(m) 

ρ2 = ρ

(m)
2 . �

B. Heterogeneous concentration

Proposition 2 (Nonmonotonicity of the total pressure
and density).—Assume that

(i) all nonslack nodes are injection nodes,
(ii) gas flows only in the positive direction through each

edge according to its orientation in the network
graph, and

(iii) pressure and density are positive in each node.

Suppose that, for a given fixed set of control inputs {μ,μ},
there exist two state solutions (ρ, p)1, (ρ, p)2 of the sys-
tem in Eqs. (22) and (23) with respective initial conditions
(
,π)1, (
,π)2, slack inputs (ρs, ps)1, (ρs, ps)2, and non-
slack mass inflows q1, q2 that satisfy (
,π)1 ≤ (
,π)2,
(ρs(t), ps(t))1 ≤ (ρs(t), ps(t))2, and q1(t) ≥ q2(t) compo-
nentwise for all t ∈ [0, T]. If η(m)(t) is time varying then,
in general, (ρ(t), p(t))1 �≤ (ρ(t), p(t))2 componentwise for
all t ∈ [0, T].

Proof.—Throughout this proof, the state and input sub-
scripts correspond to the nodes of the refined graph. From
Theorem 1, it suffices to show that one component of the
state Jacobian matrix is negative. The j th nodal pressure
dynamics in Eq. (23) may be written as

rj ṗj =
∑

k:i�→j

σ 2
i χk�k(μkρ j (μk

pi − μkpj ))
1/2

−
∑

k:j �→i

pj

ρ j
χk�k(μkρ i(μk

pj − μkpi))
1/2 + b2

j qj ,

(29)

where pi = (ps)i, ρ i = (ρs)i, and σ 2
i = a2

i if i ∈ Vs, and
σ 2

i = pi/ρ i if i ∈ Vd. By adding a refined edge to the graph
if necessary, we assume that there is an edge k′ : i′ �→ j
with i′ ∈ Vd. The Jacobian component corresponding to ρ i′

is given by

∂ṗj

∂ρ i′
= −χk′�k′

rj

pi′

ρ2
i′
(μk′ρ j (μk′pi′ − μk′pj ))

1/2,

which is negative. It follows from Theorem 1 that the sys-
tem in Eqs. (22) and (23) is not monotone, regardless of
Eq. (9). �

VI. NETWORK CASE STUDY

We use numerical simulations to examine the effects of
time-varying heterogeneity of a transported mixture on the
flow dynamics of equivalent system variables throughout
a network. The simulations are performed for a test net-
work that was used in a previous study [30], in which the
authors presented a staggered grid discretization method
for the numerical solution of homogeneous natural gas
pipeline flow. We refer the reader to Appendix A in which
we show the results of our implementation of the IBVP
posed in the former study in order to verify that we obtain
the same solution when no hydrogen is present. The config-
uration and dimensions of the network are shown in Fig. 2.
The dark blue node is a slack node at which pressure and
concentration are specified, the black, maroon, and cyan
nodes are nonslack withdrawal nodes, and the green node
is a nonslack injection node. The wave speeds are chosen
to be σ1 = 377 (m/s) and σ2 = 2.8σ1. We simulate sev-
eral examples to illustrate that some physical quantities
may exhibit fewer crossings than others in certain response
regimes, given ordered boundary parameters. These exam-
ples provide insight into which equivalent system may
be more useful for simulation and optimization of gas
mixture dynamics [40] for a particular response regime.
Figures 3–7 show the solutions of five different examples.
Each example computes two solutions that correspond to

FIG. 2. Network configuration (not to scale). The triangles
represent compressor stations. Pipeline dimensions between
nodes: blue to black (20 km), black to green (70 km), green to
maroon (10 km), black to maroon (60 km), maroon to cyan (80
km). The pipelines have uniform diameter (0.9144 m) and fric-
tion factor (0.01), except for the black-to-maroon pipeline that
has diameter 0.635 m and friction factor 0.015.
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FIG. 3. Two solutions (solid lines versus dots) at the color-
coordinated network nodes in Fig. 2. From top to bot-
tom, the depicted nodal solutions are total pressure (MPa),
total density (kg/m3), total energy (GJ/s), concentration by
mass, and concentration by volume. The boundary conditions
for both solutions are (ps)blue = 5 MPa, α(2)blue(t) = 0.01(1 +
sin(4π t/T)), β(2)green(t) = 0.125(1 + sin(12π t/T)), qgreen(t) = 3
(kg/s), wblack(t) = 60(1 − sin(6π t/T)) (kg/s), μ

red
= 1.0678,

μ
yellow

= 1.0140, and μ
purple

= 1.0734, where T = 60 (h). The
boundary condition that differs between the two solutions is
wcyan(t) = 110 (kg/s) (solid lines) and wcyan(t) = 130 (kg/s)
(dots).

slightly different but monotone-ordered boundary condi-
tions. For each example, the two solutions are depicted
in the figures distinctly with solid lines and dots and with
colors coordinated to match the colors of the nodes of the
network diagram in Fig. 2. We now describe the simulation
results for each example.

