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We study the effects of hyperons, delta baryons, and quark matter phase transitions on f-mode
oscillations in neutron stars. Using the density-dependent relativistic mean-field model (DDME2) for the
hadronic phase and the density-dependent quark mass (DDQM) model for the quark phase, we construct
hadronic and hybrid equations of state (EoSs) consistent with astrophysical constraints. Including hyperons
and delta baryons soften the EoS, reducing maximum mass, while phase transition to the quark matter
further softens the EoS, decreasing the speed of sound and hence the maximum mass. We confirm the well-
known overestimation of f-mode frequencies by the Cowling approximation (by about 10%–30%)
compared to full general relativity (GR) calculation, and show that this discrepancy persists across models
including hyperons, Δ baryons, and a phase transition to quark matter. While the discrepancy generally
decreases with stellar mass, it increases near the maximum mass in the presence of a phase transition
compared to EoSs without this phenomenology. We derive universal relations connecting the frequencies
of the f-mode to the average density, compactness, and tidal deformability, finding significant deviations
due to hyperons and delta baryons. These deviations could provide distinct observational signatures in
gravitational wave data, offering new insights into dense matter physics and advancing gravitational wave
asteroseismology of neutron star interiors. Empirical relations for mass-scaled and radius-scaled
frequencies are also provided, highlighting the importance of GR calculations for accurate modeling.
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I. INTRODUCTION

In recent years, our understanding of the Universe has
expanded as we now observe astronomical events through
multiple signals: electromagnetic waves, gravitational
waves, neutrinos, and cosmic rays. This new era of multi-
messenger astronomy enables amore comprehensiveviewof
phenomena like neutron star mergers, providing unprec-
edented insights into the properties of dense matter. Neutron
star (NS) asteroseismology, in particular, has emerged as a
crucial tool for probing the dense matter equation of state
(EoS), especially as gravitational wave detections grow in
number and precision. Landmark events such as GW170817
[1,2] andGW190425 [3] have alreadyprovidedvaluableEoS
constraints, while upcoming facilities like LIGO-Virgo-
KAGRA, the Einstein Telescope [4–6] and the Cosmic
Explorer are set to push these limits even further.

The EoS that governs nuclear matter at the extreme
densities attained inside NSs is central to determining their
macroscopic structure and properties. Though NSs are
largely composed of neutrons, a small but crucial fraction
of protons, leptons, and possibly other particles is also
present in their interiors. These degrees of freedom appear
to maintain the stability of nuclear matter under chemical
equilibrium and charge neutrality conditions, as well as due
to energetic considerations, and are very contingent on the
dense matter model adopted. However, much remains
unknown about the EoS and the exact composition of
NS interiors due to the complexity of strong interactions,
especially at high densities beyond the nuclear saturation
density (n0). At densities surpassing several times n0,
exotic particles beyond the usual nucleons (neutrons and
protons) are expected to appear. Most theoretical models
predict that NS matter could comprise the entire spin-1=2
baryon octet, including the hyperons. One must observe
that the inclusion of hyperons in the EoS, while energeti-
cally favorable, has sparked the so-called “hyperon puz-
zle”: hyperons soften the EoS, reducing the maximum
mass an NS can achieve and potentially conflicting with
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observations of massive NSs [7]. To address more exotic
degrees of freedom, researchers have also considered other
particles like kaons and spin-3=2 baryons within relativistic
mean-field models. Delta (Δ) baryons, for example, are
about 30% heavier than nucleons (with a mass of around
1232 MeV) and are expected to appear at similar densities
to hyperons, in the range of 2–3n0 [8,9]. Studies suggest
that with appropriate coupling strengths, delta baryons
could indeed make up a significant fraction of NS matter,
potentially impacting the EoS and other NS properties
[10–15]. At even higher densities, a phase transition from
hadronic matter to deconfined quark matter may occur,
resulting in a hybrid star structure with a quark core
surrounded by a hadronic shell. This hadron-quark decon-
finement transition is a key prediction of quantum chromo-
dynamics (QCD) at extreme densities [1,16].
Understanding neutron star oscillation modes has gained

increased attention due to recent advancements in multi-
messenger astronomy. Gravitational wave observatories,
such as LIGO and Virgo, have opened new possibilities for
detecting the subtle spacetime ripples generated by these
oscillations, especially following neutron star mergers.
These observations complement electromagnetic data from
x-ray and radio telescopes, potentially allowing for con-
straints on neutron star models through observed mode
frequencies, damping times, and mode couplings. Each
type of mode interacts distinctly with the neutron star’s
dense matter properties, making them sensitive probes of
the EoS and phase transitions, such as the potential
appearance of hyperons or deconfined quarks in the stellar
core. Hence, by analyzing oscillation modes, one can
extract information on the internal structure and composi-
tion of neutron stars. These oscillation modes effectively
act as a spectral fingerprint of the star’s static properties,
offering a seismological approach to probe otherwise
inaccessible regions of dense nuclear matter. Small devia-
tions in static properties, such as the appearance of exotic
phases (e.g., hyperons or quark matter) or changes in the
crust composition, can lead to measurable shifts in mode
frequencies and damping rates, making them highly sensi-
tive to the nature of matter at extreme densities.
When an NS is mechanically perturbed, it exhibits

oscillation behaviors that can be classified into radial
and nonradial modes. Radial oscillations involve uniform
expansion and contraction while maintaining the star’s
spherical shape, showing two classes of behavior based on
whether they are localized in the dense core or the lower-
density outer envelope of the star. These two regions are
separated by a “wall” in the adiabatic index at the neutron
drip point, that is universally tied to the neutron drip density
common to all realistic EoS models [17]. Although radial
modes do not directly emit gravitational waves (GWs),
they can interact with nonradial modes, enhancing GW
signals [18,19]. For instance, in the postmerger phase of a
binary NS collision, a hypermassive NS may emit GWs at

high frequencies (1–4 kHz), which are potentially
detectable [20].
In contrast, nonradial oscillations—as f-modes, associ-

