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Four-dimensional gravitational theories derived from an infinite sum of Lovelock curvature invariants,
combined with a conformal rescaling of the metric, are equivalent to a subclass of shift-symmetric
Horndeski theories that possess a single scalar degree of freedom. Under the assumption of a homogeneous
and isotropic cosmological background, the theory admits an inflationary solution that replaces the big
bang singularity. This can be achieved by a solution where the Hubble expansion rateH is equal to the time
derivative of the scalar field ϕ̇. We show that the solution H ¼ ϕ̇ suffers from a strong coupling problem,
characterized by the vanishing kinetic term of linear scalar perturbations at all times. Consequently,
nonlinear scalar perturbations remain uncontrolled from the onset of inflation throughout the subsequent
cosmological evolution. Moreover, tensor perturbations are generally subject to Laplacian instabilities
during inflation. This instability in the tensor sector also persists under background initial conditions where
H ≠ ϕ̇. In the latter case, both the coefficient of the kinetic term for scalar perturbations and the scalar
sound speed diverge at the onset of inflation. Thus, the dominance of inhomogeneities in this theory renders
the homogeneous background solution illegitimate.
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I. INTRODUCTION

Under several physically reasonable assumptions about
spacetime and matter, the appearance of singularities at the
centers of blackholes (BHs) or at the onset of the big bang is a
natural consequence of general relativity (GR) [1,2].
However, at very high energies, GR may be supplanted by
a more fundamental theory that incorporates the quantum
nature of spacetime. Since a complete theory of quantum
gravity has not yet been established, another approach to
addressing the singularity problem is to modify either the
matter content or the gravitational sector at the classical level.
Several approaches have been proposed to construct

nonsingular BHs without curvature singularities at their
centers by introducing specific matter sources in four-
dimensional spacetime. In GR, nonlinear electrodynamics
can give rise to regular BH solutions on a spherically
symmetric and static background by choosing appropriate
forms of the Lagrangian, LðFÞ, where F is the electro-
magnetic field strength [3–6]. However, it was recently
shown that such nonsingular BHs are inevitably subject to
Laplacian instabilities in the angular direction near a de
Sitter center [7]. Even in more general theories where a
scalar field ϕ with kinetic term X is introduced in a
Lagrangian of the form Lðϕ; X; FÞ, no linearly stable
regular BH solutions have been found if the gravitational
sector is described by the Einstein-Hilbert action [8].
In cosmology, early attempts to resolve the initial big

bang singularity include the pre-big bang and ekpyrotic

scenarios [9–11], in which a period of cosmological
contraction is followed by an expanding phase. Both
scenarios can be described within an effective four-dimen-
sional framework of scalar-tensor theories, where the scalar
degree of freedom corresponds to a dilaton field or the
position of D-branes. By taking into account higher-order
corrections to the tree-level action, it is possible to realize
regular bouncing solutions without curvature singularities
[12–16]. In the effective four-dimensional description, these
nonsingular models fall within subclasses of Horndeski
theories–the most general scalar-tensor theories with sec-
ond-order field equations of motion [17–20].
Numerous other examples of bouncing [21–27] or

genesis [28–32] cosmological solutions have been con-
structed within the framework of Horndeski theories. These
solutions are typically plagued by the emergence of either
singularities or ghost/Laplacian instabilities at early or late
stages of cosmological evolution. In Horndeski theories,
there is a no-go theorem stating that, if a background
solution is nonsingular during the entire cosmological
evolution, the linear stability conditions for scalar and/or
tensor perturbations are violated during some time interval
[33,34]. This no-go theorem can be circumvented by
considering specific models in which unstable perturba-
tions do not grow significantly within a short timescale,
either by lowering the scale of ultraviolet completion [35]
or by extending Horndeski theories to more general frame-
works [35–39]. An alternative mechanism has been pro-
posed to suppress the coefficients of second-order actions
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for scalar and/or tensor perturbations in the asymptotic past
[40–42]. In the latter case, as long as the strong coupling
energy scale is much higher than the scale associated with
the classical background evolution, it is possible to con-
struct linearly stable bouncing or genesis solutions.
Recently, geometric approaches have also been proposed

to address BH and big bang singularities by incorporating
an infinite tower of higher-curvature corrections [43–47]. If
we restrict ourselves to theories that yield second-order
field equations of motion to avoid Ostrogradsky instabil-
ities, the Lagrangian should consist of a sum of the nth-
order Lovelock curvature invariants RðnÞ [48,49], which
preserve diffeomorphism invariance in d-dimensional
spacetime. For 2n ≥ d, the nth-order contributions to the
field equations vanish identically. In four dimensions
(d ¼ 4), the only nonvanishing contributions to the
Lovelock Lagrangian are the cosmological constant term,
Rð0Þ ¼ 1, and the Ricci scalar, Rð1Þ ¼ R. The Gauss-
Bonnet (GB) term, R2

GB, corresponds to the second-order
curvature invariantRð2Þ ¼ R2

GB, which identically vanishes
in four dimensions. To extract nontrivial contributions from
the GB Lagrangian in four dimensions, one needs to either
promote the coupling constant α̂ to a function of some
dynamical degree of freedom (like a dilaton field) or rescale
it in an appropriate manner.
By rescaling the coupling constant as α̂ → α=ðd − 4Þ,

one can extract nontrivial contributions of the higher-
dimensional GB term in four dimensions. This theory,
originally proposed by Glavan and Lin [50], is commonly
referred to as four-dimensional Einstein-Gauss-Bonnet
(4DEGB) gravity. The original 4DEGB gravity suffers
from several problems, including unphysical divergences in
the perturbation equations [51,52] and the lack of covariant
field equations of a massless graviton [53,54].
However, there are alternative approaches to deriving the

four-dimensional effective action in 4DEGB gravity. One
such approach is conformal regularization, based on a
rescaling of the metric tensor, g̃μν ¼ e−2ϕgμν [55,56], where
ϕ is a scalar degree of freedom. Another approach involves
a Kaluza-Klein reduction of the higher-dimensional GB
curvature invariant [57–59], in which the size of a max-
imally symmetric internal space is characterized by a scalar
field. For a spatially flat internal space, the resulting four-
dimensional effective action coincides with that obtained
via conformal regularization.1 Indeed, the four-dimensional
action falls within a subclass of shift-symmetric Horndeski
theories [57–59].
If we apply the scalar-tensor version of 4DEGB gravity

to cosmology, the resulting solutions suffer from a strong
coupling problem due to the vanishing kinetic term of the
scalar field perturbation [58]. On a spherically symmetric

and static background, an exact four-dimensional BH
solution consistent with asymptotic flatness exists in
4DEGB gravity [50]. However, the kinetic term of one
of the even-parity perturbations vanishes everywhere,
leading to the emergence of a strong coupling problem
[61]. As discussed in Refs. [62,63], these strong coupling
issues originate from the pathological behavior of scalar
modes in the limit d → 4. This implies that the perturbative
analysis becomes invalid due to the dominance of nonlinear
perturbations.
In Refs. [43,44], a conformal regularization analogous to

that in 4DEGB gravity was performed for arbitrary dimen-
sions d approaching the critical dimension 2n. For each
integer value of n ≥ 2, a tower of Lagrangians LðnÞ can be
constructed by taking the limit d → 2n. A conformally
regularized Lagrangian in four dimensions can then be
obtained by summing over an infinite tower of LðnÞ for
n ¼ 2; 3;…. The resulting four-dimensional Lagrangian
belongs to a subclass of shift-symmetric Horndeski theories.
When applied to a spatially flat Friedmann-Lemaître-
Robertson-Walker (FLRW) background with matter fields,
this theory admits an inflationary solution characterized by a
nearly constant Hubble expansion rateH, which replaces the
big bang singularity [44]. In (2þ 1)-dimensional spacetime,
a similar regularization procedure—based on summing an
infinite tower of curvature corrections—yields nonsingular
BH solutions without curvature singularities [45].
In this paper, we investigate the behavior of perturbations