The first example in Fig. 3 considers time-varying sinu-
soidal forcing in the concentration of the gas mixtures
being injected into the slack node (blue node) and the
nonslack injection node (green node). In this figure, the
total pressure, density, and energy solutions at the nonslack
nodes do not cross, but the mass and volumetric concentra-
tions do show crossings. The solutions in Fig. 4 have the
same boundary conditions as those in Fig. 3 except for the
slack node pressure. If the slack node pressure is doubled
then the total density trajectories will exhibit crossings at
each nonslack node, but the pressure and energy trajec-
tories still do not cross. In Figs. 5 and 6, the blue node
injects pure natural gas and the green node injects pure
hydrogen with a varying mass inflow profile. As seen in
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FIG. 4. Same boundary conditions as in Fig. 3 except for
(ps)blue = 10 (MPa).

Fig. 5, the pressure and energy solutions at each node do
not show crossings. However, a close examination shows
that the density solutions exhibit crossovers at every node
upstream from the point of hydrogen injection. Moreover,
the concentration solutions show crossings at only the cyan
node. The solutions in Fig. 6 have the same boundary con-
ditions as those in Fig. 5 except for the slack node pressure.
If the slack node pressure is doubled then the resulting
pressure, density, and energy trajectories will cross at all
of the nonslack nodes. Moreover, the concentration trajec-
tories in this example cross at every node upstream from
the node of hydrogen injection. At nodes downstream of
the injection of hydrogen, the concentration of hydrogen
is zero, as it ought to be. We note that the solutions in
Figs. 5 and 6 may not be realistic in the current opera-
tion of natural gas pipelines because the concentration of
hydrogen reaches very high levels. However, these figures
indicate that flow dynamics may exhibit similarly rapid
transients in pipelines that are upgraded to deliver signif-
icant amounts of hydrogen. All of the solution variables
show large gradient surges in small time intervals.

From the simulations presented thus far, it may appear
that the concentration variables are the most likely of
the equivalent system variables to violate monotonicity.
The simulation shown in Fig. 7 demonstrates a counterex-
ample to this conjecture in which pressure, density, and
energy trajectories all exhibit crossings even though the
concentration solutions do not. However, strictly speaking,
density trajectories cross only upstream from the point of
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FIG. 5. The boundary conditions for the two solutions are
(ps)blue = 5 (MPa), α

(2)
blue(t) = 0, β(2)green(t) = 1, qgreen(t) =

9(1 + sin(6π t/T)) (kg/s), wblack(t) = 100(1 − sin(6π t/T))
(kg/s), μ

red
= 1.1096, μ

yellow
= 1.0057, and μ

purple
= 1.1301,

where T = 80 (h). The other boundary condition is
wcyan(t) = 130 (kg/s) (solid lines) and wcyan(t) = 150 (kg/s)
(dots).

hydrogen injection. The difference between the solid line
and dotted solutions in Fig. 7 is that the solid line rep-
resents the solution for homogeneous natural gas and the
dotted solution represents a slightly perturbed solution that
results from a small injection of hydrogen made at the
green nonslack node. The concentration variables associ-
ated with the two solutions may be identical at times in
certain network nodes, but there cannot be strict cross-
ings in the concentration trajectories for this example. The
reason is because the homogeneous natural gas solution
corresponds to zero hydrogen concentration and this is the
lower bound that the concentration variables can achieve.

In each of the examples above, the five edges of the net-
work are discretized into 240 refined edges with �k = 1
(km) for all k ∈ Ê and the simulations are performed using
the partial density system of ODEs in Eq. (17). The equiv-
alent system variables are computed using the transforma-
tions presented in Sec. IV. Although a 1(km) discretiza-
tion size is sufficient to demonstrate nonmonotonicity for
slowly varying concentrations, a much smaller discretiza-
tion size is required to accurately simulate rapidly varying
concentrations. We note that even the slowly varying solu-
tions in Figs. 3–7 show noticeable convergence as the
discretization size is decreased from 1 (km) to 100 (m). For
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FIG. 6. Same boundary conditions as in Fig. 5 except for
(ps)blue = 10 (MPa).

small discretization lengths [�k ≤ 100 (m)], the crossings
of the solutions in Figs. 3–7 may be more pronounced. We
return to this point in Secs. VIII and IX when we simulate
pipeline flows of highly heterogeneous gas mixtures.

VII. MONOTONIC INTERFACE

Proposition 2 shows that the total pressure and den-
sity system of ODEs is not monotone-ordered over
the entire boundary condition parameter region D =
{ps, d,α(m),β(m)}. However, by Proposition 1 and the con-
tinuity of solutions with respect to initial conditions and
inputs [41], the nonisolated total pressure and density sys-
tem of ODEs is expected to be monotone ordered over a
certain subregion of D that consists of concentration vec-
tors that are uniformly close to a constant concentration
vector. Again by continuity, monotonicity is also expected
to hold for slow variations in concentration with large
amplitudes. This suggests that there may be a nontrivial
monotonic interface (MI) that partitions D into mono-
tonic and nonmonotonic phase regions for each equivalent
system variable. Moreover, the simulation results from
Sec. VI suggest that the MIs for each equivalent system
variable may be significantly different from one another.
We focus on partitioning the subregion of D that con-
sists of only concentration boundary parameters, because
the concentration variable is the only factor that leads to
conditions in which monotonicity does not hold.
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FIG. 7. The boundary conditions for the two solutions are
(ps)blue = 11 (MPa), α

(2)
blue(t) = 0, β(2)green(t) = 1, wblack(t) =

100(1 − sin(6π t/T)) (kg/s), wcyan(t) = 130(1 + 0.5 sin(6π t/T))
(kg/s), μ

red
= 1.0240, μ

yellow
= 1.0029, and μ

purple
= 1.0199,

where T = 80 (h). The other boundary condition is qgreen(t) = 0
(kg/s) (solid lines) and qgreen(t) = 2 (kg/s) (dots).

