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We employ well-known concepts from statistical physics, quantum field theories, and general topology to
study magnetic reconnection and topology change and their connection in incompressible flows in the context
of an effective field theory without appealing to magnetic field lines. We consider the dynamical system
corresponding to wave packets moving with Alfvén velocity X(7) := V4 (X, t) whose trajectories x(¢) define
pathlines, which naturally provides a mathematical way to estimate the rate of magnetic topology change. A
considerable simplification is attained, in fact, by directly employing well-known concepts from hydrodynamic
turbulence without appealing to the complicated notion of magnetic field lines moving through plasma, which
may prove even more useful in the relativistic regime. Continuity conditions for magnetic field allow rapid but
continuous divergence of pathlines, shown to imply reconnection, but not discontinuous divergence, which would
change topology. Thus, topology can change only due to time-reversal symmetry breaking, e.g., by dissipative
effects. In laminar and even chaotic flows, the separation of pathlines at all times remains proportional to
their initial separation, argued to correspond to slow reconnection, and topology changes by dissipation with
a rate proportional to resistivity. In turbulence, pathlines diverge superlinearly with time independent of their
initial separation, i.e., fast reconnection, and magnetic topology changes by turbulent dissipation with a rate
independent of small-scale plasma effects. The crucial role of turbulence in enhancing topology change and
reconnection rates originates from its ability to break time-reversal invariance and make the flow superchaotic.
In fact, due to the loss of Lipschitz continuity of the magnetic field in turbulence, pathlines separate superlinearly
even if their initial separation tends to vanish, unlike deterministic chaos. This superchaotic behavior is an
example of spontaneous stochasticity in statistical physics, sometimes called the real butterfly effect in chaos
theory to distinguish it from the butterfly effect, in which trajectories can diverge exponentially only if initial
separation remains finite. If 3D reconnection is defined as magnetic topology change, it can be fast only in
turbulence where both reconnection and topology change are driven by spontaneous stochasticity, independent

of any plasma effects. Our results strongly support the Lazarian-Vishniac theory of turbulent reconnection.
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I. INTRODUCTION

In astrophysics, magnetic reconnection has been invoked
both as a main mechanism that governs the underlying dy-
namics at large scales, e.g., in launching outflows in stars
and accretion disks, and also as an accompanying process
working in the background. It has been suggested, as an ex-
ample for the latter, that reconnection regulates the structure
of a strongly magnetized corona [1]. Reconnection is widely
thought to be intimately related to the magnetorotational insta-
bility (MRI) [2,3] and Parker-Rayleigh-Taylor instability [4],
which might in turn interfere with or enhance the reconnection
rate [5]. Reconnection may also affect the saturation rate
of the MRI and the generation of nonthermal particles [6].
It is now widely believed that astrophysical reconection (i)
is a ubiquitous process occurring in different systems from
the solar surface to highly conducting accretion disks; (ii)
is fast, i.e., with a rate orders of magnitude faster than the
resistive rate; (iii) is responsible for a variety of other phenom-
ena such as particle acceleration and plasma heating, and in
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astrophysical systems; and (iv) proceeds in turbulence as as-
trophysical flows are mostly turbulent. For a recent review
covering these aspects in detail, see e.g., [7].

Magnetic reconnection seems to be ubiquitous in astro-
physics, with a vast literature (see [8,9] for a recent review).
Yet, there seems to be no consensus on its definition and
its relation to magnetic topology change. In fact, sometimes
hand-waving arguments based on magnetic field lines in 2D
setups seem to be generalized to 3D without any mathe-
matical or physical justification. For example, reconnection
is sometimes understood or defined as a magnetic topology
change. However, this notion, which seems to originate from
2D setups where the field line connecting plasma element
A to another element B at time 7y, connects A to C but not
B at a later time ¢, is inadequate to describe 3D configura-
tions. In 2D reconnection, there is necessarily a discontinuous
change in magnetic connectivity, implying a topology change
(leading to different regions with different “topologies” sepa-
rated by separatrices). In 3D, on the other hand, this process
can proceed without any discontinuous change in magnetic
connectivity (thus without topology change and no separa-
trices) because there is “enough” space for field lines to
flip [10].

Our aim in this paper is to present a formalism to under-
stand reconnection, magnetic topology and topology change
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without invoking the concept of magnetic field lines, their mo-
tion through plasma, or the notion of flux freezing in laminar
[11] or turbulent flows [12]. These concepts have, of course,
been greatly reformulated and refined in the last decades, in
particular for turbulent flows (e.g., see [12-16]). However, a
much simpler picture seems to arise using magnetic pathlines,
instead of field lines, which is what we will do in this paper.
This approach may also prove very useful in the relativistic
regime, where appealing to the notion of magnetic field lines
becomes even more problematic. Consider small magnetic
disturbances or wave packets moving along the local magnetic
field with Alfvén velocity V4.! These magnetic excitations or
“Alfvénic wave packets” will be taken as fluid particles in a
Lagrangian description, i.e., we will consider wave packets as
particles moving with Alfvén velocity and study their trajec-
tories and the corresponding topology.

Magnetic field lines provide a powerful notion in many
problems; nevertheless, their behavior in real plasmas seems
to be complicated enough that other simpler approaches could
be appreciated. At any given time #), magnetic field lines
are defined as parametric curves, e.g., £(s; #p) with arc-length
parameter s, which provide a “pattern” for the field in real
space at a given time, i.e, a “snapshot” of the field. In real
astrophysical fluids, which are turbulent, field lines become
stochastic and the notion of a single field line loses its meaning
unless a proper coarse-graining is applied, i.e., field lines of
the average, large-scale field are considered [7,15]. Also, the
pattern of field lines in 3D may change abruptly at a later time
to + 6t as these curves do not evolve smoothly in time; see the
middle panel in Fig. 1. Magnetic pathlines, i.e., trajectories
of Alfvénic wave packets, provide an alternative tool (see
below).