on a spatially flat FLRW background in four-dimensional
theories derived from an infinite sum of the regularized
Lagrangian LðnÞ. The primary objective is to elucidate
whether strong coupling or ghost/Laplacian instabilities
arise when the infinite tower of corrections is taken into
account. Indeed, we show that the background solution
ϕ̇ ¼ H, which is responsible for inflation, suffers from a
severe strong coupling problem of the vanishing of the
scalar field perturbation throughout the cosmological evo-
lution. Moreover, tensor perturbations are subject to
Laplacian instabilities during inflation. Even when ϕ̇ differs
from H, Laplacian instabilities of tensor perturbations still
persist, along with the divergence of the kinetic term for
scalar perturbations and the scalar sound speed at the onset
of inflation. Thus, the background inflationary solution
fails to provide a physically consistent description due to
the dominance of inhomogeneities.
This paper is organized as follows. In Sec. II, we briefly

review the regularized four-dimensional Lovelock gravity
constructed from an infinite sum of curvature corrections. In
Sec. III,we discuss thebackgrounddynamics of inflation that
replaces the big bang singularity by selecting various sets of
coefficients cn for each regularized Lagrangian. In Sec. IV,
we analyze the behavior of perturbations in regularized four-
dimensional Lovelock gravity and show how the strong
coupling problem in the scalar sector and instabilities in the
tensor sector emerge in this scenario. Section V is devoted to

1Note that this 4-dimensional effective action is also equivalent
to the one arising from the trace anomaly due to closed loops of
massless fields in an external gravitational background [60].
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conclusions. In the Appendix, we present the behavior of
the background and perturbations for the choice of coef-
ficients cn ¼ 1=n.

II. REGULARIZED FOUR-DIMENSIONAL
LOVELOCK GRAVITY

The Lovelock gravitational action, which is defined in
d-spacetimedimensions and is invariant underd-dimensional
diffeomorphisms, is constructed to yield second-order field
equations of motion. The action is expressed in the form

SðnÞ
L ¼ R

ddx
ffiffiffiffiffiffi−gp

αnRðnÞ, where g is the determinant of the
metric tensor gμν, αn is a constant, and RðnÞ is the nth-order
curvature invariant defined by

RðnÞ ≡ 1

2n
δμ1ν1���μnνnα1β1���αnβn

Yn
i¼1

Rαiβi
μiνi ; ð2:1Þ

where

δμ1ν1���μnνnα1β1���αnβn ≡ n!δμ1½α1δ
ν1
β1
� � � δμnαnδνnβn�; ð2:2Þ

is the generalized Kronecker delta, and Rαiβi
μiνi is the

Riemann tensor.
The dimensional regularization method adopted in

Refs. [43,44,55,56] is based on a conformal rescaling of
the metric, g̃μν ¼ e−2ϕgμν, where ϕ is a scalar degree of
freedom. Moreover, the following limit is taken at each
order of the Lovelock scalar:

LðnÞ ¼ lim
d→2n

ffiffiffiffiffiffi−gp
RðnÞ −

ffiffiffiffiffiffi
−g̃

p
R̃ðnÞ

d − 2n
; ð2:3Þ

where a tilde represents quantities in the frame with the
metric tensor g̃μν. The 4DEGB gravity corresponds to
n ¼ 2, in which case the contribution of the GB term
Rð2Þ ¼ R2

GB is extracted via a conformal rescaling with a
factorization involving division by d − 4. In Ref. [43], the
above conformal regularization is applied to other integer
values of n larger than 2. For n ≥ 3, the limit d → 2n
corresponds to the spacetime dimension greater than d ¼ 6.
References [43,44] incorporate the Lagrangians LðnÞ for
n ≥ 3 into four-dimensional theories, in addition to the
4DEGB contribution. Taking into account the Ricci scalar
R and the cosmological constant Λ, the four-dimensional
theory obtained from the infinite sum of LðnÞ over n ¼
2; 3;… is given by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R − Λþ 1

2l2

X∞
n¼2

cnl2nLðnÞ
�

þ Smðgμν;ΨmÞ; ð2:4Þ

where l is a constant with dimensions of length, cn are
coefficients dependent on n, and

LðnÞ ¼ GðnÞ
2 ðXÞ −GðnÞ

3 ðXÞ□ϕþ GðnÞ
4 ðXÞR

þGðnÞ
4;XðXÞ½ð□ϕÞ2 − ð∇μ∇νϕÞð∇μ∇νϕÞ�

þGðnÞ
5 ðXÞGμν∇μ∇νϕ

−
1

6
GðnÞ

5;XðXÞ½ð□ϕÞ3 − 3ð□ϕÞð∇μ∇νϕÞð∇μ∇νϕÞ
þ 2ð∇μ∇αϕÞð∇α∇βϕÞð∇β∇μϕÞ�; ð2:5Þ

with Gμν being the four-dimensional Einstein tensor,
and [44]

GðnÞ
2 ðXÞ ¼ 2nþ1ðn − 1Þð2n − 3ÞXn;

GðnÞ
3 ðXÞ ¼ −2nnð2n − 3ÞXn−1;

GðnÞ
4 ðXÞ ¼ 2n−1nXn−1;

GðnÞ
5 ðXÞ ¼

�−4 lnX ðfor n ¼ 2Þ;
−2n−1 nðn−1Þ

n−2 Xn−2 ðfor n ≥ 3Þ: ð2:6Þ

The coupling functions GðnÞ
i (with i ¼ 2, 3, 4, 5) depend

only on the scalar kinetic term X ¼ −ð1=2Þgμν∇μϕ∇νϕ,
where ∇μ denotes the covariant derivative. Since such
theories remain invariant under a constant shift of the scalar
field, ϕ → ϕþ c, they belong to the subclass of shift-
symmetic Horndeski theories. We adopt the notations

GðnÞ
i;XðXÞ ¼ ∂GðnÞ

i =∂X and □ϕ ¼ gμν∇μ∇νϕ, and work in
units where the reduced Planck massMpl is set to 1. Wewill
consider the dynamics on a time-dependent, isotropic
cosmological background, in which case X is positive.2

The action Sm describes the matter fields Ψm, which are
assumed to be minimally coupled to gravity.

Taking the infinite sum of GðnÞ
i over n ¼ 2; 3;…, the

resulting theory is characterized by the following coupling
functions:

G2ðXÞ ¼ −Λþ 1

2l2

X∞
n¼2

cnl2nGðnÞ
2 ðXÞ; ð2:7Þ

G3ðXÞ ¼
1

2l2

X∞
n¼2

cnl2nGðnÞ
3 ðXÞ; ð2:8Þ

G4ðXÞ ¼
1

2
þ 1

2l2

X∞
n¼2

cnl2nGðnÞ
4 ðXÞ; ð2:9Þ

G5ðXÞ ¼
1

2l2

X∞
n¼2

cnl2nGðnÞ
5 ðXÞ: ð2:10Þ

2If we consider other backgrounds where X is negative, such as
a spherically symmetric and static background, we can generalize
the function Gð2Þ

5 ðXÞ ¼ −4 lnX to Gð2Þ
5 ðXÞ ¼ −4 ln jXj.
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The total action is given by S ¼ R
d4x

ffiffiffiffiffiffi−gp
Lþ Sm, where

L is obtained by replacing GðnÞ
i ðXÞ with GiðXÞ (for i ¼ 2,

3, 4, 5) in Eq. (2.5).
The coupling functions in Eqs. (2.7)–(2.10) depend on

the coefficients cn. If we choose

cn ¼ 1 for all n ðModel 1Þ; ð2:11Þ
it follows that

G2ðXÞ ¼ −Λþ 4l2X2ð1þ 6l2XÞ
ð1 − 2l2XÞ3 ;

G3ðXÞ ¼
1 − 10l2X
ð1 − 2l2XÞ3 ;

G4ðXÞ ¼
1

2ð1 − 2l2XÞ2 ;

G5ðXÞ ¼ −2l2

�
1 − 2l4X2

ð1 − 2l2XÞ2 þ ln

�
2l2X

1 − 2l2X

��
; ð2:12Þ

which coincide with those obtained in Ref. [44]. For the
choice

cn ¼
1 − ð−1Þn

2n
ðModel 2Þ; ð2:13Þ

we have3

G2ðXÞ ¼ −Λþ 2Xð28l4X2 − 3Þ
ð1 − 4l4X2Þ2 þ 3

l2
tanh−1ð2l2XÞ;

G3ðXÞ ¼ −
4l4X2ð3þ 4l4X2Þ

ð1 − 4l4X2Þ2 ;

G4ðXÞ ¼
1

2ð1 − 4l4X2Þ ;

G5ðXÞ ¼ −
2l4X

1 − 4l4X2
− l2tanh−1ð2l2XÞ: ð2:14Þ

In the Appendix we also present the Horndeski functions
for the alternative choice of coefficients cn ¼ 1=n, which
we refer to as Model 3.