ated with fluid oscillations; g-modes, driven by composi-
tional gradients; and p-modes, which reflect pressure-driven
oscillations—cause distortions due to forces like pressure
and buoyancy [21].Gravitational perturbations in spherically
symmetric stars are categorized as polar or axial. Polar
perturbations lead to the f, p, and g modes, while axial
perturbations result in the r and w modes. In nonrotating
stars, these perturbations are entirely independent [22].
Among nonradial modes, the f-mode is particularly signifi-
cant as it emits detectable GWs. Advanced detectors like the
Einstein Telescope and Cosmic Explorer, and possibly even
current detectors such as LIGO/Virgo/KAGRA, are expected
to observe these signals [4–6,23,24]. The f-mode frequency
is closely tied to tidal deformability during the inspiral phase
of NS mergers, as fluid perturbations peak at the stellar
surface, strongly coupling to the tidal field. Apart from
neutron star mergers various phenomena can trigger the
excitation of f-modes in neutron stars, including the for-
mation of newly born neutron stars [25], starquakes [26,27],
magnetar activity [28,29]. For GW170817, the 90% credible
interval for the f-mode frequency was estimated between
1.43 kHz and 2.90 kHz for the more massive NS and
1.48 kHz and 3.18 kHz for the less massive one [30].
Additionally, the f-mode relates to NS properties like
compactness [31], moment of inertia [32], and static tidal
polarizability [33]. These relations are universal, applying
even to quark stars without crusts or hybrid stars with first-
order transitions [34].
The study of the f-mode is often conducted using

the Cowling approximation instead of a full general
relativistic (GR) framework. In the Cowling approxima-
tion, gravitational potential perturbations are neglected,
focusing solely on fluid perturbations. This simplification
aids calculations but introduces an error of about 10%–30%
in the f-mode frequency [30,35]. On the other hand, the full
GR framework incorporates both fluid and metric pertur-
bations, comprehensively addressing the limitations of
the Cowling approximation. The Cowling approximation
neglects metric perturbations, leading to smaller errors for
neutron stars with higher masses. This is because massive
neutron stars have fluid perturbations that peak more
strongly near the surface, while their weaker core coupling
to metric perturbations reduces the impact of these neglected
terms. Consequently, the relative error between the Cowling
approximation and the full GR framework decreases as the
mass of the neutron star increases. Several studies have
explored the f-mode oscillations of neutron stars under the
Cowling approximation, considering nucleonic and hyper-
onic compositions [35–37], hybrid stars [38], and scenarios
involving dark matter [39–41]. Authors in Ref. [42] studied
the nonradial oscillations withΔ baryons, but without metric
perturbations. To achieve complete precision, a full GR
treatment is required [30,34,36,43–45].
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This study examines the nonradial oscillation modes of
NSs, applying both Cowling as well as GR methodology,
allowing for a more precise evaluation of the method
discrepancies, with various matter compositions, including
nucleonic stars with Δ-admixed matter and hyperon stars
containing Δ baryons. For the first time, the analysis
considers these compositions in scenarios where a
hadron-quark phase transition occurs within the star.
While previous research has focused on radial oscillations
in NSs along with exotic phases, such as dark matter and
deconfined quark matter [46–53], this work extends the
exploration to nonradial modes under similar conditions.
The paper is organized as follows: Sec. II provides the
description of the NS used in this study. Section II A
outlines the EoS for the DD-RMF model with Δ baryons,
the quark matter EoS, and the construction of the hybrid
EoS. Section II B discusses the Tolman-Oppenheimer-
Volkoff (TOV) equations governing NS structure.
Section III details the nonradial oscillation analysis within
the full GR framework. Section IV presents the EoS and
stellar properties, such as the speed of sound and mass-
radius profiles for various compositions, with and without
phase transitions. Section IV B examines the f-mode
frequency as a function of stellar properties in both the
Cowling and GR frameworks. Section V introduces empir-
ical fits and universal relations between the f-mode
frequency and other key parameters. Section VI provides
our concluding remarks. The Cowling approximation
description along with its f-mode calculations are dis-
cussed in the Appendix for comparison with the GR results
discussed in the paper.

II. NEUTRON STAR DESCRIPTION

A. Microphysics

1. Hadronic matter

In this study, we describe the hadronic matter inside
neutron stars using a density-dependent relativistic mean-
field (DD-RMF) approach. This model is known for
accurately reproducing experimental properties of nuclear
matter and remains consistent with astrophysical con-
straints [54–56]. The interaction framework considers
nucleons and other hadrons interacting via the exchange
of virtual mesons. Specifically, the DD-RMF model used
here includes the scalar meson σ, the vector mesons ω and
ϕ (with hidden strangeness), and the isovector-vector
meson ρ⃗.
The Lagrangian density serves as the foundational ansatz

in any RMF theory, incorporating contributions from free
baryons and mesons as well as interaction terms between
them. In the mean-field approximation, the Lagrangian of
the relativistic model used here to describe hadronic
interactions is given by

LRMF ¼
X
b∈H

ψ̄b½iγμ∂μ − γ0ðgωbω0 þ gϕbϕ0 þ gρbI3bρ03Þ

− ðmb − gσbσ0Þ�ψb −
i
2

X
b∈Δ

ψ̄bμ½εμνρλγ5γν∂ρ

− γ0ðgωbω0 þ gρbI3bρ03Þ − ðmb − gσbσ0Þςμλ�ψbν

þ
X
λ

ψ̄ λðiγμ∂μ −mλÞψλ −
1

2
m2

σσ
2
0 þ

1

2
m2

ωω
2
0

þ 1

2
m2

ϕϕ
2
0 þ

1

2
m2

ρρ
2
03; ð1Þ

where the first sum represents the Dirac-type interac-
ting Lagrangian for the spin-1=2 baryon octet (H ¼
fn; p;Λ;Σ−;Σ0;Σþ;Ξ−;Ξ0g) and the second sum repre-
sents the Rarita-Schwinger interacting Lagrangian for
the particles of the spin-3=2 baryon decuplet
(Δ ¼ Δ−;Δ0;Δþ;Δþþg), where εμνρλ is the Levi-Cicita
symbol, γ5 ¼ iγ0γ1γ2γ3 and ςμλ ¼ i