If astrophysical magnetic fields can indeed undergo sudden
changes in real space, plasma outflows can be considered as
a secondary effect, observed as reconnection events. Alfvén
wave packets follow the local field; hence, their trajectories
provide a footprint of these changes in the field. Mathe-
matically, the study of these trajectories, i.e., solutions of
x(t) = V4(x(2), 1), is analogous to the Lagrangian dynam-
ics in hydrodynamics. For example, we are interested in the
separation of two such trajectories, i.e., |x(t) — y(¢)| at time
t, which is related to Lyapunov exponents of the dynamical
system X = V4, or assuming incompressibility and absorbing
density to the magnetic field’s definition, x(¢t) = B(x(¢), t)
where magnetic field B satisfies the induction equation.” The
corresponding phase space (x, B) contains all possible states
of this dynamical system which describes the motion of a
single wave packet. For N wave packets, we deal with an
N-body system with 6N dimensional phase space, and thus
in the fluid approximation, the phase space would be infinite-
dimensional.

'This is motivated by the concept of quasiparticles in quantum
field theories, where, e.g., vibrational modes in a crystal are taken
as quasiparticles (phonons). Our approach is, however, much simpler
here as we treat these entities as classical Lagrangian particles in fluid
approximation.

2Throughout this paper, we assume a suitable nondimensionaliza-
tion, e.g., using an integral length scale L and large-scale field By.

We will employ a physically intuitive and mathematically
careful approach to magnetic topology in this paper. Topology
is concerned with those properties of spaces that remain
invariant under any continuous deformation, i.e, stretching
and bending without cutting. Two objects (spaces) A and
B (e.g., a solid ball and a cube) have the same topology if
nearby points on A are mapped onto nearby points on B and
vice versa: i.e., nearby points are not discontinuously mapped
to points far away from each other. This means that there
is a continuous, one-to-one and onto map from A to B with
a continuous inverse (i.e., a homeomorphism). Thus, if we
deform object A (magnetic field at time ¢) to make object
B (magnetic field at time 7 & §¢), topology is preserved if
nearby points are mapped onto nearby points, i.e., the distance
between points is continuous in time. If the map from A to B
is not onto and one-to-one, then points are “destroyed” during
deformation, thus topology will change. It means that the time
evolution of A (magnetic field at time #) to B (magnetic field
at time ¢ = &¢) does not respect time reversal symmetry. For
example, dissipation in a magnetized plasma annihilates wave
packets and breaks time-reversal symmetry, thus changing
magnetic topology.

Roughly speaking, for a magnetic field continuous in
space and time, we expect ‘“smooth deformation” in time—
no discontinuous jump in its values or abrupt change in its
direction. Therefore, wave packets should move with a contin-
uous velocity V4(Xx, ¢) on continuous trajectories,3 otherwise,
we would expect a “topology change.” Hence, for magnetic
topology to be preserved in time, we expect that nearby wave
packets, at time #, should remain nearby at a slightly different
time ¢ & §¢. In fact, because of Lipschitz continuity of mag-
netic field (see Sec. II), this intuitive notion is equivalent to
the following statement: nearby wave packets moving with
almost the same velocity, at time ¢, should remain nearby,
moving with almost the same velocity, at a slightly different
time ¢ & §t* This simply means that the metric topology of the
phase space (x, B), at any time ¢, is the same as its topology at
a slightly different time ¢ & §¢, i.e, the topology is preserved
(see Sec. II A). As we will see, dissipation causes the volume
of the phase space to contract. Eventually, over time 77, the
magnetic field completely diffuses away, and the phase-space
dimension (initially infinite) approaches zero. Thus, the dis-
sipation rate 1/7y can be taken as the rate of change of
dimension, from infinity to zero. On the other hand, dimension
is a topological invariant, i.e., its change means topology
change, thus the rate of topology change can be similarly
defined as 1/77. We will see that reconnection corresponds
to rapid but continuous separation of these trajectories. Dis-
continuous divergence, which is not allowed if B is uniformly
Lipschitz continuous, would lead to topology change (nearby
points not mapped onto nearby points). Dissipation, which
breaks time-reversal invariance by annihilating wave packets,
can cause topology change in real dissipative systems; see
also Fig. 1. Mathematically, dissipation destroys the onto and

3Mathematically, this is because Alfvénic trajectories x(¢) solve
x(t) = B with smooth B.

“This argument can be easily made mathematically precise using
the €8 definition.
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FIG. 1. Reconnection vs magnetic topology change. Left: the topology of an object, e.g., a solid cylinder, is preserved under a deformation
as long as it involves only stretching and bending, but not cutting and gluing. Mathematically, such a deformation translates into a continuous
mapping: nearby points are mapped onto nearby points. Since such a deformation must be reversible, the map must have a continuous
inverse. Also, every point must be mapped to one and only one point (no point being destroyed), i.e., the map must be one-to-one and
onto. Hence, topology is preserved under such continuous, one-to-one and onto maps with a continuous inverse (i.e, homeomorphisms). A
solid cylinder, for example, is homeomorphic to a solid cube but not to a ball with a hole in it, making which requires cutting. Middle: Instead
of deforming geometrical objects, consider time evolution of magnetic field and instead of points on objects, consider wave packets, moving
along the field B(x, ¢) with the local Alfvén velocity, dx(t)/dt = V4(x(t), t). Magnetic topology is preserved if initially nearby magnetic
wave packets remain nearby at a slightly later time. This provides an intuitive topology for a continuous field, which would change only
due to dissipation (in the presence of which, the mapping is not one-to-one and onto anymore due to time-reversal symmetry breaking).
Right: Rate of continuous separation of Alfvénic trajectories determines reconnection rate; in nonturbulent flows, the rate depends on initial
separation (slow), but in turbulence it is superlinear in time and independent of initial separation (fast). Topology change would correspond
to (i) discontinuous divergence of wave packets (not allowed by continuity of B) and/or (ii) resistive dissipation or turbulence, which breaks
time-reversal invariance.
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one-to-one properties of the mapping, i.e., time evolution. The
aim of this paper is to make these statements mathematically
precise, and show how the emerging formalism can help gain a
deeper and simpler picture for both reconnection and topology
change. Incidentally, from now on, we will assume incom-
pressibility, absorbing density to the redefinition of magnetic
field, with an appropriate nondimensionalization as B = Vy;
see also Fig. 2.