III. INFLATIONARY SOLUTIONS REPLACING
THE BIG BANG SINGULARITY

To study the background cosmological dynamics, we
consider a spatially flat FLRW spacetime described by the
four-dimensional line element

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð3:1Þ

where aðtÞ is a time-dependent scale factor. The choice of
this line element is justified when the inhomogeneity and
anisotropy of the Universe are sufficiently small. We
assume that the action Sm in the matter sector corresponds
to that of a perfect fluid with background energy density ρm
and pressure Pm. The Hubble expansion rate is defined as
H ¼ ȧ=a, where a dot denotes a derivative with respect to
cosmic time t. The background equations of motion are
given by [19,64–66]

6G4H2 þG2 − ϕ̇2G2;X − 3Hϕ̇3G3;X

− 6H2ϕ̇2ð2G4;X þ ϕ̇2G4;XXÞ
−H3ϕ̇3ð5G5;X þ ϕ̇2G5;XXÞ ¼ ρm; ð3:2Þ

2qtḢ −D6ϕ̈þD7ϕ̇ ¼ −ρm − Pm; ð3:3Þ

d
dt
ða3JÞ ¼ 0; ð3:4Þ

ρ̇m þ 3Hðρm þ PmÞ ¼ 0; ð3:5Þ

where4

qt ¼ 2G4 − 2ϕ̇2G4;X −Hϕ̇3G5;X; ð3:6Þ

D6 ¼ ϕ̇2G3;X þ 4Hϕ̇ðG4;X þ ϕ̇2G4;XXÞ
þH2ϕ̇2ð3G5;X þ ϕ̇2G5;XXÞ; ð3:7Þ

D7 ¼ ϕ̇G2;X þ 3Hϕ̇2G3;X þ 6H2ϕ̇ðG4;X þ ϕ̇2G4;XXÞ
þH3ϕ̇2ð3G5;X þ ϕ̇2G5;XXÞ; ð3:8Þ

J ¼ ϕ̇G2;X þ 3Hϕ̇2G3;X þ 6H2ϕ̇ðG4;X þ ϕ̇2G4;XXÞ
þH3ϕ̇2ð3G5;X þ ϕ̇2G5;XXÞ: ð3:9Þ

The cosmological constantΛ appears inEq. (3.2) through the
coupling G2. Note that J corresponds to the scalar field
current. The right-hand side of Eq. (3.4) vanishes, reflecting
the fact that the four-dimensional action (2.4) is invariant
under the shift ϕ → ϕþ c. In shift-symmetric Horndeski
theories, the coefficient D7 coincides with J. However, this
property does not hold in the most general Horndeski
theories, where the coupling functions Gi depend on both
ϕ and X. Equation (3.4) can be integrated to give

J ¼ C
a3

; ð3:10Þ

where C is an integration constant.
3The cubic Horndeski function can also be written in the form

G3 ¼ ð1 − 20l4X2Þ=ð1 − 4l4X2Þ2 [44]. This expression differs
from Eq. (2.14) only by a constant factor, and thus both forms of
G3 yield the same field equations of motion.

4We follow the notations of Ref. [66], except that the sign of
G3 is opposite to that used in this paper. For the expression of the
scalar field current J, readers may refer to Eq. (3.12) of Ref. [19].
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Among Eqs. (3.2)–(3.5), three of them are independent.
Indeed, taking the time derivative of (3.2) and using (3.3)
and (3.5) to eliminate ρ̇m, ρm, and Pm, the resulting
equation is consistent with (3.4). Solving Eqs. (3.3) and
(3.4) for Ḣ and ϕ̈, it follows that

Ḣ ¼ −
1

qs
½D7ð2D1ϕ̇þ 3D6HÞ þ 2D1ðρm þ PmÞ�; ð3:11Þ

ϕ̈ ¼ 1

qs
½3D7ðD6ϕ̇ − 2HqtÞ þ 3D6ðρm þ PmÞ�; ð3:12Þ

where

qs ¼ 4D1qt þ 3D2
6; ð3:13Þ

with

D1 ¼
1

2
ðG2;X þ ϕ̇2G2;XXÞ þ

3

2
Hϕ̇ð2G3;X þ ϕ̇2G3;XXÞ

þ 3H2ðG4;X þ 4ϕ̇2G4;XX þ ϕ̇4G4;XXXÞ

þ 1

2
H3ϕ̇ð6G5;X þ 7ϕ̇2G5;XX þ ϕ̇4G5;XXXÞ: ð3:14Þ

For qs > 0, as long as the numerators of Eqs. (3.11) and
(3.12) remain finite, it is possible to avoid singularities in
the background equations of motion.
In what follows, we discuss the background cosmologi-

cal dynamics for models with two different choices of cn.
Since we are primarily interested in the dynamics of the
early Universe, we include radiation, described by the
equation of state parameter

wm ¼ Pm

ρm
¼ 1

3
: ð3:15Þ

In this case, the radiation energy density evolves
according to

ρm ¼ ρmia−4; ð3:16Þ

where ρmi is a constant. The cosmological constant Λ is
relevant only to the late-time dynamics associated with dark
energy, so we set

Λ ¼ 0; ð3:17Þ

in the following discussion.

A. Model 1

In Model 1, the Horndeski functions are given by
Eq. (2.12). In this case, the scalar field equation takes
the form

J ¼ 4l2ð1þ 5l2ϕ̇2Þ
ð1 − l2ϕ̇2Þ4 ðϕ̇ −HÞ3 ¼ C

a3
: ð3:18Þ

As long as

C ¼ 0; ð3:19Þ

Equation (3.18) admits the following solution

ϕ̇ ¼ H: ð3:20Þ

On this background solution, Eqs. (3.2), (3.11), and (3.12)
simplify to

3H2

1 − l2H2
¼ ρm; ð3:21Þ

Ḣ ¼ ϕ̈ ¼ −
2

3
ð1 − l2H2Þ2ρm: ð3:22Þ

From Eq. (3.21), a consistent solution with ρm > 0 exists
only in the regime lH < 1. Using Eqs. (3.16) and (3.21) in
an expanding universe (H > 0), we find

H ¼ 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4m1

a4 þ a4m1

s
; ð3:23Þ

where am1
¼ ðl2ρmi=3Þ1=4. For a ≪ am1

, H is nearly
constant and close to l−1. This corresponds to the infla-
tionary stage, characterized by the evolution of the scale
factor as a ∝ expðHtÞ. Inflation is driven by an almost
constant scalar field derivative ϕ̇. From Eq. (3.22), we also
find that Ḣ is close to 0 around H ≃ l−1.
The inflationary period ends when a grows larger than

am1
, after whichH ≃ ffiffiffiffiffiffiffi

ρmi
p

=ð ffiffiffi
3

p
a2Þ and Ḣ ≃ −2ρmi=ð3a4Þ.