2
½γμ; γλ�. We note that

spin-3=2 baryons are described by the Rarita-Schwinger
Lagrangian density, where their vector-valued spinor has
additional components compared to the four components in
spin-1=2 Dirac spinors. However, as shown in [57], the
equations of motion for spin-3=2 particles can be simplified
and written in a form analogous to those for spin-1=2
particles within the RMF framework. The last sum
describes the leptons admixed in the hadronic matter as
a free noninteracting fermion gas (λ ¼ fe; μg), as their
inclusion is necessary in order to ensure the β-equilibrium
and charge neutrality essential to stellar matter. The
remaining terms account for the purely mesonic part of
the Lagrangian.
In DD-RMF models, coupling constants are typically

functions of either the scalar density ns or the vector density
nB. Most commonly, vector density parametrizations are
used, as they influence only the self-energy rather than the
total energy [58]. Here, we adopt the DD-RMF para-
metrization known as DDME2 [59], where meson cou-
plings scale with the baryonic density factor η ¼ nB=n0
obeying the function

gibðnBÞ ¼ gibðn0Þ
ai þ biðηþ diÞ2
ai þ ciðηþ diÞ2

ð2Þ

for i ¼ σ;ω;ϕ and

gρbðnBÞ ¼ gibðn0Þ exp ½−aρðη − 1Þ�; ð3Þ

for i ¼ ρ.
The model parameters are fitted to binding energies,

charge radii, and differences between neutron and proton
radii of spherical nuclei, as well as some bulk para-
meters related to infinite and pure nucleonic matter at
n0, namely, the saturation density itself, binding energy
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(B=A), incompressibility (K0), and symmetry energy (S0).
All of them are shown in Table I, along with the value of the
symmetry energy slope at n0 (L0). In order to determine
the meson couplings to other hadronic species, we define
the ratio of the baryon coupling to the nucleon one as
χib ¼ gib=giN , with i ¼ fσ;ω;ϕ; ρg. In this work, we
consider hyperons and/or deltas admixed in the nucleonic
matter and follow the proposal of [60] to determine their
respective χib ratios. This calibration follows a unified
approach based on symmetry principles, particularly the
requirement that the Yukawa coupling terms in the
Lagrangian density of DD-RMF models remain invariant
under SU(3) and SU(6) group transformations. Hence, the
couplings can be fixed to reproduce the potentials
UΛ ¼ −28 MeV, UΣ ¼ 30 MeV, UΞ ¼ −4 MeV and
UΔ ¼ −98 MeV in terms of a single free parameter αV.
Our choice of αV ¼ 1.0 for the baryon-meson coupling
scheme corresponds to an unbroken SU(6) symmetry, and
the values of χib are shown in Table II taking into account
the isospin projections in the Lagrangian terms [61].
From the Lagrangian (1), thermodynamic quantities can

be calculated in the standard way for RMF models. The
baryonic and scalar densities of a baryon of the species b
are given, respectively, by

nb ¼
λb
2π2

Z
kFb

0

dk k2 ¼ λb
6π2

kF3b; ð4Þ

and

nsb ¼
λb
2π2

Z
kFb

0

dk
k2m�

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm�

b
2

q ; ð5Þ

with kF denoting the Fermi momentum, since we assume
the stellar matter to be at zero temperature, and λb is the
spin degeneracy factor (2 for the baryon octet and 4 for the
delta resonances). The effective masses are

m�
b ¼ mb − gσbσ0: ð6Þ

The energy density is given by

εB ¼
X
b

γb
2π2

Z
kFb

0

dk k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm�

b
2

q

þ
X
λ

1

π2

Z
kFλ

0

dk k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

λ

q

þm2
σ

2
σ20 þ

m2
ω

2
ω2
0 þ

m2
ϕ

2
ϕ2
0 þ

m2
ρ

2
ρ203: ð7Þ

The effective chemical potentials read

μ�b ¼ μb − gωbω0 − gρbI3bρ03 − gϕbϕ0 − Σr; ð8Þ

where Σr is the rearrangement term, necessary to ensure
thermodynamical consistency due to the density-dependent
couplings,

Σr ¼
X
b

�
∂gωb
∂nb

ω0nb þ
∂gρb
∂nb

ρ03I3bnb þ
∂gϕb
∂nb

ϕ0nb

−
∂gσb
∂nb

σ0nsb

�
; ð9Þ

and the μb are determined by the chemical equilibrium
condition

μb ¼ μn − qbμe; ð10Þ

in terms of the chemical potential of the neutron and the
electron, with μμ ¼ μe. The particle populations of each
individual species are determined by Eq. (10) together with
the charge neutrality condition

P
i niqi ¼ 0, where qi is the

charge of the baryon or lepton i. The pressure, finally, is
given by

P ¼
X
i

μini − ϵþ nBΣr; ð11Þ

which receives a correction from the rearrangement term to
guarantee thermodynamic consistency and energy-momen-
tum conservation [63,64]. In the above expression, ϵ is the
total energy density including leptons.

TABLE I. DDME2 parameters (top) and its predictions to the
nuclear matter at saturation density (bottom).

i mi (MeV) ai bi ci di giNðn0Þ
σ 550.1238 1.3881 1.0943 1.7057 0.4421 10.5396
ω 783 1.3892 0.9240 1.4620 0.4775 13.0189
ρ 763 0.5647 — — — 7.3672

Quantity Constraints [54,62] This model

n0 (fm−3) 0.148–0.170 0.152
−B=A (MeV) 15.8–16.5 16.14
K0 (MeV) 220–260 252
S0 (MeV) 31.2–35.0 32.3
L0 (MeV) 38–67 51

TABLE II. Baryon-meson coupling constants χib [60].

b χωb χσb I3bχρb χϕb

Λ 2=3 0.611 0 0.471
Σ−;Σ0;Σþ 2=3 0.467 −1, 0, 1 −0.471
Ξ−;Ξ0 1=3 0.284 −1=2, 1=2 −0.314
Δ−, Δ0, Δþ, Δþþ 1 1.053 −3=2, −1=2, 1=2, 3=2 0
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2. Deconfined quark matter