As for the detailed plan of the present work, in the follow-
ing section, we first consider the divergence of Alfvénic wave
packets, recovering the fast Lazarian-Vishniac reconnection
rate [7,15,17] in turbulent plasmas. Then, we will focus on
magnetic topology, using dynamical systems theory, and es-
timate its rate of change in both laminar and turbulent flows.
The physical implications and connections to previous work
will be discussed in the Discussion.

065212-3



AMIR JAFARI

PHYSICAL REVIEW E 111, 065212 (2025)

FIG. 2. Magnetic “pattern,” at any given time, is determined by
providing a vector B at each point x in real space. Because the
field evolves in time, the pattern changes, so we can follow wave
packets at points x in space moving with the local Alfvén velocity
V4 o B. These pairs of coordinates correspond to points in the space
(x, B), which is the phase space of the dynamical system x = B,
with B solving the induction equation. Thus, magnetic topology can
be understood as the metric topology of this phase space. “Metric”
topology means that we simply use the Euclidean distance between
points, such as (x, B(x)) and (y, B(y)); see Eq. (6). This metric en-
forces the intuitive notion that nearby wave packets at time # remain
nearby at a slightly earlier or later time ¢ + 4t.

II. LAGRANGIAN FORMALISM

Astrophysical reconnection is understood to involve rapid
changes in magnetic field configuration; thus, trajectories of
Alfvénic wave packets, i.e., pathlines, can rapidly diverge
during reconnection. The dynamics of the solutions, pathlines
or Alfvénic trajectories, is in fact similar to Lagrangian dy-
namics in fluid mechanics—Alfvén velocity plays the role of
the velocity field. As far as reconnection is concerned, one
important quantity is what is known as two-particle diffusion
in fluid dynamics, i.e., the separation (divergence) of any pair
of trajectories over time; see e.g., [18]. In the following, we
will see how this simple notion, when applied to wave packets,
explains fast reconnection in turbulence and also clarifies the
distinction between topology change and reconnection.

The Lipschitz continuity of the magnetic field means that
B(x,7) —B(y, )| < C|x — y|" for some real C > 0 and 0 <
h < 1. Consider the spatial separation of two arbitrary wave
packets x(7) and y(¢) at time ¢, which were initially separated
by A(t = 0) := A,.” Using this and taking the time derivative
of A(t), we arrive at dA(t)/dt < C[A®)]", with a simple

3Several notations exist in Lagrangian dynamics to denote the La-
grangian flow map, i.e, the map from particle’s initial point Xy :=
x(r = 0) to its final point xjo(xo) at time . We will simply use x(7)
for the position of the particle at time ¢, implicitly assuming that its
initial position x(# = 0) = X is given.

solution:
A) < [AF" 4 € =) —10)] . (1)

In nonturbulent flows, & — 1, thus A(r) < AgeCl), At
long times, assuming a near Holder equality, we get A(f) ~
AgeC=0) for a chaotic flow with Lyapunov exponent C; im-
plying that the initial conditions (i.e., the value of Ag) are
never forgotten. The important point is that in the limit, when
the initial separation goes to zero, even for a chaotic flow, the
final separation vanishes:

Alimo |x(#) —y()| — 0, (laminar/chaotic flow). (2)
0—>

On the other hand, for 0 < h < 1, we find A(¢) >~ [C(1 —

h)(t —1y)] ﬁ, which implies that the information about initial
conditions is lost! In other words, no matter how small the
initial separation is, the wave packets separate superlinearly
with time:

(1) — y(t)| ~ t 75, (turbulent flow). 3)

For h = 1/3, corresponding to the Kolmogorov scaling for
velocity field [19], we get Richardson law [20] (which predicts
superdiffusion of particles |x(t) — y(¢)| ~ et® with energy
dissipation rate per mass €.). The Holder continuity for the
magnetic field, i.e., 0 < h < 1, results from the well-known
effect of anomalous dissipation in turbulent plasmas; see e.g.,
[21]. In a turbulent flow with velocity field u, the kinetic
energy is viscously dissipated at a rate €, = v|Vul|?, while the
magnetic energy is dissipated at a rate €, = | VB|? (with vis-
cosity v and resistivity n). In fully developed turbulence, the
Reynolds number R, = LU /v and magnetic Reynolds number
R,, = LU /n, with characteristic length and velocity L, U, are
high, i.e., one can take the limit of vanishing viscosity and
resistivity; see also Egs. (16) and (17) in Sec. II D. Thus, one
may naively expect that the viscous or resistive energy dissipa-
tion rate should vanish in these limits, i.e., lim,_, ¢ v|Vu|2 —
0 and lim, ¢ 17|VB|2 — 0. However, in turbulence, experi-
ments and numerical simulations indicate otherwise (see [22]
and references therein). In a fully turbulent fluid, no matter
how small we take the viscosity or resistivity, the viscous
dissipation rate as well as the magnetic dissipation rate remain
finite: lim,_ov|Vu|> -» 0 and lim,_o7n|VB|> - 0. These
dissipative anomalies indicate that the spatial derivatives of
velocity and magnetic fields should blow up, i.e., the field
becomes Holder singular® which implies ill-defined spatial
derivatives and hence ill-defined MHD equations (see e.g.,
[14,21-24]). In order to remove such singularities, one may
use the coarse-grained field B, defined by Eq. (11), and work
with the “average” field at larger scales; see Sec. II C.