This corresponds to the radiation-dominated era, charac-
terized by the scale factor evolving as a ∝ t1=2. Since H is
bounded from above (H < l−1), the conventional big bang
singularity, in which H diverges as a → 0, is absent in this
scenario. Instead, the universe starts from the inflationary
stage followed by the radiation era. Taking the limit a → 0,
the right-hand side of Eq. (3.21) diverges as ρm ∝ a−4. In
the same limit, H approaches l−1 according to the relation
1 − l2H2 ∝ a4. Thus, the finiteness of H is realized by the
presence of a matter fluid whose energy density is
unbounded from above.
The above discussion is based on the choice C ¼ 0 in

Eq. (3.10). If C ≠ 0, as long as ϕ̇ remains close to H, it
should be possible to realize an inflationary solution similar
to the one discussed above. To accommodate such a case,
we write ϕ̇ in the form,

ϕ̇ ¼ H½1þ ϵðtÞ�; ð3:24Þ
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where ϵðtÞ is a time-dependent function satisfying the
condition jϵðtÞj ≪ 1. We substitute Eq. (3.24) into the left-
hand side of Eq. (3.18) and perform an expansion with
respect to the small parameter ϵðtÞ. By keeping only the
leading-order term, it follows that

jϵðtÞj ≃
� jCj
4l2ð1þ 5l2H2Þ

�
1=3 ð1 − l2H2Þ4=3

a
1

H
: ð3:25Þ

At leading order in the expansion in ϵðtÞ, we obtain the
same background equations as Eqs. (3.21) and (3.22).
Substituting the leading-order solution (3.23) into the term
ð1 − l2H2Þ4=3 in Eq. (3.25), we obtain

jϵðtÞj ≃
� jCj
4l2ð1þ 5l2H2Þ

�
1=3 a13=3

ða4 þ a4m1
Þ4=3

1

H
: ð3:26Þ

During inflation (a ≪ am1
), we have jϵðtÞj ∝ a13=3 ∝

e13Ht=3, and hence the difference between ϕ̇ and H
increases exponentially. For the validity of using
Eq. (3.23) as the leading-order solution to H, we need
to choose the value of C such that jϵðtÞj ≪ 1 during
inflation. Since the order of jϵðtÞj at the end of inflation
(time tf) can be estimated as jϵðtfÞj ≈ ðjCj=l2Þ1=3l=am1

,
we require that jCj ≪ a3m1

=l to ensure the condition
jϵðtÞj ≪ 1 during inflation.
After the universe enters the radiation-dominated

epoch (a≳ am1
and H ≪ l−1), jϵðtÞj is proportional to

ðaHÞ−1 ∝ t1=2. From Eq. (3.18), the same parameter also
increases as jϵðtÞj ∝ ðaHÞ−1 ∝ t1=3 during the subsequent
matter-dominated era. This indicates that jCj must be
extremely small to satisfy the condition jϵðtÞj ≪ 1 through-
out the cosmological evolution. If ϕ̇ begins to deviate
from H during the decelerating cosmological epochs, it
happens that ϕ̇ evolves more slowly than H ∝ t−1. In this
case, the standard radiation and matter eras can be
disrupted by the dominance of the scalar field energy
density. As long as jϵðtÞj ≪ 1, the background dynamics
during the radiation era is approximated by Eqs. (3.21)
and (3.22), with H ≪ l−1.

B. Model 2

In Model 2, defined by the Horndeski functions given
in Eq. (2.14), the scalar field equation can be written in
the form

J ¼ 4l4ϕ̇2ð3þ 5l4ϕ̇4Þ
ð1 − l4ϕ̇4Þ3 ðϕ̇ −HÞ3 ¼ C

a3
: ð3:27Þ

For the choice C ¼ 0, we obtain the same solution as in
Eq. (3.20). There also exists another branch with ϕ̇ ¼ 0, but
in this case, the scalar field does not contribute to the
cosmological dynamics. For the solution ϕ̇ ¼ H, the back-
ground equations simplify to

3

2l2
ln

�
1þ l2H2

1 − l2H2

�
¼ ρm; ð3:28Þ

Ḣ ¼ ϕ̈ ¼ −
2

3
ð1 − l4H4Þρm: ð3:29Þ

From Eq. (3.28), a consistent background solution exists
only when lH < 1. By solving Eq. (3.28) forHð> 0Þ, using
Eq. (3.16), and defining am2

¼ ð2l2ρmi=3Þ1=4, we obtain

H ¼ 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expða4m2

=a4Þ − 1

expða4m2
=a4Þ þ 1

s
; ð3:30Þ

so that H is bounded from above (H < l−1).
When the scale factor is in the regime a ≪ am2

, inflation
occurs with a nearly constant Hubble expansion rate H
close to l−1. After a grows larger than am2

, expanding the
term expða4m2

=a4Þ in Eq. (3.30) yields the approximate
relationH ≃ ffiffiffiffiffiffiffi

ρmi
p

=ð ffiffiffi
3

p
a2Þ. Thus, the inflationary period is

followed by the radiation era, characterized by the scale
factor evolving as a ∝ t1=2. As in Model 1, H approaches
the finite constant l−1 toward the asymptotic past, so the
curvature singularity is absent.
For C ≠ 0, we express the difference between ϕ̇ andH in

the form given by Eq. (3.24). Performing an expansion of
Eq. (3.27) in the small parameter ϵðtÞ and using Eq. (3.30)
as the leading-order solution for H, it follows that

jϵðtÞj ≃
�

16jCj
l4ð3þ 5l4H4Þ

�
1=3 expða4m2

=a4Þ
½expða4m2

=a4Þ þ 1�2
1

aH5=3 :

ð3:31Þ
In the limit a → 0, jϵðtÞj rapidly approaches 0. During
inflation (a≲ am2

), jϵðtÞj increases proportionally to
a−1 expð−a4m2

=a4Þ. To ensure the condition jϵðtÞj ≪ 1 by
the end of inflation, we require that jCj ≪ a3m2

=l. During
the subsequent radiation era, jϵðtÞj grows as jϵðtÞj ∝
a−1H−5=3 ∝ t7=6. Thus, we need to choose C to be very
close to 0 to maintain the condition jϵðtÞj ≪ 1 throughout
the cosmological evolution. The continuous increase in
jϵðtÞj is similar to that observed in Model 1, although the
growth rates are different.

C. Models of each power n

In both Models 1 and 2, we have shown that the solution
ϕ̇ ¼ H drives cosmic inflation in the regime where H is
close to l−1. As we will see in the Appendix, the same
property also holds for the choice cn ¼ 1=n. To understand
why the solution ϕ̇ ¼ H always exists, we consider

the coupling functions GðnÞ
2;3;4;5 for each n as given in

Eqs. (2.7)–(2.10), e.g., G3ðXÞ ¼ ð2l2Þ−1cnl2nGðnÞ
3 ðXÞ.

Then, the scalar field equation takes the form
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J ¼ 2cnnðn − 1Þð2n − 3Þl2ðlϕ̇Þ2ðn−2Þðϕ̇ −HÞ3 ¼ C
a3

:

ð3:32Þ

This implies that the solution ϕ̇ ¼ H exists when C ¼ 0. It
is evident that this solution continues to exist even when the
infinite sum over n ¼ 2; 3;… is taken. At each order in n,
the background equations of motion evaluated on the
solution ϕ̇ ¼ H are given by

3H2½1þ cnðlHÞ2n−2� ¼ ρm; ð3:33Þ

Ḣ ¼ ϕ̈ ¼ −
2ρm

3½1þ cnnðlHÞ2n−2� : ð3:34Þ

In the regime where jcnjðlHÞ2n−2 ≫ 1, we require that
cn > 0 for the consistency of Eq. (3.33). In this case, as
a → 0, we observe that H grows without bound toward the
asymptotic past, along with the divergence of ρm ∝ a−4.
Thus, the curvature singularity is generally present in
theories with finite n. In the low-energy regime charac-
terized by cnnðlHÞ2n−2 ≪ 1, the standard radiation era
with Ḣ ≃ −2ρm=3 is recovered.
The above results indicate that summing over the infinite

series of coupling functions GðnÞ
2;3;4;5 over n is essential for

achieving inflation with a finite Hubble expansion rate
H < l−1. As we have seen in Secs. III A and III B, even
though ρm diverges as a → 0, the Hubble expansion rate
remains finite in Models 1 and 2. This property also holds
in Model 3, see Appendix for details.