In this study, we adopt the density-dependent quark mass
(DDQM) model [65] to describe quark matter, a simple and
versatile framework well-suited for investigating the decon-
finement phase transition in hybrid stars [66]. The DDQM
model simulates the QCD quark confinement through
density-dependent quark masses defined by

mi ¼ mi0 þ
D

n1=3B

þ Cn1=3B ¼ mi0 þmI; ð12Þ

where mi0 (i ¼ u, d, s) is the current mass of the ith quark,
nB is the baryon number density and mI is the density-
dependent term that encompasses the interaction between
quarks. This model-free parameters C and D dictate linear
confinement and the leading-order perturbative inter-
actions, respectively [65].
Introducing density dependence for state variables, such

as density, temperature, or magnetic field, requires careful
handling to maintain thermodynamic consistency, analo-
gous to the approach in Eq. (9) for the DD-RMFmodel. We
follow the formalism in [65], which ensures thermody-
namic consistency in DDQM. At zero temperature, the
fundamental differential relation for energy density reads

dε ¼
X
i

μidni; ð13Þ

where ε is the matter contribution to the energy density of
the system, μi are the particle chemical potentials and ni are
the particle densities.
To express this model in terms of effective chemical

potentials, we represent the energy density as for a free
system as

ε ¼ Ω0ðfμ�i g; fmigÞ þ
X
i

μ�i ni; ð14Þ

using density-dependent quark massesmiðnBÞ and effective
chemical potentials μ�i , where Ω0 is the thermodynamic
potential of a free system. We can differentiate this form to
yield

dε ¼ dΩ0 þ
X
i

μ�i dni þ
X
i

nidμ�i : ð15Þ

Explicitly, we can write dΩ0 as

dΩ0 ¼
X
i

∂Ω0

∂μ�i
dμ�i þ

X
i

∂Ω0

∂mi
dmi; ð16Þ

with

dmi ¼
X
j

∂mi

∂nj
dnj; ð17Þ

where, to ensure thermodynamic consistency, the densities
are connected to the effective chemical potentials by

ni ¼ −
∂Ω0

∂μ�i
: ð18Þ

Equation (15) can then be rewritten as

dε ¼
X
i

�
μ�i þ

X
j

∂Ω0

∂mj

∂mj

∂ni

�
dni; ð19Þ

providing a relation between the real and effective chemical
potentials,

μi ¼ μ�i þ
X
j

∂Ω0

∂mj

∂mj

∂ni
: ð20Þ

Consequently, from the fundamental relation P ¼ −εþP
i μini, the pressure P is given by

P ¼ −Ω0 þ
X
i;j

∂Ω0

∂mj
ni
∂mj

∂ni
; ð21Þ

yielding a thermodynamically consistent EoS for quark
matter.
The EoS for the quark model is derived using exper-

imentally consistent quark masses and selected parameters
suited for hybrid stars based on phase coexistence with
various hadronic configurations. The transition point
between phases is highly sensitive to the free parameters
of the DDQM model, which lacks strong empirical con-
straints. Therefore, parameter selection often involves
considering the stability window under the Bodmer-
Witten hypothesis [67,68], which posits that strange quark
matter—comprising roughly equal amounts of u, d, and s
quarks—could be more stable than hadronic matter. If true,
neutron stars could convert entirely into strange stars.
However, since our focus is on hybrid stars, we exclude
parameter sets that satisfy this hypothesis. Additionally,
studies have shown that for high values of the C parameter,
the surface density of strange stars can approach or fall
below nuclear saturation density, indicating a possible
phase transition. Such parameters also result in hybrid
star phase transitions at densities above nuclear satura-
tion and yield strange stars with masses around 2M⊙.
Reference [69] provides a detailed analysis of how DDQM
parameters affect strange matter stability, and the specific
choice of the quark matter-free parameters C and D
adopted here is discussed in detail in Ref. [47].

3. Phase transition and hybrid EoS construction

Studying matter under extreme conditions is inherently
difficult due to the complexity of QCD. The two main
theoretical approaches—lattice QCD (LQCD) and effective
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models—each have significant limitations. LQCD faces
challenges such as the sign problem, computational con-
straints, and limited applicability at high chemical poten-
tials, making it ineffective for mapping the QCD phase
diagram in these regimes (see [70]). Consequently, effec-
tive models are often employed, particularly in the context
of compact objects like neutron stars.
A longstanding tension exists between LQCD and

effective models regarding the nature of the QCD phase
transition. LQCD indicates a smooth crossover around
160–170 MeV at low chemical potentials [71,72], while
effective models predict a first-order transition at high
densities. This transition is expected to culminate in a
critical endpoint (CEP), beyond which it becomes second-
order. However, the existence and precise location of the
CEP remain uncertain [73,74]. For example, [75] suggests
that at zero temperature, the transition onset requires a
chemical potential exceeding 1050 MeV in the Polyakov
loop formalism.
The characteristics of the transition vary according to the

quark and hadron EoS models employed. In this study, we
assume that the hadron-quark deconfinement transition is a
first-order phase transition, as predicted by effective models
in the high-density region of the QCD phase diagram. A
phase transition can occur as either a Maxwell or a mixed
phase (also called Gibbs) transition. In a Maxwell tran-
sition, the phases remain separate and maintain local charge
conservation, whereas, in a mixed transition, quarks and
hadrons coexist over a range of baryonic densities with
global charge conservation. The hadron-quark phase sur-
face tension serves as the primary criterion for determining
the type of phase transition. Values above 60 MeV=fm2

favor a Maxwell transition [76,77], while lower values
suggest a mixed transition. Given the uncertainties in surface
tension estimates [78–81]. The thermodynamic description
of this process involves matching the EoS of the two phases
and identifying the point of phase coexistence.
In this study, we apply the Maxwell construction,

producing a hybrid EoS with a first-order phase transition
at critical values of baryonic chemical potential and
pressure. According to Gibbs’ criteria, the transition occurs
at the point where

PðiÞ ¼ PðfÞ ¼ P0; ð22Þ

μðiÞðP0Þ ¼ μðfÞðP0Þ ¼ μ0; ð23Þ

sets the transition between the initial (i) and final (f)
homogeneous phases, both at T ¼ 0 MeV, with

μði;fÞ ¼ εði;fÞ þ Pði;fÞ

nði;fÞB

; ð24Þ

where εði;fÞ, Pði;fÞ and nði;fÞB are the total energy density,
pressure, and baryon number density, obtained from the

EoS of each phase. The conditions above the values of P0

and μ0 are to be determined from the equations of state of
both hadronic and deconfined quark phases. The transition
point location, for a given baryonic composition in the
hadronic phase, will be notably influenced by the choice of
the free parameters for the DDQM model [66].