5The real vector field B(x) is Holder continuous in x € R" if
B(x) —B(y)| < Clx —y|" for some C > 0 and h > 0. If h = 1, for
any x,y, B is uniformly Lipschitz continuous. Also, B is called a
Holder singular if 0 < 2 < 1. A uniformly Lipschitz function f(x),
i.e., one which satisfies | f(x) — f(y)| < Cylx — y|r for some Cr >
0 with iy = 1, has a bounded derivative, i.e., | f'(x)| < M for some
M > 0. In contrast, the derivative of a Holder singular function f,
i.e., one which satisfies | f(x) — f(y)| < Cylx — y|"r for some Cy >
0 with 0 < hy < 1, can blow up; | f'(x)| > oo.
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Equation (3) implies that the mean square separation of
wave packets scales as (|A(7)|?) ~ = Thus, averaging over
in a reconnection zone of scale L, it will take one Alfvén time,
ta = L/Vy, for wave packets to leave the reconnection zone,
during which they will on average separate by the distance

L \1/1-h
W
The reconnection speed V.. ~ V4A/L (which results from

mass conservation in a zone of length L and width A) is thus
given by

Altg) ~ /17 ~ (

L )h/lfh. @

Viec Va A/ L <VA
Assuming h = 1/3, similar to the turbulent velocity field (see
e.g., [21], Sec. IV), we arrive at the Lazarian-Vishniac recon-
nection speed [17] (see also [15] Sec. 3). Contrast the above
estimate’ with the reconnection rate due to Ohmic diffusion
of wave packets, (|A(t4)|?) ~ nta, ie.,

V,
VP ~ VAAJL ~ (qVa/L)'* = 7%

where S :=V4L/n is the Lundquist number. This result,
the Sweet-Parker speed [25,26], is extremely slow in any
astrophysical setting due to typically very large Lundquist
numbers; see e.g., [7,27]. These results, of course, are not
new: we have simply recovered them here without appealing
to the notion of field line diffusion. In the following subsec-
tions, we will also see that our approach not only clarifies
the concept of magnetic topology and distinguishes it from
reconnection, but it also provides an estimate for the rate of
topology change. In fact, it turns out that magnetic topology
in laminar flows changes with a rate proportional to resistivity;
see Eq. (10).

Rapidly diverging trajectories even in the limit of their van-
ishing initial separation, associated to spontaneous stochas-
ticity or the “real” butterfly effect [28], differ from simple
deterministic chaos (the butterfly effect). In the former case,
the dynamics is singular (e.g., magnetic field is Holder so
x =B has nonunique solutions) and randomness of trajec-
tories persists at finite times even in the limit of vanishing
noise.® This is distinct from simple deterministic chaos in
which predictability times can be lengthened arbitrarily by
reducing noise, since the final solution always remains pro-
portional to the initial conditions. This is, incidentally, the
primary reason why the weather (governed by Navier-Stokes
equations) cannot be forecasted for more than almost two

"In a more quantitative approach, one can use the energy dissipa-
tion rate, € = ui /V4L;, from MHD turbulence theory in A%(t) = et?
(h=1/3), to obtain V.. >~ V, MMj where M, is the Mach number,
L; is the energy injection scale, and u;, is the (isotropic) injection
velocity. This is Eq. (3.12) in [15] which was obtained using an
argument based on “field line diffusion.”

80f course, the limit of vanishing viscosity v only means con-
sidering smaller and smaller viscosities, rather than taking a zero
viscosity v = 0, which is unphysical. This definition of mathematical
limit in physics is assumed to be understood in other areas, e.g.,
thermodynamics, too.

weeks: this time cannot be lengthened even with more ad-
vanced technology (the real butterfly effect).” On the other
hand, in simple chaos (the butterfly effect), such predictabil-
ity times can be lengthened by reducing noise (e.g., by
making initial separation of trajectories arbitrarily smaller).
Spontaneous stochasticity can be regarded as “superchaos”
associated with the formation of singularities in the dynam-
ics and consequent divergence of Lyapunov exponents to
infinity. Vanishingly small random perturbations can then
be propagated to large scales in a finite amount of time.
Extremely small but unavoidable sources of noise, such as
thermal fluctuations, have been shown to easily trigger spon-
taneous stochasticity in turbulence [30]. These statements
explain why, in the above calculations for a turbulent flow,
we employed mean square separation: The very notion of a
Lagrangian trajectory breaks down in turbulence since the
system is spontaneously stochastic and trajectories remain
intrinsically random in fully developed turbulence. This effect
is in fact intimately related to the old, well-known notion
of Richardson (two-particle) diffusion (for a brief and nice
discussion of Richardson diffusion and its connection to spon-
taneous stochasticity, see [12]). At large (inertial) scales, the
singularity can be removed by a coarse-graining procedure
which leads to a smooth, large-scale magnetic field on any
inertial scale [; see Sec. IIC.

A. Magnetic topology'®

Because the magnetic field evolves in time, interacting
with the velocity field, we have a nonautonomous dynamical
system:

. dx(t) _
X = pra B(x(t),1),
B::W:—VXE, (5)

where x(#) denotes a trajectory. The corresponding phase
space is (x, B), which has a metric topology imposed by the
Euclidean metric

A, = VB(x, 1) — By, )P + [x — yI, (6)

which defines magnetic topology in an intuitive way, as dis-
cussed in the Introduction. Because homeomorphisms have,

°A nice discussion of this effect in weather forecasting, along with
historical notes regarding E. Lorenz’s pioneering work, can be found
in the popular book by T. Palmer: The Primacy of Doubt [29].