IV. LINEAR COSMOLOGICAL PERTURBATIONS

In this section, we study the behavior of linear cosmo-
logical perturbations on the spatially flat FLRW back-
ground (3.1). We consider the four-dimensional perturbed
line element given by

ds2 ¼ −ð1þ 2αÞdt2 þ 2∂iχdtdxi

þ a2ðtÞ½ð1þ 2ζÞδij þ 2∂i∂jEþ hij�dxidxj; ð4:1Þ

where α, χ, ζ, and E are scalar metric perturbations, and hij
is the tensor perturbation satisfying the traceless and
transverse conditions hii ¼ 0 and ∂ihij ¼ 0. The perturbed
fields depend on time t and spatial coordinates xi, where we
use the notation ∂i ¼ ∂=∂xi. Since vector perturbations are
nondynamical in scalar-tensor theories, we omit them from
our analysis. The scalar field ϕ and the matter density ρm
are decomposed into the background and perturbed
parts, as ϕ¼ ϕ̄ðtÞþ δϕðt;xiÞ and ρm ¼ ρ̄mðtÞþ δρmðt; xiÞ,
where we will drop the overbar for brevity in what follows.
For tensor perturbations propagating along the z direc-

tion, we can choose the components of hij as h11 ¼ −h22 ¼
h1ðt; zÞ and h12 ¼ h21 ¼ h2ðt; zÞ. In Fourier space with

comoving wave number k, the second-order action for
tensor modes can be written as [19,66]

Sð2Þ
t ¼

Z
dtd3k
ð2πÞ3

X2
i¼1

a3

4
qt

�
ḣ2i − c2t

k2

a2
h2i

�
; ð4:2Þ

where qt is defined by Eq. (3.6), and c2t is the squared
tensor propagation speed given by

c2t ¼
2G4 − ϕ̇2ϕ̈G5;X

2G4 − 2ϕ̇2G4;X −Hϕ̇3G5;X
: ð4:3Þ

To avoid ghost and Laplacian instabilities in tensor per-
turbations, the following conditions must be satisfied:

qt > 0; c2t > 0: ð4:4Þ

In the presence of a perfect fluid, the second-order action
for scalar perturbations and the corresponding linear
perturbation equations of motion are presented in a
gauge-ready form in Ref. [66] (see also Refs. [64,65]).
We adopt the unitary gauge, which is characterized by

δϕ ¼ 0; E ¼ 0: ð4:5Þ

We then eliminate the nondynamical perturbations α, χ, and
the fluid velocity potential v from the quadratic-order
action by using their equations of motion. In Fourier space,
the second-order action for the two dynamical perturbations
ζ and δρm can be written in the form

Sð2Þ
s ¼

Z
dtd3k
ð2πÞ3 a

3ð ˙X⃗ t
K ˙X⃗ − X⃗ tG̃ X⃗ −X⃗ tB ˙X⃗Þ; ð4:6Þ

where K, G̃, and B are 2 × 2 matrices, and

X⃗ t ¼ ðζ; δρm=kÞ: ð4:7Þ

For sufficiently small-scale modes deep inside the sound
horizon, we split G̃ into the form

G̃ ¼ k2

a2
GþM; ð4:8Þ

where the leading-order terms of G, M, and B are of order
k0. The nonvanishing components of K and G are the
following diagonal ones [66],

K11 ¼
ϕ̇2qtqs

ð2Hqt − ϕ̇D6Þ2
; K22 ¼

a2

2ðρm þ PmÞ
;

G11 ¼ −qtc2t −
ρm þ Pm

2Hqt − ϕ̇D6

F 1 þ
1

a
d
dt
ðaF 1Þ;

G22 ¼
a2c2m

2ðρm þ PmÞ
; ð4:9Þ
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where

F 1 ¼
2q2t

2Hqt − ϕ̇D6

: ð4:10Þ

The absence of off-diagonal components in K and G
implies that δρm is decoupled from ζ for sufficiently
small-scale modes. In the perfect-fluid sector, the absence
of ghost and Laplacian instabilities requires that K22 > 0

and G22 > 0, which translate to ρm þ Pm > 0 and c2m > 0.
The no-ghost condition for ζ is given by

qðuÞs ≡ K11 ¼
ϕ̇2qtqs

ð2Hqt − ϕ̇D6Þ2
> 0: ð4:11Þ

So long as qs > 0, along with the inequality qt > 0, the
condition (4.11) is satisfied.
The squared propagation speeds c2s for ζ and δρm can be

obtained from the dispersion relation det ðc2sK − GÞ ¼ 0.
One of them is the value c2m ¼ G22=K22 for δρm, while
another one for ζ is given by

c2s ¼
G11

K11

¼ −
c2t D2

6 þ 2B1D6 þ 4qtD2

qs
; ð4:12Þ

where

B1 ¼
2

ϕ̇
½q̇t þ ð1 − c2t ÞHqt�; ð4:13Þ

D2 ¼ −
1

2
G2;X − 2Hϕ̇G3;X −H2ð3G4;X þ 5ϕ̇2G4;XXÞ

− ½2G4;X þ 2ϕ̇2G4;XX þHϕ̇ð2G5;X þ ϕ̇2G5;XXÞ�Ḣ

−
1

2
½2G3;X þ ϕ̇2G3;XX þ 4Hϕ̇ð3G4;XX

þ ϕ̇2G4;XXXÞ þH2ð2G5;X þ 5ϕ̇2G5;XX

þ ϕ̇4G5;XXXÞ�ϕ̈ −H3ϕ̇ð2G5;X þ ϕ̇2G5;XXÞ: ð4:14Þ

To avoid the Laplacian instability for ζ, we require
that c2s > 0.

A. Model 1

In Model 1, we begin by analyzing the stability of tensor
and scalar perturbations along the solution ϕ̇ ¼ H, which
arises when C ¼ 0. We then extend our analysis to the case
where C ≠ 0.
In the tensor sector, substituting the coupling functions

(2.12) into Eqs. (3.6) and (4.3) gives

qt ¼
1 − l2ϕ̇ð5ϕ̇ − 4HÞ

ð1 − l2ϕ̇2Þ3 ; ð4:15Þ

c2t ¼
1þ l2ð4ϕ̈ − ϕ̇2Þ
1 − l2ϕ̇ð5ϕ̇ − 4HÞ : ð4:16Þ

Along the solution ϕ̇ ¼ H, Eqs. (4.15) and (4.16) reduce,
respectively, to

qt ¼
1

ð1 − l2H2Þ2 ¼
ða4 þ a4m1

Þ2
a8

; ð4:17Þ

c2t ¼ 1þ 4l2Ḣ
1 − l2H2

¼ a4 − 7a4m1

a4 þ a4m1

; ð4:18Þ

where Eq. (3.23) is used in the second equalities of
Eqs. (4.17) and (4.18). Thus, we have qt > 0, and qt
diverges as a → 0. Since c2t < 0 for a < 71=4am1

, tensor
perturbations undergo Laplacian instability during infla-
tion. In particular, as a → 0, we have c2t → −7, indicating
that the rapid growth of tensor perturbations violates the
homogeneity of the Universe soon after the onset of
inflation.5

In the scalar sector, the quantity (4.11) is expressed as

qðuÞs ¼ 6l2ϕ̇2½1 − l2ϕ̇ð5ϕ̇ − 4HÞ�½1 − l4ϕ̇2ð5ϕ̇ − 2HÞ2 þ 5l6ϕ̇4ð5ϕ̇2 − 6Hϕ̇þ 2H2Þ þ l2ð7ϕ̇2 − 6Hϕ̇þ 2H2Þ�ðϕ̇ −HÞ2
=fð1 − l2ϕ̇2Þ3½H − 5Hl2ϕ̇2ð2þ 3l2ϕ̇2Þ þ 2l2ϕ̇3ð1þ 5l2ϕ̇2Þ þ 6H2l2ϕ̇ð1þ l2ϕ̇2Þ�2g: ð4:19Þ

Along the solution ϕ̇ ¼ H, we have

qðuÞs ¼ 0; ð4:20Þ

which holds at all times during inflation and the subsequent
cosmological epoch. We note that the quantity qs, which is
defined in Eq. (3.13), is also proportional to ðϕ̇ −HÞ2, and
vanishes in the limit ϕ̇ → H. Since the numerators in
Eqs. (3.11) and (3.12) are both proportional to ðϕ̇ −HÞ2, Ḣ
and ϕ̈ remain finite even in the limit ϕ̇ → H, see Eq. (3.22).