B. Macrophysics

Moving from micro to macrophysics involves applying
the EoS for the dense matter to conditions of mechanical (or
hydrostatic) equilibrium, as NS is assumed to have stable
internal structures. The intense gravitational field of NS
makes their structure and dynamical evolution be governed
by Einstein’s equations of general relativity,

Gμν ¼ Rμν −
1

2
Rgμν ¼ 8πTμν; ð25Þ

where Rμν is the Ricci tensor and R is the Ricci scalar, and
Tμν is the energy-momentum tensor.
One can obtain the TOV equations [82,83] for the

equilibrium structure of NSs by solving the Einstein field
equation with the below-defined metric,

dPðrÞ
dr

¼ −
½εðrÞ þ PðrÞ�½mðrÞ þ 4πr3PðrÞ�

r2ð1 − 2mðrÞ=rÞ ; ð26Þ

dmðrÞ
dr

¼ 4πr2εðrÞ; ð27Þ

by taking the Tμν of an homogeneous fluid,

Tμν ¼ Pgμν þ ðPþ εÞuμuν; ð28Þ

where gμν is the metric tensor, P is the pressure, ε is the
energy density, and uμ is the four-velocity, and considering
static spherically symmetric stars, described by the
Schwarzschild metric as [84]

ds2 ¼ eνðrÞdt2 − eλðrÞdr2 − r2ðdθ2 þ sin2 θdϕ2Þ; ð29Þ

where eνðrÞ and eλðrÞ are the metric functions.
Using the given EoS, the TOV Eqs. (26) and (27) are

solved with initial conditions mðr ¼ 0Þ ¼ 0 and
Pðr ¼ 0Þ ¼ Pc, where Pc represents the central pressure.
The star’s radius, R, is defined where the pressure vanishes
at the surface, PðRÞ ¼ 0, and the total mass is then given
by M ¼ mðRÞ.

III. OSCILLATION MODES

A. Nonradial oscillations in general relativity

To determine the frequencies of the f-modes in the full
general relativity formalism, we solve Einstein’s field
equations assuming that the gravitational waves represent
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perturbations to the static background spacetime metric of a
nonrotating neutron star. The perturbed metric is given by

gμν ¼ g0μν þ hμν; ð30Þ

Only even-parity perturbations of the Regge-Wheeler
metric are significant in this context [85] A small pertur-
bation, hμν, is introduced to a static, spherically symmetric
background metric, which is described as

ds2 ¼ −eνðrÞ½1þ rlH0ðrÞeiωtYlmðϕ; θÞ�c2dt2
þ eλðrÞ½1 − rlH0ðrÞeiωtYlmðϕ; θÞ�dr2
þ ½1 − rlKðrÞeiωtYlmðϕ; θÞ�r2dΩ2

− 2iωrlþ1H1ðrÞeiωtYlmðϕ; θÞdtdr; ð31Þ

where, H0, H1, and K represent the radial perturbations
of the metric, while the angular dependence is captured by
the spherical harmonics Ym

l . The time dependence of the
perturbed metric components can be expressed using the
factor eiωt for a wave mode. Here ω is a complex quantity,
as the waves decay due to the imposed open boundary
conditions. The real part of ω represents the oscillation
frequency, while the imaginary part corresponds to the
inverse of the wave mode’s gravitational wave damping
time (positive).
The perturbations of the energy-momentum tensor of

the fluid must also be considered in the Einstein equations.
The components of the Lagrangian displacement vector
ξaðr; θ;ϕÞ describe the perturbations of the fluid within
the star

ξr ¼ rl−1e−
λ
2WYl

meiωt;

ξθ ¼ −rl−2V∂θYl
meiωt;

ξϕ ¼ −
rl−2

sin2θ
V∂ϕYl

meiωt: ð32Þ

here, W and V are functions of r that represent fluid
perturbations confined to the star’s interior.
The gravitational wave equations can then be written as a

set of four coupled linear differential equations for the four
perturbation functions, H1, K, W, and X, which do not
diverge inside the star for any given value of ω. [86,87],

r
dH1

dr
¼ −½lþ 1þ 2beλ þ 4πr2eλðp − εÞ�H1

þ eλ½H0 þ K − 16πðεþ pÞV�; ð33Þ

r
dK
dr

¼ H0 þ ðnl þ 1ÞH1 þ ½eλQ − l − 1�K
− 8πðεþ pÞeλ=2W; ð34Þ

r
dW
dr

¼ −ðlþ 1Þ½W þ le
λ
2V�

þ r2eλ=2
�

e−ν=2X
ðεþ pÞc2ad

þH0

2
þ K

�
; ð35Þ

r
dX
dr

¼ −lX þ ðεþ pÞeν=2
2

�
ð1 − eλQÞH0

þ ðr2ω2e−ν þ nl þ 1ÞH1 þ ð3eλQ − 1ÞK

−
4ðnl þ 1ÞeλQ

r2
V − 2

�
ω2eλ=2−ν þ 4πðεþ pÞeλ=2

− r2
d
dr

�
eλ=2Q
r3

��
W

�
; ð36Þ

where,

QðrÞ ¼ bðrÞ þ 4πGr2pðrÞ
c4

f: ð37Þ

Here, bðrÞ ¼ 2GmðrÞ=ðc2rÞ, with mðrÞ and pðrÞ denot-
ing the enclosed mass and pressure at radius r, respectively.
The number of fluid perturbation variables is given
by nl ¼ ðl − 1Þðlþ 2Þ=2. The angular dependence is
described by the spherical harmonics Ylm, characterized
by the angular quantum number l and azimuthal quantum
number m; the latter is degenerate for the nonrotating
neutron stars considered here. In this work, the adiabatic
sound speed, c2ad, which characterizes oscillations in
neutron star matter, is approximated by the equilibrium
sound speed defined as c2eq ¼ dp=dε [30,34]. The behavior
of c2eq is illustrated in Fig. 2.
Perturbations at the center of the star r ¼ 0 are subject to

the boundary conditions XðRÞ ¼ 0, Wð0Þ ¼ 1,

Xð0Þ ¼ ðε0 þ p0Þeν0=2

×

��
4π

3
ðε0 þ 3p0Þ −

ω2

l
e−ν0

�
Wð0Þ þ Kð0Þ

2

�
;