10A topology on a set X is defined as the collection of subsets of
X, denoted by T, such that (i) any arbitrary union of elements of T
belongs to 7', (ii) any finite intersection of elements of 7' belongs to
T, and (iii) the empty set and X both belong to T. We call (X, T)
a topological space. The elements of T are called open sets. For
instance, take X = R? and define the open sets, i.e., elements of 7T,
as open balls in R*. (An open ball around a point X, is the set of all
points x such that |x — x¢| < r, i.e., all points with a distance less
than r from x,. In R open balls are open intervals.) This topology,
defined invoking the notion of distance between points in a set, is
called metric topology, to be extensively used in the present paper.
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by definition, a continuous inverse, hence one condition for
magnetic topology to be preserved is that its time evolution,
hence equations of motion, should be invariant under time
reversal; t — —t. In a vacuum, the electric field is even under
time reversal, E(—t) = +E(¢) while the magnetic field is odd,

e., B(—t) = —B(¢). Consequently, the Faraday equation,
0B = —V x E, respects time reversal invariance as expected.
In real fluids with finite resistivity and viscosity, however,
the time reversal symmetry is broken. Nonideal terms such
as resistive electric field nV x B in Ohm’s law break the
time symmetry in the induction equation, which governs the
evolution of the magnetic field:

3B =V x (uxB—nV xB), 7)

where u is the velocity field solving the Navier-Stokes equa-
tion. Hence, in general, B(—t) # £B(¢). Consequently, the
topology of the bare magnetic field B(x, ¢) is not preserved
in a real fluid.

In laminar flows, the magnetic field is continuous in time
and Lipschitz continuous in space, hence A, is continuous
and trajectories x(¢) are uniquely defined. However, the time-
reversal symmetry is broken by nonideal effects such as
resistivity. In the phase space (x, B), dissipation contracts
any set of initial conditions to a single dimensionless point;
thus, the topology changes because dimension is a topological
invariant. However, discontinuous changes in topology are not
allowed due to continuity, and magnetic topology is nearly
preserved, i.e., it changes only with a rate proportional to
resistivity. Thus, fast laminar reconnection, if it exists, cannot
involve topology change.

In real astrophysical flows, on the other hand, B is Holder
continuous, i.e., 0 < h < 1, due to turbulence. As a result,
trajectories x(¢) are nonunique with diverging Lyapunov ex-
ponents, i.e, the system is spontaneously stochastic. However,
what can physically be measured is the renormalized (coarse-
grained) magnetic field B; obtained by integrating out the
small degrees of freedom over a spatial region of scale [ > 0
rather than the mathematical field B(x, ¢) at a single space-
time point (X, ). The renormalized field B; is smooth and
solutions of x(¢) = B;(x(t), t) are unique, but the renormal-
ized (large-scale) topology associated with B; can still change
by nonlinear turbulent effects due to time reversal symmetry
breaking. In the following two subsections, we estimate the
rate of topology change in laminar and turbulent flows. We
will see that in laminar flows, magnetic topology changes with
a rate proportional to resistivity, thus it is almost preserved
for highly conducting plasmas. Nevertheless, in turbulence,
topology changes on any inertial scale / with a rate indepen-
dent of small-scale plasma effects (Sec. II D).

B. Topology change in laminar flows

Because the dimension of a mathematical space is a topo-
logical invariant, i.e., it is preserved under homeomorphisms,
its change implies a topology change. For instance, in map-
ping a three-dimensional solid ball to a two-dimensional
surface, topology changes because of the change in dimen-
sion (thus the mapping is not a homeomorphism). Invoking
this simple mathematical notion, we will obtain the rate of
magnetic topology change in laminar (see below) as well as in

turbulent flows (Sec. II D). Let us consider the rate of topology
change for the dynamical system corresponding to the bare
[i.e., not renormalized; see Eq. (12) below] induction equation
given by Eq. (7):

x=B(x(),7), B=Vx@mxB—-yVxB), (8
which may also be written in a more compact form as

d X B(X([) l)

where Fand G := V x (u x B — nV x B) are functionals of
B (and u, suppressed here for brevity). For a general dissipa-
tive dynamical system with N particles described by x(¢) =
f(x(t)), a solid ball of initial conditions in the 6N dimensional
phase space (x, f) contracts with the rate 7~! = |V.£|.!! Thus,
due to dissipation, the initial 6N-dimensional ball will con-
tract to a dimensionless point, i.e., the dimension of the region
changes as well. On the other hand, dimension is a topological
invariant; thus, its change indicates topology change with the
same rate T ~'. In our fluid approximation, in which magnetic
wave packets are treated as parcels of fluid, the dimension of
phase space is infinite, so the dissipation rate is the inverse of
the time it takes for the dimension to decrease from infinity to
zero. Thus, our aim is to obtain the rate 7, I'.— V.F, for the
system (9) using the gradient operator in the phase space, i.e.,
V= (%, %). Because V4.B = 0, the x derivatives vanish
and the remaining functional derivative can be evaluated as
follows:

8G[B; x] . )
8By(x')  8B,(X)

[(Vx x (1 x B)); + nAxByi]
1)

= 5By (x /)[Eljkellnja i(uiBy,) + nAxBy]

[€:jc€in;0; (w1 8mnd (x — X')

+1 8k Axd (x — X))

Therefore,
. Z///d3 8Gi[B;x]
OBi(x)
//f d’x[ = 2849; (1183 (0)) + 372483 (0)]
= [ = 2V.(u8} (0)) + 3n(Ax83 (0) ][V
=7 (3VAX51(0)), (10)
where  83(X) = 3 X jop € hence A3 (0) =

(1/V) Yk (—Kk*) = const., in real-space volume V.
Note that in order to have a physically meaningful continuum
limit, there is a high-wave number cutoff in the velocity

"'To see this, simply note that any volume V (¢) of points in the
phase space (x, f), corresponding to the dynamical system x(¢) = f,
with normal vector n to its surface S(z) changes with time as V (r +
dt) = V(t) + f.n dSdt thus in the limit, V/V = V. £.
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and magnetic fields as well as in the spatial delta-function
83 (x).12

Thus, magnetic topology changes with a rate proportional
to resistivity. In magnetized astrophysical environments, re-
sistivity is typically very small; thus, magnetic topology is
expected to change slowly. Equivalently, we could average the
field (i.e., coarse-grain or integrate out the small degrees of
freedom) over small scales and look at the dynamics at much
larger scales where plasma nonidealities such as resistivity
are negligible.!> The nonideal terms in the corresponding
“coarse-grained” induction equation governing the large scale
field B; on scale [ will be negligible then; i.e., at large scales,
we recover the “ideal” induction equation (see Sec. IIC be-
low), implying very slow topology change, in agreement with
the above conclusion. In the next subsection, we will show
that this is not the case in real astrophysical systems due to
the presence of turbulence. In fact, at large scales, turbulent
effects will dominate which can lead to fast dissipation and
topology change.