We analyze the MI numerically for a single pipeline
with concentration and pressure specified at the inlet of the
pipeline (node 1) and with mass outflow specified at the
outlet (node 2). The parameters and boundary conditions
that do not change are pipeline length � = 50 (km), diam-
eter D = 0.5 (m), friction factor λ = 0.11, and constant
slack node pressure ps = 7 (MPa). We denote the con-
centration of hydrogen at the inlet slack node by α1(t) =
α
(2)
1 (t) and specify it to be

α1(t) = α1(1 + κ sin(2πω∗t)), (30)

where κ is the amplitude factor of the sinusoid, ω∗ is the
forcing frequency in cycles per hour, and α1 is the mean
concentration profile around which the sinusoid oscillates.
Here, the subscript is with respect to the node number. The
subregion of D that we consider consists of all pairs (ω∗, κ)
with 0 ≤ ω∗ ≤ 2 and 0 ≤ κ ≤ 1. We note that the pipeline
system in Eq. (17) with the boundary conditions speci-
fied as above may be written as an autonomous system by
extending the state space by two dimensions and writing
α1 as a state solution of the harmonic oscillator. We note
this extended formulation so that our subsequent results
can be interpreted in the context of autonomous dynamical
systems theory. However, the extension is not necessary
for the analysis, so we omit the details.
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FIG. 8. Monotonic interfaces (ω∗, κ∗(ω∗)) in the (ω∗, κ) plane
for each of the equivalent system variables listed in the legend.
Two solutions corresponding to two ordered mass outflows and
the concentration pair (ω∗, κ) will not cross one another if κ <
κ∗(ω∗).

In addition to the boundary conditions and parameters
specified above, we use the parameter values σ1 = 377
(m/s), σ2 = 2.8σ1, and α1 = 0.02 in the analyses in this
section. We now describe our process of computing the MI.
For each (ω∗, κ) in Eq. (30), we compute three solutions
corresponding to three monotone-ordered constant mass
outflows w2 = ϕπ(D/2)2 (kg/s), where ϕ = 120, 140, and
160 (kg/m2s). The region in the (ω∗, κ) plane defined by
0 ≤ ω∗ ≤ 2 and 0 ≤ κ ≤ 1 is discretized into a 21 × 41
grid of discrete pairs. For each discrete ω∗, we com-
pute the three solutions for each discrete κ starting from
κ = 0 and increasing κ until we achieve the lower bound
κ = κ∗(ω∗) with which at least two of the three solutions
exhibit crossings at some point in time. Thus, the three
solutions corresponding to the pair (ω∗, κ) will not cross
if κ < κ∗(ω∗) and at least two of the three will cross if κ ≥
κ∗(ω∗). The MI is defined by the set of pairs (ω∗, κ∗(ω∗))
in the plane, and each of the equivalent system variables
has its own MI associated with it. The cubic spline interpo-
lated MI curves for several equivalent system variables are
depicted in Fig. 8. The region below the MI curve is called
the monotone response region (MRR). Figure 8 shows that
the MRRs for hydrogen density, natural gas density, total
density, energy, and pressure are nested increasing sets
where the MRRs for hydrogen density and pressure are the
smallest and largest sets, respectively.

For time-varying concentration profiles, Fig. 8 suggests
that the pressure and energy equivalent system should
be used if monotonicity properties are important to the
formulation. This is the conclusion that we arrive at in
Sec. VI. Of the five examples from that section, the only
examples that consider similar sinusoidal forcing in con-
centration are those that correspond to Figs. 3 and 4. Both
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of these examples introduce a combination of two sinu-
soidal forcing frequencies to the network, 0.1 (cyc/h) and
0.033 (cyc/h). Recall from Figs. 3 and 4 that only the
pressure and energy solutions did not exhibit crossings for
these two examples. This observation agrees with the MIs
in Fig. 8, where the operating points (ω∗, κ) = (0.1, 1) and
(ω∗, κ) = (0.033, 1) are above all of the MIs except for the
pressure and energy MIs. It is important to mention that the
MIs computed here for a single pipeline do not necessarily
match the MIs that would result for the network topology
from Sec. VI, even if the slack node pressure, total outflow,
and other boundary condition parameters of the network
were equal to those used for the single pipeline.

Observe that the MRRs for the pressure and energy vari-
ables are significantly larger in area than the MRRs for
density, as seen in Fig. 8. This is inherent because of the
manner in which the boundary conditions have been speci-
fied. Recall that the boundary condition at the slack node of
the pipeline presented here has been specified to maintain
constant pressure. Although the model has been derived
more generally, constant slack node pressure is a common
specification for pipeline simulation, so we have followed
this convention. However, if the pressure is constant and
the concentration varies at the slack node then the den-
sity will be forced to vary at the slack node, because of
the equation of state of the mixture. It follows that the
density will oscillate if the concentration oscillates, and
there will be some propagation of density oscillations at
speeds related to the mass outflows. Because we specify
different outflows (that are monotone ordered) to compute
the MIs, the density waves corresponding to the different
outflows will typically be out of phase and the solutions
will exhibit crossings. Therefore, we expect the density
variables to be the most sensitive to ordering properties
under such boundary conditions, and this is apparent in
Fig. 8.