However, the fact that qðuÞs ¼ 0 along the solution ϕ̇ ¼ H

implies that the kinetic term qðuÞs ζ̇2 in the action (4.6)

5We note that c2t quickly approaches 1 once a exceeds am1
.

Thus, the deviation of c2t from 1 becomes extremely small in the
late Universe—for instance, jc2t − 1j ¼Oð10−40Þ at a ¼ 1010am1

.
This behavior is consistent with the observational bound on c2t
derived from the gravitational wave event GW170817 [67].
However, the negative value of c2t during inflation already spoils
the successful cosmic expansion history.
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vanishes at all times. This indicates a strong coupling
problem, signaling a breakdown of perturbation theory due
to the dominance of nonlinear over linear fluctuations.
From the onset of inflation, the strong coupling of non-
linear perturbations renders perturbative analysis on the
homogeneous FLRW background invalid.
This issue does not stem from a particular gauge choice,

but it arises in all physically meaningful gauges. For
example, we can choose the flat gauge ζ ¼ 0 ¼ E and
consider δϕ as a dynamical perturbation along with δρm. In
this case, the kinetic term of the scalar field perturbation

takes the form qðfÞs ˙δϕ2, where qðfÞs is related to qðuÞs as qðfÞs ¼
ðH2=ϕ̇2ÞqðuÞs [66]. Along the solution ϕ̇ ¼ H, we obtain

qðfÞs ¼ qðuÞs ¼ 0. Thus, the strong coupling problem of the
scalar field perturbation also manifests in the flat gauge.

Since the properties qðuÞs ¼ qðfÞs ¼ 0 hold at all times along
the solution ϕ̇ ¼ H, the use of the homogenous FLRW
background is not legitimate throughout the cosmological
evolution.
The denominator of c2s is proportional to qs, and thus it

can be expressed as b0ðϕ̇ −HÞ2, where b0 is a time-
dependent coefficient. The numerator of c2s can be written
in the form b1ðϕ̇ −HÞ þ b2ðϕ̈ − ḢÞ, where b1 and b2 are
time-dependent coefficients. Then, we can schematically
express c2s in the form

c2s ¼
b1ðϕ̇ −HÞ þ b2ðϕ̈ − ḢÞ

b0ðϕ̇ −HÞ2 : ð4:21Þ

Since we now consider the solutions ϕ̇ ¼ H and ϕ̈ ¼ Ḣ,
both the denominator and numerator of Eq. (4.21) vanish.
This implies that along the solution ϕ̇ ¼ H, which is realized
for C ¼ 0, the value of c2s is generally undetermined.
When C ≠ 0, there is a deviation of ϕ̇ −H from 0. From

Eqs. (3.24) and (3.26), we have ϕ̈ ¼ Ḣð1þ ϵÞ þHϵ̇,
where ϵ ≃ ϵ0a13=3 and ϵ̇ ≃ 13Hϵ=3 in the regime a ≪
am1

(with ϵ0 being a constant). We substitute these solutions
into the expressions of qt and c2t and use the leading-order
solution ofH given in Eq. (3.23). Performing the expansion
around a ¼ 0, it follows that

qt ¼
a8m1

a8
þOða−22=3Þ; ð4:22Þ

c2t ¼ −7þOða1=3Þ; ð4:23Þ

whose leading-order terms are equivalent to those derived
for C ¼ 0, see Eqs. (4.17) and (4.18). Thus, even when
C ≠ 0, tensor perturbations still suffer from Laplacian
instability during inflation.
Substituting ϕ̇ ¼ Hð1þ ϵÞ as well as its time derivative

into qðuÞs and c2s , and expanding them around a ¼ 0, we find

qðuÞs ¼ 36ϵ20a
16
m1

a22=3
þOða−7Þ; ð4:24Þ

c2s ¼
20

27ϵ0a4m1
a1=3

þOða0Þ: ð4:25Þ

Thus, for ϵ ≠ 0, the leading-order term of qðuÞs is non-

vanishing and positive. In the limit a → 0, qðuÞs diverges in

proportion to qðuÞs ∝ a−22=3. When ϵ0 < 0, i.e., C < 0, the
scalar perturbation is subject to Laplacian instability due to
a negative sound speed squared c2s .
For ϵ0 > 0, i.e., C > 0, c2s can be positive during

inflation, but it diverges as c2s ∝ a−1=3 → ∞ when
a → 0. Let us choose a flat gauge and introduce a
canonically normalized field v ¼ zδϕ in Fourier space,

where z ¼ a
ffiffiffiffiffiffiffiffiffiffi
2qðfÞs

q
. For sufficiently small-scale modes

where the kinetic and Laplacian terms dominate the
second-order action of scalar perturbations, we obtain
the following equation:

v00 þ
�
c2sk2 −

z00

z

�
v ¼ 0; ð4:26Þ

where a prime denotes a derivative with respect to con-
formal time τ ¼ R

a−1dt. In the regime a ≪ am1
, the

quantity z00=z can be estimated as z00=z ≃ 40ðaHÞ2=9.
For the modes c2sk2 ≫ ðaHÞ2, we may adopt the Bunch-
Davies vacuum state, v ≃ e−icskτ=

ffiffiffiffiffiffiffiffiffi
2csk

p
. Then, the kinetic

energy density of δϕ can be estimated as qðfÞs j ˙δϕj2 ≃
csk=ð4a4Þ, which diverges in the limit a → 0. The
same property also holds for the other energy density
of δϕ associated with the Laplacian term,6 such that

qðfÞs c2sðk2=a2Þjδϕj2 ≃ csk=ð4a4Þ. Despite the finiteness of
the background field derivative ϕ̇, the energy density of
linear scalar field perturbations diverges as a → 0, indicat-
ing a breakdown of the perturbative treatment.

B. Model 2

In Model 2, the quantities relevant to the linear stability
of tensor perturbations are given by

qt ¼
1 − l4ϕ̇3ð5ϕ̇ − 4HÞ

ð1 − l4ϕ̇4Þ2 ; ð4:27Þ

c2t ¼
1þ l4ϕ̇2ð4ϕ̈ − ϕ̇2Þ
1 − l4ϕ̇3ð5ϕ̇ − 4HÞ : ð4:28Þ

6In terms of the rescaled field fδϕ ¼ k3=2δϕ, which has

the dimension of mass, it follows that qðfÞs jḟδϕj2 ≃ qðfÞs c2sðk2=a2Þ×
jfδϕj2 ≃ csk4=ð4a4Þ.
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Along the solution ϕ̇ ¼ H, which can be realized for C ¼ 0,
Eqs. (4.27) and (4.28) reduce, respectively, to

qt ¼
1

1 − l4H4
¼ cosh

�
a4m2

2a4

�
2

; ð4:29Þ

c2t ¼ 1þ 4l4H2Ḣ
1 − l4H4

¼ 1 −
4a4m2

a4
tanh

�
a4m2

2a4

�
; ð4:30Þ

where we used Eq. (3.30). The parameter qt remains
positive and diverges for a → 0. In the regime a ≪ am2

,
one finds c2t ≃ −4a4m2

=a4, diverging to c2t → −∞ in the
limit a → 0. This indicates a severe Laplacian instability of
tensor perturbations, thus rendering the homogeneous
background unstable.
The quantity associated with the no-ghost condition for

scalar perturbations is given by

qðuÞs ¼ 6l4ϕ̇3½1 − l4ϕ̇3ð5ϕ̇ − 4HÞ�½10l4ϕ̇3H2 − 2ð1þ 15l4ϕ̇4ÞH þ 25l4ϕ̇5 þ 5ϕ̇�ðϕ̇ −HÞ2
=½H þ 2l4ϕ̇3ð5þ 3l4ϕ̇4ÞH2 þ 2l4ϕ̇5ð3þ 5l4ϕ̇4Þ − 3l4ϕ̇4ð6þ 5l4ϕ̇4ÞH�2: ð4:31Þ