ð38Þ

and

H1ð0Þ ¼
lKð0Þ þ 8πðε0 þ p0ÞWð0Þ

nl þ 1
: ð39Þ

The final boundary condition is derived by solving two
trial solutions with Kð0Þ ¼ �ðε0 þ p0Þ and then forming a
linear combination to satisfy the condition Xðr ¼ RÞ ¼ 0,
which ensures there are no pressure variations at the
surface. By design, H0ð0Þ ¼ Kð0Þ.
At the star’s surface, small arbitrary values are assigned

to the functions H1, K, andW, and backward integration is
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performed until reaching the point where forward integra-
tion from the star’s center ends. The forward and backward
solutions are then matched at this point. The quasinormal
mode frequency for the star is determined by solving the
Zerilli equation,

d2Z
dr�2

¼ ½VZðrÞ − ω2�Z: ð40Þ

TheZerilli function, as expressed inEq. (20) of [30], depends
solely on the perturbation variablesH1 andK, since the fluid
perturbationsW, V, and X vanish outside the star. The value
ZðrÞ at the star’s surface is determined using the values ofH1

andK at the surface. Beyond the star, Eq. (40) is numerically
integrated starting from the surface and extending outward to
a distance corresponding to r ¼ 25ω−1 [30]. The value of Z
at r ¼ 25ω−1 is matched with the corresponding value
obtained from the asymptotic expansion of Z, which is valid
far from the neutron star’s surface. To account for the
imaginary component of ω, which is over a thousand times
smaller than its real counterpart, it is essential to maintain a
relative error of 10−6 in our ODE solver for the variablesH1,
K, W, X, and Z.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Equation of state and mass-radius relations

Figure 1 illustrates how pressure varies with energy
density (i.e., the EoS) for a neutron star under beta-
equilibrium and charge-neutral conditions. The left panel
shows different compositions of hadronic matter: pure
nucleonic matter (N), Δ-admixtured nuclear matter
(Nþ Δ), with hyperonic matter (Nþ H), and Δ-admix-
tured hyperonic matter (Nþ Hþ Δ), and the right panel
shows the EoS when a phase transition to the quark matter
is included. From the left plot, we can see that the pure
nucleonic matter results in a stiffer EoS at high densities.

The appearance ofΔ particles softens the EoS, as additional
particle types distribute the Fermi pressure across multiple
degrees of freedom. With only nucleons and hyperons
present, the EoS softens further, but adding Δ particles to
hyperonic matter (Nþ Hþ Δ) introduces complexities. As
seen in Fig. 1, Nþ Hþ Δ is softer than Nþ H at low
densities but becomes stiffer as density increases. This
stiffening occurs because theΔ− baryon replaces a neutron-
electron pair at the Fermi surface, which is energetically
favorable due to an attractive potential. Neutral particles, as
the Λ and Δ0, appear later [88].
Regarding the phase transition, the presence ofΔs causes

a shift in the coexistence point toward higher densities for
the same deconfined EoS, which is linked to the afore-
mentioned effect. Postphase transition, the EoS at higher
densities is much more uniform compared to its hadronic
counterpart. For instance, the parameter set ðC;D1=2Þ ¼
ð0.90; 125 MeVÞ results in only a slightly stiffer EoS than
ðC;D1=2Þ ¼ ð0.65; 133 MeVÞ. However, the position of
the coexistence point plays the most crucial role when
constructing the hybrid EoS. Thus, for hybrid Nþ Δ EoS,
the phase transition takes place at a very high density
compared to hybrid Nþ Hþ Δ EoS. For the hybrid Nþ H
Eos, the hadron-quark phase transition region is small and
occurs at low density compared to the others. This implies a
large quark phase present in comparison to the other
hybrid EoSs.
Figure 2 depicts the behavior of squared speed of sound

as a function of number density for different compositions
of the matter studied in this work, without (left) and with
(right) phase transition. Thermodynamic stability ensures
that c2s > 0 and causality implies an absolute bound c2s ≤ 1.
For very high densities, perturbative QCD findings antici-
pate an upper limit of c2s ¼ 1=3 [89]. The two solar mass
requirements, according to several studies [89–91], neces-
sitates a speed of sound squared that exceeds the conformal

FIG. 1. Energy density and pressure variation for the given DD-ME2 parameter set without (left) and with (right) phase transition to
the quark matter at different quark model parameters (C;D1=2). The solid line represents the pure nucleonic matter (N) while dashed,
dash-dotted, and dotted lines represent the EoS for Δ-admixtured nuclear matter ΔðNþ ΔÞ, with hyperons (Nþ H), and Δ-admixtured
hyperonic matter (Nþ Hþ Δ), respectively.
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limit (c2s ¼ 1=3), revealing that the matter inside of NS is a
highly interacting system. In Fig. 2, the c2s for pure
nucleonic matter is significantly high, reaching a value
of 0.75 at the maximum mass configuration. In the
appearance of different particles, one can see the kinks
corresponding to the onset of a new particle species,
resulting in noticeable changes at the onset of each type.
Both pure nucleonic and Δ-mixed nuclear matter exceed
the conformal limit. Additionally, the Nþ Hþ Δ EoS
shows a higher value of c2s compared to Nþ H EoS at
intermediate densities due to the early emergence of Δ−

particles. For the maximum mass configuration, the c2s for
Nþ H is 0.54 while for Nþ Hþ Δ is 0.51.
When transitioning to quark matter (right plot), c2s

exhibits a discontinuity as the density varies abruptly in
the interface between the phases. For different particle

combinations, kinks are observed before phase transitions,
with hybrid N, Nþ Δ, and Nþ Hþ Δ EoS violating the
conformal limit at low densities. The Nþ Hþ Δ compo-
sition predicts a higher c2s due to early Δ− appearance and
delayed quark transition. At high energy densities, all speed
of sound values stays well below the conformal limit,
unlike previous observations, due to the expected approach
of a deconfined EoS toward the conformal limit from below
[92]. For all the cases, the speed of sound at the maximum
mass configuration lies within the range of 0.25–0.27
because of the transition to the quark matter.
Figure 3 illustrates the mass-radius relationship based on

solutions of the TOV equations for various EoSs. The
unified EoS employs the Baym-Pethick-Sutherland (BPS)
EoS [93] for the outer crust, while the inner crust EoS
is generated using the DD-ME2 parameter set in the