As ω∗ increases from ω∗ = 0 to ω∗ = 2 (cyc/h), the
MI curves qualitatively decrease from unity to a lower
bound, flatten out, and then increase. The fact that the
amplitude factor generally increases along the MI as ω∗
increases beyond ω∗ = 0.75 is a robustness feature of
monotonicity to high-frequency uncertainty. This prop-
erty appears to be a consequence of wave attenuation in
strongly dissipative gas pipeline flow [42]. In particular,
the gas pipeline demonstrates low-pass filtering character-
istics with which the amplitudes of high-frequency trav-
eling waves tend to be significantly attenuated over short
distances, and, therefore, the likelihood of conditions in
which monotonicity does not hold decreases as the fre-
quency of the high-frequency oscillation increases. If the
concentration of hydrogen injected into the network con-
tains a small variation of high-frequency uncertainty then
the MIs demonstrate that this uncertainty typically will not
cause an otherwise theoretically monotonic operation to
become nonmonotonic.

VIII. PERIODIC INTERFACE

We demonstrate that nonperiodic solutions can arise
from sinusoidal forcing in concentration. To numerically
study periodicity and the breakdown thereof, we must
simulate the solutions over long time intervals that span
hundreds of hours. In addition, we consider large and
fast variations in concentration. As we have mentioned at
the end of Sec. VI, fast variations require an extremely
fine spatial discretization size for the finite volume dis-
cretization method presented in Sec. III. The small spatial
discretization size creates a large ODE system, which is
difficult to implement over a long time interval on a digital
computer. Therefore, in our study of periodicity, instead of
using the finite volume method, we discretize the pipeline
at the (translated) nodes of Chebyshev polynomials for
which exponential convergence properties are obtained
(see, e.g., Ref. [43]). We briefly outline the method in
Appendix B. The analysis presented in this section is per-
formed in the single 50 (km) pipeline that was used in
the previous section to study the MI, with D = 0.5 (m),
λ = 0.11, and constant slack node pressure ps = 7 (MPa).
However, in addition to the other parameters specified in
that section, we now use σ1 = 338.38 (m/s), σ2 = 4σ1, and
α1 = 0.2, but all of the other parameters remain the same.

To introduce our analysis on periodicity, we show three
examples in Figs. 9–11 that share the same boundary
conditions with one another except for the different fre-
quencies ω∗ and amplitude factors κ of the sinusoidal
concentration profile in Eq. (30). The top plot of the each
figure depicts the pressure solutions at the outlet of the
pipeline for t ∈ [rT, T] with 0.7 ≤ r ≤ 0.95, where T =
400 (h). The tail ends of the solutions are used so that
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FIG. 9. Pipeline solution with boundary conditions w2(t) =
75π(D/2)2 (kg/s), ω∗ = 0.25, and κ = 1.0. The periodicity mea-
sure in Eq. (32) is P = 0.30.
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FIG. 10. Pipeline solution with boundary conditions w2(t) =
75π(D/2)2 (kg/s), ω∗ = 0.1, and κ = 0.98. The periodicity mea-
sure in Eq. (32) is P = 0.62.

initial transient responses do not affect the analysis of peri-
odic orbits. The bottom left-hand plots of Figs. 9–11 show
the phase space diagrams of outlet density and outlet pres-
sure during the later stages of the simulations. We see that
the solutions in Figs. 9 and 10 approach periodic orbits
and that the solution in Fig. 11 does not appear to do
so. However, even the two periodic responses in Figs. 9
and 10 have certain properties that are not observed in
homogeneous natural gas simulations [42]. Particularly, in
Fig. 9, multiple local minima in the pressure appear for
every local minimum of the sinusoidal forcing over the
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FIG. 11. Pipeline solution with boundary conditions w2(t) =
75π(D/2)2 (kg/s), ω∗ = 0.5, and κ = 0.9. The periodicity mea-
sure in Eq. (32) is P = 1.19.

time interval [0.95T, T]. The additional local minima cor-
respond to the inner loop of the periodic orbit. The pressure
in Fig. 10 has the same number of local minima as the
forcing sinusoid over the interval [0.75T, T], but has twice
the period. These examples demonstrate that periodic solu-
tions arising from heterogeneous mixtures of gases may be
irregular in the following sense. From the laws of fluid
dynamics, gas pressure should decrease with decreasing
density under constant temperature and volume. However,
because of the oscillating gas composition, the phase space
diagram in Fig. 9 contains sequences of four small time
intervals during which density decreases while pressure
increases, and the phase space diagram in Fig. 10 contains
two such time intervals. Note that the phase space diagram
of outlet pressure and density for flow of a single ideal gas
in the transient regime is simply a line with positive slope,
which the solution traverses.