C. Renormalized topology

The detailed magnetic field configuration, or magnetic pat-
tern, e.g., on the surface of a distant star, depends on the
resolution available to the observer: a low-resolution, ter-
restrial instrument will obviously detect different magnetic
patterns compared with what a high-resolution instrument on
a satellite closely orbiting the star would. In fact, no matter
how great our resolution is or how close we are to the system,
what we can measure as the magnetic field at point X is the
average field B; in a finite volume of size I3 > 0 rather than
the mathematical vector B(x) defined at point x. The reason,
as mentioned before, is that any instrument can perform a
measurement only in a finite volume in space and cannot
detect the field defined at a single dimensionless (mathemat-
ical) point. Magnetic field measurable in any experiment is a
coarse-grained field B;, which is essentially the average field
over a length scale /. If the measured magnitude and direction
depend on our resolution scale / > 0, and we can only mea-
sure the physical field B; as an average over a length-scale /
and not the mathematical bare field B, what do we mean by the
topology of the field B? The crucial point is that although B;
will differ from B, for [ £ L, but on all (inertial) scales / and
L, both B; and B;, are governed by exactly the same dynamics.
This is the heart of Wilsonian renormalization group (RG)
theory.

The coarse-grained field can be defined using any rapidly
decaying test function ¢ to coarse-grain a given field B(x, t)

12Such ultraviolet (UV) cutoffs (either in momentum or real space)
are required because physical quantities and equations of motion lose
their meaning at very small scales, e.g., scales below the mean-free-
path (gas) or inter-particle distance (fluid) which are still much larger
than the Planck scale! Thus these are in fact effective theories valid
only on “larger” scales. Surprisingly, this well-known notion in many
fields such as statistical physics, high-energy physics and quantum
field theories, is not yet appreciated in some other fields.

BThis serves as the definition of the inertial scales in turbulence.

at a spatial scale / > 0 by writing'*

r d’r
Bix.0) = | ¢(7)Bx+r.05 (11)

/v l B
where ¢(r) = ¢(r) is a smooth and rapidly decaying (scalar)
kernel.’ In fact, the renormalized field B, is the average
magnetic field of a fluid parcel with length scale /. The
coarse-grained induction equation (obtained by multiply-
ing the bare induction equation by ¢(r/l) and integrating)

reads'®

oB
— =V x @ xB —R —P), (12)
using the renormalized Ohm’s law E; 4+ (u x B); = P;, which

can also be written as
E1=PZ+R1—u1 XB[. (13)

Even with a negligible nonideal term P;, the nonlinear term
R, = —(u xB); +w; x B; will be generally large in tur-
bulence. Furthermore, what is really important is its curl,
V x R;, which can be large and dominant in the induc-
tion equation [13]. The turbulent electromotive force (EMF)
& = —Ry, is the motional electric field induced by turbulent
eddies of scales smaller than / and plays a crucial role in
magnetic dynamo theories. However, note that despite its
similarity, this quantity differs from the mean EMF defined
as a statistical average u’ x b’ with fluctuating velocity and
magnetic fields w’, b’, commonly used in mean field theo-
ries. This is because R; is deterministic, unlike mean field
EMF, which is statistical. Also, in defining R; no assump-
tions are made of scale separation between large-scale mean
fields and small-scale fluctuations w’, b’. In addition, R; and
coarse-grained equations above are effective equations which
depend upon an arbitrary length scale /, which may be var-
ied according to the desired resolution of the physics; see
also [32].

At large scales, where small-scale dissipative effects can be
neglected (i.e., ideal Ohm’s law holds in the turbulent inertial
range in the coarse-grained or weak sense), we can write

B,

W:Vx(ul x By —Ry). (14)
In the coarse-grained induction equation, Eq. (14), we can use
the estimate |V x R;| =~ %|8u(l) x 6B(l)| with increments

4Coarse-grainig is the common terminology in physics, also called
mollifying in mathematical literature and low-pass filtering in engi-
neering.

SWithout loss of generality, we also assume ¢(r) > 0,
limyj—00 ¢(r) — O, Jy dPro@®) =1, [, dPrr¢@) =0,
fv d’*r|r)? ¢(r) = 1 and ¢(r) = ¢(r) with |r| = r. Mathematically,
¢ € C°(R); the space of infinitely-differentiable functions with
compact support. A function g is said to have a compact support (set
of its arguments for which g # 0) if g = 0 outside of a compact set
(equivalent to closed and bounded sets in R™). As an example, one
may work with ¢(r) = ¢g exp ﬁ for |r| < land¢ = Ofor |r| > 1.
The normalization constant ¢, is about 0.88 in three dimensions. For
a quick, but more detailed introduction, see [31], Sec. 2.1.

1oMathematically inclined readers would notice that this method is
equivalent to the weak formulation; see e.g., [13].
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across scale [ [13,32]. In a nonturbulent flow, du(/) ~ [ and
8B(l) ~ I hence in the limit / — 0, the nonlinear term R,
would vanish:

0B,

— >~V x (u; x By). (15)

ot
Therefore, we recover the “ideal” induction equation on scale
[, which is assumed to be much larger than the dissipa-
tive scale. The implication of these familiar results in the
context of magnetic topology is that in a laminar flow, at
scales larger than the dissipative scale, the magnetic topol-
ogy is preserved within a good approximation. This is, of
course, expected since we use the ideal fluid approximation
and magnetic diffusivity annihilates the field on a resistive
time scale. In turbulence, on the other hand, we cannot
ignore nonlinear term R; whose curl, which enters the in-
duction equation, remains large even in the limit of vanishing
resistivity.