Since qðuÞs ¼ 0 along the solution ϕ̇ ¼ H, the strong
coupling problem persists, as in Model 1. The squared
propagation speed for ζ takes the same form as in
Eq. (4.21), but with coefficients b0, b1, and b2 that differ
from those in Model 1. Along the solution ϕ̇ ¼ H (and
hence ϕ̈ ¼ Ḣ), c2s remains undetermined.
For C ≠ 0, we substitite ϕ̇ ¼ H½1þ ϵðtÞ� and its time

derivative into the expressions of qt, c2t , q
ðuÞ
s , and c2s , where

ϵðtÞ ≃ ϵ0a−1 expð−a4m2
=a4Þ in the regime a ≪ am2

. By
using the solution (3.30) and performing the expansion
around a ¼ 0, it follows that

qt ¼ a expða4m2
=a4Þ

�
−

1

2ϵ0
þOðaÞ

�
; ð4:32Þ

c2t ¼ −
2a4m2

a4
þOða−3Þ; ð4:33Þ

qðuÞs ¼ a expða4m2
=a4Þ

�
−

1

6ϵ0
þOðaÞ

�
; ð4:34Þ

c2s ¼ −
2a4m2

a4
þOða−3Þ: ð4:35Þ

Since the leading-order terms of c2t and c2s are negative,
both tensor and scalar perturbations undergo Laplacian
instabilities during inflation. Moreover, both c2t and c2s
diverge to −∞ for a → 0. When ϵ0 > 0 (i.e., C > 0), we

find qt < 0 and qðuÞs < 0 at leading order, implying ghost
instabilities in both the tensor and scalar sectors. When
ϵ0 < 0, ghost instabilities are avoided, but Laplacian
instabilities of tensor and scalar perturbations render the
inflationary background illegitimate.
In the Appendix, we also examine the linear stability of

the background inflationary solution in Model 3. Again, the
solution ϕ̇ ¼ H suffers from the strong coupling problem in
the scalar sector, as well as from a Laplacian instability in
the tensor sector. For C ≠ 0, Laplacian instabilities of both
tensor and scalar perturbations arise during inflation,
similar to Model 2 discussed above.

C. Models of each power n

In both Models 1 and 2, we have demonstrated the
existence of a strong coupling problem for the solution
ϕ̇ ¼ H. This issue persists because the same behavior
occurs for each power nð≥ 2Þ in the models discussed in

Sec. III C. In these models, the quantity qðuÞs takes the form

qðuÞs ¼ cnl2n−2nðn − 1Þð2n − 3Þϕ̇2n−3fl2ϕ̇3 þ cnl2nnϕ̇2n½ð3 − 2nÞϕ̇þ 2ðn − 1ÞH�gfl2ϕ̇3½2ð2 − nÞH þ ð2n − 1Þϕ̇�
þ cnl2nnϕ̇2n½ðn − 1Þð2n − 1ÞH2 − 2ðn − 2Þð2n − 1ÞHϕ̇þ ðn − 2Þð2n − 3Þϕ̇2�gðϕ̇ −HÞ2
=ðl2Hϕ̇3 þ cnl2nnϕ̇2nfðn − 1Þð2n − 1ÞH2 − ½3þ 4nðn − 2Þ�Hϕ̇þ ðn − 1Þð2n − 3Þϕ̇2gÞ2: ð4:36Þ

Along the solution ϕ̇ ¼ H, one finds qðuÞs ¼ 0 at all times.

The property qðuÞs ∝ ðϕ̇ −HÞ2 is preserved in models
involving an infinite sum over n. This is why the strong
coupling problem associated with the background solution
ϕ̇ ¼ H persists for arbitrary coefficients cn, even when the
infinite sum is taken. The squared scalar sound speed takes
the same form as Eq. (4.21), so c2s remains undetermined
when ϕ̇ ¼ H and ϕ̈ ¼ Ḣ.

Along the solution ϕ̇ ¼ H, the squared tensor propaga-
tion speed is given by

c2t ¼ 1þ 2ðn − 1Þ Ḣ
H2

�
1 −

1

qt

�
; ð4:37Þ

where

qt ¼ 1þ cnnðlHÞ2ðn−1Þ: ð4:38Þ
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As long as cn > 0, the tensor ghost is absent. In the low-
energy regime characterized by cnnðlHÞ2ðn−1Þ ≪ 1, one
finds c2t ≃ 1. By taking the infinite sum over n like in
Models 1 and 2, we have already seen that inflation can be
realized with the divergence of qt as a → 0. Since Ḣ < 0

during inflation, and the coefficient multiplying Ḣ=H2 in
Eq. (4.37) can become large and positive when the infinite
sum is taken, c2t may turn negative. Indeed, we have seen
that negative values of c2t arise during inflation in all of
Models 1, 2, and 3.
We note that 4DEGB gravity corresponds to n ¼ 2. In

this case, we have

qðuÞs ¼ α2ðϕ̇ −HÞ2; ð4:39Þ

where

α2 ¼
6c2l2ϕ̇2ð1þ 2c2l2H2Þð1þ 4c2l2Hϕ̇ − 2c2l2ϕ̇2Þ

ðH þ 2c2l2ϕ̇3 þ 6c2l2H2ϕ̇ − 6c2l2Hϕ̇2Þ2 :

ð4:40Þ

The background scalar field equation is given by

4c2l2ðϕ̇ −HÞ3 ¼ C
a3

: ð4:41Þ

For C ¼ 0, the solution is uniquely determined as ϕ̇ ¼ H,

and hence qðuÞs ¼ 0. If C ≠ 0, then ϕ̇ −H is nonzero and

evolves as ϕ̇ −H ∝ a−1. In the regime c2l2H2 ≪ 1, qðuÞs

approaches 0 on an expanding FLRW background. Thus, as
first pointed out in Ref. [58], the strong coupling problem is
present for scalar cosmological perturbations in 4DEGB
gravity.

V. CONCLUSIONS

In this paper, we have studied cosmology in four-
dimensional theories arising from an infinite sum of
Lovelock curvature invariants. This is a generalization of
4DEGB gravity, in which the contribution of the higher-
dimensional GB term is obtained through a rescaling of
the coupling constant. Under a conformal rescaling of the
metric g̃μν ¼ e−2ϕgμν, the four-dimensional Lagrangian is
obtained via dimensional regularization of the form (2.5),
which is evaluated for each value of n ¼ 2; 3;…. Taking
the infinite sum over n, the resulting action falls within a
subclass of shift-symmetric Horndeski theories. The total
Horndeski functions G2;3;4;5ðXÞ are determined by speci-
fying the coefficients cn in Eqs. (2.7)–(2.10). In the main
part of the paper, we considered two different choices for
cn, namely cn ¼ 1 (Model 1) and cn ¼ ½1 − ð−1Þn�=ð2nÞ
(Model 2). In the Appendix, we further analyzed the case
cn ¼ 1=n (Model 3).

In Sec. III, we studied the background cosmological
dynamics and showed that the solution for the scalar field
current J is given by J ¼ C=a3. Since J is proportional to
ðϕ̇ −HÞ3 for each value of n, this property is preserved
even when taking the infinite sum over n. For C ¼ 0, there
exists a solution with ϕ̇ ¼ H, as confirmed in Models 1, 2,
and 3. In the presence of a matter fluid such as radiation,
this solution can give rise to singularity-free inflation with
H bounded from above, even in the asymptotic past. In
Models 1 and 2, the Hubble parameter can be expressed as
Eqs. (3.23) and (3.30), respectively, indicating that the
inflationary period with a nearly constant expansion rate
H ≃ l−1 is followed by the radiation-dominated era char-
acterized by H ≃ ffiffiffiffiffiffiffi

ρmi
p

=ð ffiffiffi
3

p
a2Þ. For C ≠ 0, the difference

between ϕ̇ and H is quantified by a time-dependent
parameter, ϵðtÞ, appearing in Eq. (3.24). In Models 1, 2,
and 3, we estimated jϵðtÞj by Eqs. (3.26), (3.31), and (A6),
respectively, in the regime jϵðtÞj ≪ 1. In all these cases,
jϵðtÞj approaches 0 in the limit a → 0.
In Sec. IV, we studied the consistency of cosmological

solutions in regularized Lovelock gravity by applying the
linear stability conditions for Horndeski theories previously
derived in the literature. A common feature is that, along
the solution ϕ̇ ¼ H, the kinetic term of the scalar field

perturbation vanishes at all times [i.e., qðuÞs ¼ 0]. This
strong coupling problem arises not only in models with
individual powers of n, but also persists in models con-
structed by taking the infinite sum over n. In other words,
this problem cannot be circumvented by choosing specific
values for the coefficients cn. Unlike in some Horndeski
genesis scenarios where strong coupling occurs only in the
asymptotic past [40,41], scalar perturbations along the
solution ϕ̇ ¼ H are infinitely strongly coupled throughout
the cosmological evolution. Moreover, we have shown that
tensor perturbations exhibit Laplacian instabilities during
inflation in all of Models 1, 2, and 3.