The frequency responses of the outlet pressures are
depicted in the bottom right-hand plots of Figs. 9–11
using the discrete Fourier transform [44] defined below
in Eq. (31). The dominant frequency mode in the solution
appears at the forcing frequency ωn = ω∗ in Figs. 9–11.
The generated harmonic modes in Fig. 9 appear at integer
multiples of ω∗. This behavior is typical for homogeneous
natural gas pipeline flow [42]. The generated harmonic
modes in Fig. 10 appear at half the values of the integer
multiples of ω∗. This behavior indicates period-doubling
bifurcations [45] at the forcing frequency ω∗ = 0.1 as the
amplitude factor κ increases. The pressure dynamics in
Fig. 11 appear to be composed of a continuous distri-
bution of generated harmonic modes. These observations
inspire a quantitative measure of periodicity in terms of the
frequency response of the solution. This is the approach
taken in Ref. [26] for the transition to chaotic responses
in oceanic wind bursts. We define a sequence of evenly
spaced samples of the tail end of the outlet pressure by
p2[k] = p2((0.6 + k/N )T) for k = 0, . . . , 0.4N , where N
is equal to the number of time samples of the numeri-
cal solution over the interval [0, T]. For such a sampled
sequence ψ[k], the normalized discrete Fourier transform
(DFT) is defined as

{Fψ}[ωn] =
∑0.4N

k=0 ψ[k]e−j2πωnk

maxωn | ∑0.4N
k=0 ψ[k]e−j2πωnk| , (31)

where j is the imaginary unit and ωn = n/(0.4T) (cyc/h),
n = 0, . . . , 0.4N , are the sampling frequencies. Periodicity
is measured with the average power spectrum defined by

P = 1
0.4N + 1

0.4N∑
n=0

|{F(p2 − π2)}[ωn]|2 × 100, (32)

where π2 = p2(0) is the initial steady-state value of pres-
sure at the outlet of the pipeline. The shifted pressure in
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FIG. 12. Color map of the power spectrum P in Eq. (32) as
a function of (ω∗, κ) in Eq. (30). The boundary conditions are
α1 = 0.2 and w2(t) = 75. In this figure, we plot the minimum
between 1 and P in Eq. (32).

the power spectrum is used to suppress the zero frequency
component of the initial state.

The power spectrum P is depicted in the form of a color
map as a function of (ω∗, κ) in Fig. 12, where ω∗ is the
forcing frequency and κ is its amplitude factor given in
Eq. (30). This figure has been obtained numerically as fol-
lows. Similarly to the way that we have computed the MIs,
the region in the (ω∗, κ) plane defined by 0 ≤ ω∗ ≤ 2 and
0.5 ≤ κ ≤ 1 is discretized into a 21 × 25 grid of discrete
pairs. For each frequency and amplitude factor of the forc-
ing concentration on this grid, we numerically simulate
the solution in the pipeline for 400 h. We then compute
the normalized DFT and the average power spectrum of
the tail end of the sampled solution as defined above.
These computations provide the discrete set of quantified
values depicted in Fig. 12. The periodic interface (PI) in
Fig. 12 partitions the (ω∗, κ) plane into periodic and non-
periodic response subregions. The computation of the PI
is performed as follows. For each ω∗, the parameter κ is
increased from κ = 0 to κ = κ∗(ω∗), where κ∗(ω∗) is the
upper bound on κ below which the DFT of the outlet pres-
sure consists of countably many pulses. From numerical
simulations, the average power spectrum corresponding to
the forcing pair (ω∗, κ∗(ω∗)) is typically around P = 0.3
(which depends on parameters and the number of time
samples of the numerical solution). Therefore, we quan-
titatively define κ∗(ω∗) to be the upper bound on κ below
which P < 0.3. The periodic response region is defined to
be the set of boundary condition parameter pairs (ω∗, κ)
with κ < κ∗(ω∗).

IX. CHAOTIC INTERFACE

The analysis presented in the previous section demon-
strates that heterogeneous mixtures of gases may behave

irregularly for periodic boundary conditions with fre-
quency and amplitude (ω∗, κ) outside of the periodic
response region. In this section, we demonstrate that the
solutions that exhibit such behavior are also chaotic in
the sense of being highly sensitive to initial conditions
[46]. The extent of chaos in a finite-dimensional system
can be quantified by the largest Lyapunov exponent of
the system [47]. This measure provides an estimate on
the exponential rate of divergence between two solutions
that begin their trajectories close to one another. Several
approaches have been developed to approximate the Lya-
punov exponents of an unknown finite-dimensional system
from numerical data by using the time series associated
with a numerical solution of the system [48–50]. These
methods require an appropriate embedding dimension on
which the calculation of the Lyapunov exponent depends.
Although there are methods that approximate the opti-
mal embedding dimension of time-series observations of
a finite-dimensional system [51], there may not always be
a consistent approximation for an observable generated by
an underlying infinite-dimensional PDE system. We mea-
sure the extent of chaos in our system by using a rate of
divergence between two specific solutions. It is important
to note that the measure we present does not necessarily
provide an estimate of the largest Lyapunov exponent of
our system.

Our analysis will be performed in the single pipeline
with parameters and boundary conditions defined in the
previous section. Consider two scalar-valued time-series
solutionsψ1[n] andψ2[n] with |ψ2[0] − ψ1[0]| < δ, where
δ is small relative to ψ1[0]. Here, ψ[n] = ψ(tn) represents
any one of the dynamic variables evaluated at the outlet
of the pipe at discrete times tn = (n/N )T for n = 0, . . . , N ,
where (N + 1) is the number of time samples of the numer-
ical solution over the time interval [0, T]. The rate of
divergence between the two solutions is defined to be the
slope of a linear estimation of the difference function

�[n] = log
∣∣∣∣ψ2[n] − ψ1[n]
ψ2[0] − ψ1[0]

∣∣∣∣
over an interval I0 = [n0, n1] during which the two solu-
tions diverge exponentially (assuming that they diverge).
Figure 13 shows an example of how the difference func-
tion may increase with time for two divergent solutions
that began their trajectories close to one another. Of course,
boundedness of the physical system limits the divergence
to within a bounded region in the state space. For the exam-
ple in Fig. 13, the rate of divergence may be computed as
the slope of a linear estimation of �[n] over the interval
[0.5N , 0.55N ] corresponding to tn ∈ [100, 110]. One such
linear estimation is the least-squares regression line.