FIG. 2. Speed of sound squared as a function of number density for the different hadronic compositions of EoS without (left) and with
phase transition (right) to the quark matter. The dotted lines in the right plot correspond to the mixed-phase region where c2s drops to
zero. The green dashed line in both plots represents the conformal limit c2s ¼ 1=3.

FIG. 3. Left: mass-radius relation for the EoS with different hadronic compositions. The solid lines represent the stable part with a
solid dot marking the last stable point, hence the maximum mass configuration. The dash-dotted line represents the unstable part. Right:
same as the left plot but with a phase transition to the quark matter. The solid lines represent the hadronic branch. The star symbol
corresponds to the beginning of the hybrid stars branch. The solid dot represents the last stable point reached in the center of the
maximum-mass solution of the TOV equation. The dotted line represents the unstable part. The various shaded areas are credibility
regions from the mass and radius inferred from the analysis of PSR J0740þ 6620, PSR J0030þ 0451, and PSR J0437-4715 [97–101].
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Thomas-Fermi approximation [94–96]. The left plot repre-
sents the MR relations for different compositions of nuclear
matter without a phase transition. In contrast, the right plot
represents the hybrid EoS with the same compositions of
nuclear matter but with a phase transition to the quark
matter. From the left plot, for purely nucleonic matter, the
maximum mass reaches 2.46M⊙ with a radius of 12.04 km.
WhenΔ baryons are included, both the maximummass and
corresponding radius decrease to 2.28M⊙ and 11.30 km.
The presence of hyperons softens the EoS, reducing the
maximum mass to 2.04M⊙ with a radius of 11.68 km. For
hyperonic matter with Δ-admixtured, the EoS predicts a
maximum mass of 2.00M⊙ and a radius of 11.08 km. All
these MR relations satisfy the mass constraints from PSR
J0740-220 and several radius constraints from NICER
measurements [97–100], including the recent one for
PSR J0437-4715 [101]. The solid dot represents the last
stable point reached in the center of the maximum-mass
solution of the TOVequation. The dashed line after the solid
dot corresponds to the unstable part.
The right plot shows the EoS with a phase transition. The

solid lines correspond to the hadronic matter followed by a
branch of hybrid stars, represented by dashed lines. The star
symbol marks the hadron-quark phase transition point. The
solid dot represents the last stable point reached in the
center of the maximum-mass solution of the TOVequation.
The inset shows a zoomed plot version at around the
maximummass. For the hybrid EoS with nucleons only, the
maximummass is 2.29M⊙ with a radius of 13.02 km. Since
the phase transition to the quark matter occurs at high
density, a small part of the MR relation presents hybrid
stars before it reaches the unstable branch. Including delta
baryons soften the EoS and hence the maximum mass
decreases to 2.25M⊙ only and the radius to 11.81 km,
thereby representing a very small hybrid stars branch. The
radius at the canonical mass, R1.4 is 13.47 km for nucleons
and 12.97 km for nucleons with delta baryons. So while the
maximum decreases by around 0.17M⊙ for nucleonic only
EoS when phase transition is considered, this decrease is
very small for Nþ Δ EoS, ≈0.05M⊙. This is because
deltas appear at a very high density and the phase transition
takes place at a much higher density, allowing for a very
small amount of quark matter in the core compared to the
pure nucleonic hybrid EoS.
For the hybrid EoS with nucleons and hyperons, the

maximum mass is 1.95M⊙ with a radius of 12.54 km. We
have a substantial amount of pure quark phase here, as the
phase transition point is at low density in comparison to all
other EoSs. Adding delta baryons slightly increases the
maximum mass to 1.98M⊙ because of the delayed phase
transition, with a smaller radius of 11.63 km. The MR
profiles satisfy the 2.0M⊙ threshold and other constraints.
The hybrid nuclear EoS with and without deltas, N and
Nþ Hþ Δ, satisfy the 2.0M⊙ limit of PSR J0740þ 6620.
Despite selecting quark parameters for a stiff EoS,

including hyperons and a phase transition to quark matter
leads to an EoS that softens enough to limit the star’s
maximum mass to slightly under 2M⊙, but satisfies the 1σ
constraint from PSR J0740þ 6620.
Figure 4 shows the dimensionless tidal deformability as a

function of mass for the different compositions of the EoS
studied without (solid) and with (dashed) phase transition.
The red and green lines represent the constraints on the
dimensionless tidal deformability at 1.4M⊙ from GW
measurements GW170817 and GW190814, respectively
Λ ¼ 190þ390

−120 [2] and Λ ¼ 616þ273
−158 , if the secondary com-

ponent is an NS [102]. For both the nucleon-only EoS and
the nucleon-hyperon EoS, the MR relation remains
unchanged at 1.4M⊙, and the EoS including hyperons
and delta resonances (Nþ Δ and Nþ Hþ Δ) behave
similarly. These characteristics are also observed when
considering the hadron-quark phase transition in these
EoSs. The similarity between the curves is attributed to
the density-sensitive appearance of hyperons, deltas, and/or
deconfinement transition, which occur only in the densest
regions near the star’s core. Since the core represents a
relatively small portion of the star’s total volume, and tidal
deformability is primarily influenced by the outer layers of
the object, these exotic compositions have little effect on
the star’s response to external tidal forces (see [103] and
references therein for further discussion). Hence the
dimensionless tidal deformability goes to around 712 for
N and Nþ H EoS with and without phase transition,
satisfying the limit from GW190814. For other EoS,
Nþ Δ and Nþ Hþ Δ, this value decreases to around