D. Topology change in turbulent flows

The Navier-Stokes equation can be easily cast into a
nondimensional form at large scales using the parame-

ters (in standard notation) X =x/L, =1t/(L/U), u=
uw/U, p=p/pU*as
W o AVi=-Vp+ -~V (16)
— +u.Vu=— —Vu.
o1 P Re

Analogously, the induction equation is written as

B_ g TV @xE) (17)
—_ = — x (U x B),
9% Re, v

where B = B/By with characteristic field By. Therefore, a
small viscosity (resistivity) translates into a large (mag-
netic) Reynolds number. One might naively neglect the terms
proportional to 1/Re (and 1/Re,,), to recover the “ideal”
equations. However, at large Reynolds numbers, the flow
is extremely sensitive to small perturbations, implying the
presence or development of turbulence. Hence, the limit
of vanishing viscosity (resistivity) may correspond to a
(complicated) turbulent flow rather than the “simple” ideal
case!

What is the rate of magnetic topology change due to tur-
bulent effects? In the phase space (x, B), this is the rate at
which the topology of a solid ball of initial conditions for the
dissipative dynamical system

x(t) = By (x(1),1)
B/(x(1).1) =V x (u; x B, =R, — P) := G[B;;x, 1],
(13)
with G[By;; x, 7] as a functional of B;, changes over time. The

dissipation rate of this dynamical system, 7;- ' = V.G with the
phase-space gradient V := (axL(z)’ 5%), is

3 3G B x]
SBE(x)

’

where
SG¥[B;; x] 1)
51;;« (;,) 57y (7 (00 X Bi]
—R;(x) — P;(x))
3 k
= B )( « X (=Ry(x) — P;(x))).

Note that the contribution of small-scale plasma effects, i.e.,
different processes collectively denoted as P; in our notation,
will be negligible as, e.g., for the case of the Ohmic electric
field considered before. Thus, we arrive at the estimate

3 k
XSB;"(X’)(VX x Ryi(x))"|. (19)

This expression gives the turbulent dissipation rate of mag-
netic topology at any inertial scale /. We emphasize that
fully developed turbulence does not respect time reversal
symmetry; thus, the time evolution as a mapping is not
a homeomorphism, implying topology change by turbulent
(nonviscous) dissipation. This dissipation is due to the energy
cascade and magnetic-to-kinetic energy conversion; hence, it
has nothing to do with viscous dissipation in the dissipative
range.

We will not evaluate the expression given by Eq. (19)
further, since obtaining explicit results is complicated and not
required for our purposes here. The important point is that the
rate given by Eq. (19) is obviously independent of small-scale
plasma effects and depends totally on turbulent effects. There-
fore, unlike, laminar flows, where topology changes with a
rate proportional to resistivity, which is typically negligible in
astrophysical systems, in turbulence, magnetic topology may
change on much faster time scales.

As a side note, to close this section, let us mention that
evaluating the functional derivative given by Eq. (19) is math-
ematically challenging. A similar, but simpler, problem is
encountered in considering the velocity field itself, i.e., in
the coarse-grained Navier-Stokes equation, which involves
taking the functional derivative of the term (S‘ST’V.((uu)l —
w ;). Such a calculation involves mode-reduction, e.g., using
Zwanzig-Mori projection methods or a path-integral approach
to integrate out unresolved scales. The result is spatially non-
local, non-Markovian, transcendentally nonlinear, and also
random with colored, multiplicative noise [31]. For the ve-
locity field, the divergence of the systematic part of V.(uu),
equals zero, and the nonvanishing contribution arises entirely
from the “eddy noise.”

III. DISCUSSION

In this paper, we have argued that reconnection is asso-
ciated with continuous divergence of Alfvénic wave packets
(magnetic pathlines) over time, i.e., roughly speaking, rapid
but smooth change in magnetic pattern over time. Topology
change is associated with discontinuous divergence of trajec-
tories or their annihilation by dissipative effects; resistivity in
laminar flows and turbulent dissipation in turbulence.

In laminar flows, if one accepts that large-scale reconnec-
tion is slow and Sweet-Parker type, then it can be thought of as
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a topology change with a slow resistivity-dependent rate given
by Eq. (10). If one accepts the view that laminar reconnection
can be fast (i.e., proceeding on time scales much shorter than
the resistive time scale), then reconnection cannot be equiv-
alent to topology change, which is always slow in laminar
and even chaotic flows, as shown in this paper, because of
the continuity of magnetic field. This is theory, what about
observations?

It is an observational fact that reconnection is fast in real
plasmas, especially in astrophysics (e.g., in the solar wind and
solar corona). Solar observations indicate that the reconnec-
tion rates can vary significantly, implying that reconnection
depends on local physics. Nonthermal broadening of spec-
tral lines (and other measures, see e.g., [33]) indicates that
astrophysical flows are turbulent [7]. Astrophysical plasmas
generally have very large Reynolds (and magnetic Reynolds)
numbers; thus, turbulence is expected to be present. Even if
initially absent, the onset of reconnection, e.g., due to plasma
instabilities, will bring turbulence to the play. Therefore, both
observations and theory indicate that reconnection proceeds in
turbulence. Turbulence dominates nonideal plasma effects on
reconnection, from the Hall effect to tearing modes instabili-
ties, as discussed in the argument after Eqs. (12) and (13). In
fact, turbulence leads to superchaotic divergence of Alfvénic
wave packets with an infinite Lyapunov exponent, thus imply-
ing a much faster reconnection than what deterministic chaos
can drive, as Egs. (2)-(4) indicate. Even in chaotic flows,
where the Alfvénic trajectories diverge exponentially, their
separation at later times remains proportional to the initial
separation, unlike turbulent flows.