The interval I0 typically varies with respect to param-
eters and could be difficult to construct for two general
solutions that may or may not diverge. For two solutions
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FIG. 13. Example of the difference�[n] = �(tn) between two
outlet pressure solutions and corresponding outlet density solu-
tions in the pipeline from Sec. VIII. The boundary condition
parameters are (ω∗, κ) = (0.5, 0.95), α1 = 0.2, and the initial
conditions of the two solutions correspond to steady mass flows
w2(0) = 75(πD2/4) and w2(0) = 75.0001(πD2/4).

that do not diverge, the slope of the linear estimation of
�[n] on the interval [0, N ] would be at most approximately
zero. Moreover, there are usually several subintervals I0 ⊂
[0, N ] over which the slope of the linear estimation of
� changes sign, particularly for two solutions that do
not diverge. Consequently, the linear estimation of �[n]
over an interval I0 may not always reflect the actual mean
growth of |ψ2[n] − ψ1[n]| over the entire interval [0, N ].
In an attempt to moderate these difficulties, the amount of
divergence between two solutions ψ1 and ψ2 is defined by
the measure

C := 1
n2 − n1

(
1

|IT|
∑
n∈IT

�[n] − 1
|I0|

∑
n∈I0

�[n]
)

= 1
(n2 − n1)|IT|

∑
n∈IT

log |ψ2[n] − ψ1[n]|

− 1
(n2 − n1)|I0|

∑
n∈I0

log |ψ2[n] − ψ1[n]| (33)

with IT = [n2, n3], where n1 < n2. The function C in
Eq. (33) will be referred to as the chaos measure. This
measure is interpreted as the slope of the local mean of
� or as the slope of the local mean logarithmic differ-
ence of the two solutions computed over an initial interval
I0 and a final interval IT. Large and positive C indicates
exponential divergence between the two time series (over
some interval). The means over the initial and final time
intervals are used to suppress fluctuations and estimate the
expected values of the associated quantities over the inter-
vals. The interval I0 must span a range that precedes any

exponential divergence and should also not include ini-
tial transients. Moreover, the interval IT must follow any
exponential divergence.

We analyze the measure C for the outlet pressureψ[n] =
p(tn, �) of the single pipeline used previously in Sec. VIII
with α1 = 0.2, but we note that equivalent system variables
share similar divergence properties. As for the computa-
tions of the power spectrum shown in Fig. 12, we discretize
the region in the (ω∗, κ) plane defined by 0 ≤ ω∗ ≤ 2
and 0.5 ≤ κ ≤ 1 into a 21 × 25 grid of discrete pairs.
For each frequency and amplitude factor of the forcing
concentration on this grid, we numerically simulate two
solutions in the pipeline for 100 h whose initial conditions
correspond to withdrawal rates w2(0) = 75(πD2/4) and
w2(0) = 75.1(πD2/4), where the subscript refers to the
outlet node. We then compute the value C for each discrete
pair on the grid using the intervals I0 = [0.08N , 0.15N ]
and IT = [0.5N , 0.8N ] with N = 10 000 and then depict
the collected values as a color map in Fig. 14. While we
suppose that the intervals I0 and IT are sufficient for the
specified initial conditions, these intervals may not be ade-
quate for the example in Fig. 13 because the solutions in
that example are initially closer to one another and require
a larger time to begin diverging. For each frequency, the
values of C in Fig. 14 are more scattered than the associated
values of P in Fig. 12. In the latter case, the values of the
power spectrum either increase or decrease almost mono-
tonically for each frequency as the values of the amplitude
factor increase. However, for a fixed frequency, the val-
ues of the chaos measure may oscillate sporadically around
C = 0 as κ increases from κ = 0 to κ = 1.

The chaotic interface (CI) is defined to be the set of pairs
(ω∗, κ∗), where κ∗(ω∗) is the lower bound that satisfies
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FIG. 14. Color map of the measure C in Eq. (33) as a function
of (ω∗, κ) in Eq. (30). The boundary conditions are the same as
those in Fig. 12 and the initial conditions of the two solutions
correspond to w2(0) = 75(πD2/4) and w2(0) = 75.1(πD2/4).
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FIG. 15. Values of C as a function of κ for the fixed frequen-
cies ω∗ = 0.5 and ω∗ = 0.7.

C > 0 for all κ > κ∗(ω∗). If no such value exists, we
define κ∗(ω∗) = 1. We say that the solution corresponding
to (ω∗, κ) is chaotic if κ > κ∗(ω∗). The value of κ∗(ω∗)
is determined numerically from the simulations that pro-
duced the chaos measure in Fig. 14. The methodology of
computing κ∗(ω∗) is depicted in Fig. 15. In this figure, C is
plotted as a function of discrete amplitude factors ranging
between 0 ≤ κ ≤ 1 for two fixed frequencies. The horizon-
tal and vertical lines described by C = 0 and κ = κ∗(ω∗)
are depicted for reference. It should be noted that small and
positive values of C do not necessarily imply that the asso-
ciated time series diverge. This is to be expected because
the flow variables need not oscillate sinusoidally and may
favor more time near the peak of the wave.