For C ≠ 0, i.e., when ϕ̇ slightly deviates fromH, qðuÞs does

not vanish. However, both qðuÞs and c2s diverge in the limit
a → 0, with negative values of c2s inModels 2 and 3. Despite
the finite background kinetic term ϕ̇2, the energy density of
the scalar field perturbation diverges at the onset of inflation.
Moreover, even when C ≠ 0, we found that c2t is negative
during inflation in all of Models 1, 2, and 3. These results
indicate that, both for C ¼ 0 and C ≠ 0, the use of a
homogeneous cosmological background is not justified
due to the dominance of inhomogeneities in the universe.
We have thus shown that the four-dimensional theory

obtained from the infinite sum of Lagrangians given in
Eq. (2.5) does not yield a stable and physically viable
inflationary solution that replaces the big bang singularity.
It would be interesting to investigate whether spherically
symmetric and static BHs or planar BHs in four dimensions
[44], which may also exist in the same theory, exhibit
similar pathologies. In 4DEGB gravity, it is known that
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strong coupling and instability issues arise for spherically
symmetric BH solutions that respect asymptotic flatness
[61]. Since the present four-dimensional theory belongs to
a subclass of Horndeski theories, it should be straightfor-
ward to analyze the behavior of perturbations by using the
linear stability conditions for spherically symmetric BHs
derived in full Horndeski theories [68–71].
There are several ways to avoid the strong coupling

problem in 4DEGB gravity and its extensions. One
approach is to break four-dimensional diffeomorphism
invariance and construct theories that preserve only
spatial diffeomorphisms within the Arnowitt-Deser-
Misner (ADM) framework [63]. Since the dynamical
scalar degree of freedom is absent in such a scenario,
constructing nonsingular cosmological or BH solutions
may be challenging, even when an infinite sum of curvature
invariants is considered. However, when applied to cos-
mology and BH physics by including additional propagat-
ing degrees of freedom, such a theory should give rise to
distinctive observational signatures—for instance, modifi-
cations to the non-Gaussianities of inflationary gravita-
tional waves [72].
Another approach to avoiding the strong coupling

problem is to introduce a four-dimensional action of the
form −M̄2

R
d4x

ffiffiffiffiffiffi
−ḡ

p
R̄ in addition to the Einstein-Hilbert

action [73], where barred quantities are defined with
respect to the conformally rescaled metric ḡμν ¼ e−2ϕgμν.
Below a cutoff scale M̄, this prescription opens up the
possibility of avoiding the strong coupling problem that
arises in GR with trace anomalies [60]. Indeed, it was
shown in Ref. [74] that spherically symmetric and static BH
solutions in the new gravitational theory with trace anoma-
lies suffer from neither strong coupling nor instability
problems. While this is an effective field theory valid up
to the scale M̄, it may be of interest to extend the analysis to
the higher-dimensional spacetime and to investigate the
implications of taking an infinite sum of curvature correc-
tions. These issues are left for future work.
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APPENDIX: MODEL 3

In this appendix, we address the linear stability of
cosmological solutions for a model given by

cn ¼
1

n
ðModel 3Þ: ðA1Þ

In this case, the Horndeski functions take the following
form:

G2ðXÞ ¼ −Λ −
2Xð3 − 10l2XÞ
ð1 − 2l2XÞ2 −

3

l2
lnð1 − 2l2XÞ;

G3ðXÞ ¼ −
2l2Xð1þ 2l2XÞ
ð1 − 2l2XÞ2 ;

G4ðXÞ ¼
1

2ð1 − 2l2XÞ ;

G5ðXÞ ¼ −
l2

1 − 2l2X
þ 2l2 tanh−1 ð1 − 4l2XÞ: ðA2Þ

The background equation for the scalar field is expressed as

J ¼ 2l2ð1þ 3l2ϕ̇2Þ
ð1 − l2ϕ̇2Þ3 ðϕ̇ −HÞ3 ¼ C

a3
: ðA3Þ

For C ¼ 0, there exists a solution ϕ̇ ¼ H. SettingΛ ¼ 0 and
including radiation in the matter sector (with energy density
ρm ¼ ρmia−4), the background equations of motion along
the solution ϕ̇ ¼ H are given by

H ¼ 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − expð−a4m1

=a4Þ
q

; ðA4Þ

where am1
¼ ðl2ρmi=3Þ1=4, and

Ḣ ¼ ϕ̈ ¼ −
2

3
ð1 − l2H2Þρm: ðA5Þ

In the limit a → 0, H approaches a constant value l−1. The
inflationary period, which occurs in the regime a ≪ am1

, is
followed by the radiation-dominated era for a≳ am1

.
When C ≠ 0, the difference between ϕ̇ and H can be

quantified by the expression given in Eq. (3.24). Expanding
in small values of ϵðtÞ, we obtain

jϵðtÞj ≃
� jCj
2l2ð1þ 3l2H2Þ

�
1=3 expð−a4m1

=a4Þ
aH

; ðA6Þ

where we used Eq. (A4). In the limit a → 0, jϵðtÞj
approaches 0. To keep the condition jϵðtÞj ≪ 1 during
inflation, we require that jCj ≪ a3m1

=l.
The quantities relevant to the linear stability of tensor

perturbations are given by

qt ¼
1 − l2ϕ̇ð3ϕ̇ − 2HÞ

ð1 − l2ϕ̇2Þ2 ; ðA7Þ

c2t ¼
1þ l2ð2ϕ̈ − ϕ̇2Þ
1 − l2ϕ̇ð3ϕ̇ − 2HÞ : ðA8Þ

Along the solution ϕ̇ ¼ H, we find
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qt ¼ expða4m1
=a4Þ; c2t ¼

a4 − a4m1

a4
; ðA9Þ

both of which diverge in the limit a → 0. In particular,
during inflation (a ≪ am1

), c2t ≃ −a4m1
=a4, and hence

tensor perturbations are subject to Laplacian instabilities.

Since qðuÞs is proportional to ðϕ̇ −HÞ2, we have

qðuÞs ¼ 0; ðA10Þ

along the solution ϕ̇ ¼ H. The squared scalar propaga-
tion speed is expressed in the form (4.21), so that c2s is
undetermined for ϕ̇ ¼ H.
For C ≠ 0, we consider the solution ϕ̇ ¼ H½1þ ϵðtÞ�,

where ϵðtÞ ¼ ϵ0a−1 expð−a4m1
=a4Þ in the regime a ≪ am1

.
Using the leading-order solution for H given in Eq. (A4)
and performing the expansion around a ¼ 0, it follows that

qt ¼ a expða4m1
=a4Þ

�
−

1

ϵ0
þOðaÞ

�
; ðA11Þ

c2t ¼ −
2a4m1

a4
þOða−3Þ; ðA12Þ

qðuÞs ¼ a expða4m1
=a4Þ

�
−

1

3ϵ0
þOðaÞ

�
; ðA13Þ

c2s ¼ −
2a4m1

a4
þOða−3Þ: ðA14Þ

Thus, both tensor and scalar perturbations exhibit
Laplacian instabilities during inflation. Ghosts are present
for ϵ0 > 0 and absent for ϵ0 < 0. These properties are
analogous to those observed in Model 2.
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