In turbulence, the picture is more complicated than lam-
inar flows, and both reconnection and topology change are
driven by spontaneous stochasticity or superchaos—persistent
random behavior of nonunique Alfvénic trajectories indepen-
dent of their initial separation. Specifically, in turbulence, the
nonlinear dynamics governing the magnetic field becomes
singular, and randomness in wave packet trajectories survives
even in the limit of vanishing noise, i.e., fast separation of
trajectories at later times even when the initial separation
of trajectories tends to zero. Fast turbulent reconnection re-
sults from enhanced turbulent mixing of trajectories, while
the topology change results from turbulence’s time-reversal
symmetry breaking. These effects are deeply related to spon-
taneous stochasticity.

The simple approach presented in this paper provides a
clear and intuitive topology for magnetic fields independent
of the notion of magnetic field lines and their complicated
motion through plasma. In fact, the versatility of a powerful
tool, such as Feynman’s diagrams, a concept of a gravita-
tional field, or the notion of magnetic field lines, can make
it look more physical than it is in reality, leading to misuse.
Feynman used to interpret his diagrams in a more physical
way than is understood today. The gravitational field around
a mass became only part of the metric in general relativity.
Similarly, the powerful notion of magnetic field lines, since
their introduction by Faraday, can be replaced with other more
appropriate tools, such as magnetic pathlines, for gaining a
deeper and simpler picture. In a real magnetized plasma in
three dimensions, for example, magnetic field lines might
become quite inadequate to describe processes such as recon-

nection or magnetic topology change. Our approach in this
paper provides an alternative way of looking at reconnection
and magnetic topology change, in terms of magnetic pathlines
x(t) solving x(t) = B(x(?), t) instead of field lines, which are
parametric curves depicting the magnetic field pattern only at
a given time.

Alfvénic trajectories or magnetic pathlines are associated
with a dynamical system whose phase space has a natural met-
ric topology for the magnetic field. This magnetic topology
evolves with time, and it is easy to see what conditions should
be satisfied for the topology to be preserved. In laminar flows,
magnetic topology can change with a rate proportional to
resistivity; hence, if reconnection is fast, i.e., it occurs on time
scales much shorter than resistive time, then reconnection and
topology change should be distinct phenomena. In turbulence,
time-reversal symmetry is broken, and topology cannot be
preserved. In fact, magnetic topology in a turbulent plasma
can change by enhanced turbulent diffusion on any inertial
scale.

Our simple calculations also suggest connections to other
approaches to magnetic reconnection. For example, one can
use the coarse-grained induction equation (12), to study the
time evolution of the unit tangent vector, ﬁ; = B;/B;. In fact,
the coarse-grained induction equation implies

1
B = Yx@xB)y Zt + o), (20
B,
where (.)* indicates the perpendicular direction with respect
to the large-scale field B; and
5, = (V x Rl)’ o = (V x Pl). 21
B, By
The term X, (g;) has been shown to govern magnetic recon-
nection in turbulence (laminar flows) [13]. On the other hand,
we have shown in this paper [Eq. ((19), that the rate of mag-
netic topology change depends on the functional derivative of
B, X, (and B;a; on small scales in laminar flows):

gD

This estimate for turbulent flows implies that magnetic topol-
ogy changes on all turbulent inertial scales /, and unlike
laminar flows, it is independent of small-scale (plasma) ef-
fects. These are the distinguishing characteristics of turbulent
(stochastic) reconnection as well [7,13,17]. In fact, “naive”
dimensional analysis of the above estimate suggests a fast rate
of order 7, L Auy/l, ie., eddy turnover rate on scale /. In
laminar flows, this rate is proportional to (typically negligible)
resistivity; Eq. (10). Spontaneous stochasticity seems to en-
hance both topology change and reconnection in turbulence.
Finally, our approach also emphasizes the crucial roles
scale and turbulence play in the study of magnetic topology
change as well as its connection to turbulent reconnection.
Any physical measurement can be performed only in a finite
region of space (and during a finite interval in time). This
somehow resembles the uncertainty principle in the sense
that we can never measure the “real” mathematical magnetic
field B(x, ), no matter how technologically advanced our
measuring instruments become over time. In fact, although
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electromagnetic fields are in most applications assumed to
be well defined at small scales, this is not true for general
physical fields. In condensed matter physics, for example, it
is common for a general field theory to have a natural cutoff
at small length scales (or high energies), e.g., the spacing
between atoms in a lattice crystal. In most quantum field
theories, there exist (ultraviolet) infinities, and the field is
not well defined at very small scales. Hence, a cutoff is
usually introduced to regularize the theory (regularization).
This is, of course, part of the strong methodology known
as Wilsonian renormalization group (RG) theory, which is
based on integrating out the small degrees of freedom, i.e.,
coarse-graining. What we “observe” as a magnetic field is
the big picture, i.e., large-scale field B; at larger scales I,
not tiny details, i.e., field fluctuations, which can be summed
over on much smaller scales. This is the gist of RG method-
ology, which also plays a crucial role in our presentation
here. As for the role of turbulence, it is well known that

in both plasma physics and astrophysics, magnetized fluids
of interest are usually also turbulent due to external forcing
or different internal instabilities or even due to reconnec-
tion itself [7]. Even if the system is initially nonturbulent,
reconnection can make the flow turbulent. Unlike laminar
flows in ideal magnetized fluids, where the magnetic field
is approximately frozen into the flow (Alfvén flux-freezing;
[11]), in turbulence, the magnetic field follows the flow only
in a statistical sense: this is stochastic flux-freezing formulated
by Eyink [12]. Turbulent flows have nontrivial features like
unpredictability, enhanced mixing, and spontaneous stochas-
ticity, which tend to tangle the threading magnetic field
stochastically, increasing its spatial complexity in a geometric
sense [22]. Because of strong magnetic tension forces, at
some point, the field may relax to a smoother configuration,
which in turn launches eruptive fluid motions [34-36], poten-
tially observable as “reconnection” events, e.g., on the solar
surface.
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