We conclude our analysis with a comparison of the
interfaces in the regions of boundary condition parame-
ters (ω∗, κ) that do or do not exhibit monotonic, periodic,
and chaotic responses to periodic boundary conditions for
a single pipeline. These interfaces, which we refer to as
the monotonic interface (MI), periodic interface (PI), and
chaotic interface (CI), are depicted in Fig. 16 for the sin-
gle pipeline system used in Secs. VII and VIII. The MI
for pressure in Fig. 16 is different from the MI for pres-
sure in Fig. 8 because of the different mean concentrations
α1 used to compute the two MIs. Moreover, the with-
drawal rates of the three solutions that are used here for
the computation of the current MI are w2 = 40π(D/2)2,
w2 = 75π(D/2)2, and w2 = 110π(D/2)2, which are dif-
ferent from those used in Sec. VII. There are a few key
takeaways from Fig. 16. First, the region beneath the MI
is a subset of the region beneath both the PI and CI and
is significantly beneath these two interfaces for nonzero
frequencies. This suggests that all sinusoidal hydrogen
blending conditions that show monotonicity properties will
not result in irregular or chaotic responses, as expected for
the strongly dissipative behavior of natural gas pipeline
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FIG. 16. Monotonic, periodic, and chaotic interfaces of the
outlet pressure for the 50(km) pipeline used in Fig. 12 with
α1 = 0.2.

flows. This result is informative for natural gas pipeline
operations with significant hydrogen blending. Second, the
PI and CI are qualitatively similar to one another. Strictly
speaking, the PI is beneath the CI for all ω∗ ≤ 1.1 and
the CI is beneath the PI for all ω∗ > 1.1. We note that
the interfaces depend on the computational method and
its parameter values, the discretization grid in the space
of boundary condition parameters, and the threshold cho-
sen to delimit the interfaces (i.e., P = 0.3 for the PI and
C = 0.0 for the CI). There may be other reasonable thresh-
olds that yield somewhat different quantitative results, such
as one where the PI is always beneath the CI or one where
the PI is exactly equal to the CI at all of the grid points. The
qualitative similarity of the PI and CI suggests that these
regions may indeed coincide, and only one of these mea-
sures may be sufficient to identify both nonperiodic and
chaotic behavior.

X. CONCLUSIONS

We have developed a model for transporting hetero-
geneous mixtures of natural gas and hydrogen through
pipeline networks. The formulation may be applied to real
pipeline systems with time-varying operations of compres-
sor and regulator units, supply stations that inject gas into
the network at defined pressure and hydrogen fraction, and
flow stations that withdraw the mixture from the network.
The nonlinear partial differential equation formulation is
discretized using a finite volume method to obtain a nonlin-
ear input-to-state system, for which we prove monotone-
ordering properties for injections with constant hydrogen
fraction, and prove that such monotonicity properties do
not hold in general for injections with time-varying hydro-
gen concentrations. This result builds on previous work
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that assumed globally homogeneous gas [8], by consider-
ing inhomogeneity in space (Proposition 1 on injections
with constant hydrogen fraction) and time (Proposition 2
on injections with time-varying hydrogen fraction). The
interface in the boundary condition parameter region of
concentration variation that partitions monotonic and non-
monotonic responses was analyzed numerically and the
results were illustrated on a test network. Operations out-
side of the monotone response region may create surges
with large pressure, energy, and concentration gradients,
which do not occur in flows of a homogeneous gas.
The monotonic interface analysis indicates that sufficiently
slow variation in concentration about a constant profile
will likely maintain monotonicity of ordered solutions in
overall system pressures, and prevent large, rapid pressure
transients. Such conditions are critical to maintain a phys-
ical flow regime with behavior that is intuitive for pipeline
control room operators. This suggests that hydrogen may
be blended into a natural gas pipeline network as long
as injection rates are changed only gradually. The accept-
able ramping rates depend significantly on the structure
of the network, and would have to be determined through
numerous simulations.

This study demonstrates that heterogeneous location and
time-dependent boundary conditions may result in nonpe-
riodic and chaotic flows when hydrogen is blended into a
natural gas pipeline. For a single pipeline, boundary con-
ditions with monotonic, periodic, and chaotic responses
were analyzed numerically and interfaces between regions
where these properties do and do not hold were estimated.
The interface analysis of a single pipeline demonstrates
that sinusoidal boundary conditions for which monotonic-
ity properties are preserved lead to solutions that are not
chaotic and will eventually approach a periodic response.
We have also demonstrated that the interfaces that delimit
periodic and chaotic responses to periodic boundary con-
ditions are qualitatively similar and may indeed coincide
for appropriate thresholds that are used to define these
interfaces. This suggests that only one of these inter-
faces may be sufficient to identify both nonperiodic and
chaotic behavior. Characterizing the monotonic, periodic,
and chaotic interfaces with extensive simulations for spe-
cific network topologies may enable a gas pipeline system
designer to determine limitations on operating their net-
works safely and predictably given blending of heteroge-
neous gases.

The results of this study enable new capabilities to
plan for and operate the transmission of gases through
pipeline energy systems. The generalizable modeling pre-
sented here can be used in addition to empirical studies to
quantify the effect of hydrogen blending on gas pipelines
under transient conditions [52]. The developed model can
be applied in general natural gas operations if two or
more production sites supply notably different levels of
methane in their natural gas compositions. More generally,

the derivation of the gas mixture model may be extended
from a mixture of two gases to any finite number of dis-
tinct gases. We aim to present a self-contained analysis
of a variety of different physical properties of gas mixture
flows in pipeline networks. Much of our analysis was per-
formed on a finite-dimensional realization of the infinite-
dimensional PDE system for a small network and a single
pipeline. Therefore, there are still a number of questions
that remain open in terms of monotonicity, periodicity, and
chaoticity. Rigorous definitions and theorems regarding the
limits of monotonicity, periodicity, and chaoticity of non-
linear PDEs on networks and their dependencies on graph
topology have yet to be examined. Such results may be
used to establish a more complete analysis of appropri-
ate blending conditions with which monotone ordering and
well-behaved flows are maintained. The onset of turbu-
lence in complex multidimensional fluid mixing flows is
extensively studied [53,54], and here we show that com-
plex, chaotic behavior can arise in a strongly dissipative,
essentially one-dimensional-distributed system.
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APPENDIX A: MODEL COMPARISON

The interested reader is referred to Ref. [30] for a
model comparison of homogeneous gas flow in the net-
work shown in Fig. 2. Using the same initial and boundary
conditions as used in the previous study, we recover the
same solution, up to machine precision, with our mixed
gas model. Our solution is shown in Fig. 17.

APPENDIX B: CHEBYSHEV SPECTRAL
DIFFERENTIATION

Consider a single pipeline of length �, diameter D, and
friction factor λ with axial variable x ∈ [0, �]. Discretize
the interval [0, �] with the (N + 1) discretization points
xi = �/2(1 − cos(iπ/N )) for i = 0, . . . , N . Define the
sampled variables ρ(m)i (t) = ρ(m)(t, xi) and ϕi(t) = ϕ(t, xi).
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FIG. 17. Model comparison (see Fig. 11 of Ref. [30]).

It follows from interpolating the values of ρ(m)i (t) at the
points xi using Lagrange polynomials of order N that (see,
e.g., Ref. [43])

∂xρ
(m)(t, xi) ≈ Dρ(m)i (t), (B1)

where

Dij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n∑
n=0
n�=j

1
xj − xn

, i = j ,

1
xj − xi

n∏
n=0
n�=i,j

xi − xn

xj − xn
, i �= j .

(B2)

The discretized PDEs in Eqs. (3) and (4) become

ρ̇(m) + D
(

ρ(m)

ρ(1) + ρ(2)

 ϕ

)
= 0, (B3)

D(σ 2
1 ρ

(1) + σ 2
2 ρ

(2)) = − λ

2D
ϕ 
 |ϕ|
ρ(1) + ρ(2)

. (B4)

The boundary conditions are incorporated into the dis-
cretized equations by replacing ρ

(m)
0 (t) = s(m)0 (t) and

ϕN (t) = wN (t)/(0.25πD2).

APPENDIX C: NOMENCLATURE

Network graph

E Directed edge set

V Node set

Vs ⊂ V Slack nodes

Vd ⊂ V Nonslack nodes

Vw ⊂ Vd Nonslack withdrawal nodes

Vq ⊂ Vd Nonslack injection nodes

E Cardinality of E
V Cardinality of V
Vs Cardinality of Vs

Vd Cardinality of Vd

Vw Cardinality of Vw

Vq Cardinality of Vq

k Edge index

i, j Node indices

k : i �→ j Edge k directs from node i to node j

�→j Set of edges directed to node j

j�→ Set of edges directed from node j

Edge variables

ρ Total density (kg m-3)

p Total pressure (MPa)

ϕ Total mass flux (kg m-2 s-1)

ρ(m) Partial density (kg m-3)

p (m) Partial pressure (MPa)

ϕ(m) Partial mass flux (kg m-2 s-1)

η(m) Mass fraction

ν(m) Volumetric fraction

ψ Evaluation of ψ at edge inlet

ψ Evaluation of ψ at edge outlet

Node variables

ρ Total density (kg m-3)

p Total pressure (MPa)

E Energy (GJ)

ρ(m) Partial density (kg m-3)

η(m) Mass fraction

ν(m) Volumetric fraction

Boundary condition variables

s(m) Slack node partial density (kg m-3)

ps Slack node pressure (MPa)

α Slack node mass fraction
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β Nonslack injection node mass fraction

a Slack node wave speed

b Nonslack injection node wave speed

w Nonslack withdrawal node mass outflow (kg s-1)

q Nonslack injection node mass inflow (kg s-1)

Control variables

μ Compressor ratio

μ Regulator ratio

Network graph matrices

M Weighted incidence matrix

Ms Weighted slack node incidence submatrix

Md Weighted nonslack node incidence submatrix

Q Incidence matrix

Qs Slack node incidence submatrix

Qd Nonslack node incidence submatrix

A Componentwise negative parts of A

A Componentwise positive parts of A

Parameters

σ1 Natural gas wave speed

σ2 Hydrogen wave speed

σ Local mixture wave speed

� Pipe length (km)

L Diag(�k)

D Pipe diameter (m)

χ Pipe cross-sectional area (m2)

X Diag(χk)

λ Darcy-Weisbach friction factor

� Diag(
√

2Dk/λk�k)
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