FIG. 4. Dimensionless tidal deformability as a function of M
for the EoS with different hadronic compositions. Solid (dashed)
lines correspond to the EoS without (with) a phase transition to
the quark matter. The red line represents the constraint on
dimensionless tidal deformability at 1.4M⊙ from GW170817
measurement, Λ ¼ 190þ390

−120 [2], while as the green line represents
the constraint on dimensionless tidal deformability at 1.4M⊙
from GW190814 measurement, Λ ¼ 616þ273

−158 if the secondary
component is an NS [102].
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520 which is well below the limit from GW170817. All the
stellar properties for the EoS without and with phase
transition are presented in Table III.

B. f -mode frequency: GR framework

Since the primary goal of this work is to study nonradial
f-mode oscillations for various hadronic EoSs—with and
without a phase transition to quark matter—using a full GR
treatment, we focus on presenting results obtained within
the GR framework here. Results using the Cowling
approximation are provided in the Appendix for reference.
Where relevant, comparisons with Cowling results are
discussed in the main text.
Figure 5 illustrates the relationship between f-mode

frequencies and neutron star mass for various stellar com-
positions within the full GR treatment. The solid lines
represent results without phase transition (w=o PT), while
the dashed lines represent the ones with phase transition to

the quarkmatter (w PT) for different quarkmodel parameters
(C;D1=2) as discussed earlier. For the pure nucleonic EoS,
the f-mode frequency at maximum mass configuration
(2.45M⊙) reaches 2.12 kHz within the GR framework,
which decreases to a value of 1.61 kHz at the canonical
mass of 1.4M⊙. The inclusion of exotic particles (hyperons
andΔ baryons) systematically affects these frequencies, with
each additional exotic component softening the EoS in
different ways. This softening reduces the maximum mass
while increasing the correspondingf-mode frequencies in all
cases, both with and without phase transitions. The phase
transition to quark matter creates a distinct signature in the
mass-frequency relationship, especially at higher masses,
due to the maximum masses consistently occurring in the
hybrid star branch. These results alignwith previous findings
in [30,36,43], and the complete comparative analysis
between the Cowling approximations and GR formalism
across all compositions is summarized in Table IV.
From Fig. 5, we see that at 1.4M⊙, the f-mode

frequencies are nearly identical across all compositions,
indicating that exotic degrees of freedom have little impact
at lower masses. However, at 1.8M⊙, a clear hierarchical
pattern emerges, as shown in Table IV, with the ordering
fN < fNþH < fNþΔ < fNþHþΔ. This trend suggests that
the inclusion of hyperons and Δ baryons systematically
increases the f-mode frequency, reflecting their growing
influence on the neutron star’s oscillatory behavior.
However, as we approach the maximummass, this ordering
does not strictly hold. In particular, the f-mode frequency
for the Nþ H case slightly exceeds that of Nþ Δ case by a
very small margin (≈0.02 kHz), indicating a minor reversal
in the earlier hierarchy. Interestingly, in the presence of a
phase transition to the quark matter (dashed lines), the
hierarchical trend remains consistent even near the maxi-
mum mass. This is because the transition to quark matter
occurs at a lower central density in the Nþ H case than in
the Nþ Δ case, leading to a more significant change in
mass. As a result, the frequency for Nþ H drops more
compared to Nþ Δ, preserving the overall ordering.

TABLE III. Stellar properties for different compositions of EoS: maximum mass (Mmax) inM⊙, radius (in km) at
maximum mass (Rmax), at 2.0M⊙ (R2.0), and at 1.4M⊙ (R1.4). Dimensionless tidal deformability at 1.4M⊙ (Λ1.4),
and speed of sound squared at maximum mass configuration (c2�s;max). The upper four rows correspond to the EoS
without a phase transition, while the lower rows with a phase transition.

Composition Mmax (M⊙) Rmax (km) R2.0 (km) R1.4 (km) Λ1.4 c2�s;max

N 2.46 12.04 13.28 13.28 712.75 0.75
Nþ Δ 2.28 11.30 12.40 12.81 522.47 0.71
Nþ H 2.04 11.68 12.52 13.28 712.75 0.54
Nþ Hþ Δ 2.00 11.08 11.37 12.80 515.25 0.51

N (0.90,1.25) 2.29 13.02 13.38 13.47 712.97 0.27
Nþ Δ (0.90,1.25) 2.25 11.81 12.48 12.97 522.65 0.27
Nþ H (0.65,133) 1.95 12.54 � � � 13.47 712.97 0.25
Nþ Hþ Δ (0.65,133) 1.98 11.63 � � � 12.97 515.44 0.25

FIG. 5. Mass vs fundamental frequency of nonradial oscillation
modes for EoS with different hadronic compositions with full GR
treatment. Solid (dashed) lines represent results without (with)
phase transition to the quark matter for different quark model
parameters (C;D1=2) as discussed in the text.
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This systematic variation in the f-mode frequency
mainly arises from changes in the star’s compactness
and internal density profile. Since f-mode oscillations
are characterized by surface-dominated fluid perturbations
and core-dominated metric perturbations [30], compactness
plays a key role in determining the oscillation properties.
Stiffer EoSs, associated with larger radii and lower mean
densities, result in weaker restoring forces and lower
f-mode frequencies. Conversely, softer EoSs lead to
smaller radii, steeper density gradients, and higher mean
densities, all contributing to higher f-mode frequencies.
The presence of hyperons and Δ baryons soften the EoS,
reducing pressure support, which strengthens the restoring
force for fluid perturbations. It also affects the effective
sound speed and density stratification, further influencing
the oscillation dynamics. The increased compactness in
these cases enhances gravitational coupling and reduces
damping times, facilitating stronger gravitational wave
emission [30,86,104].
Using GW frequencies to distinguish different EoS

families can be effective by considering variations with

star compactness, which can be independently assessed
through gravitational redshift measurements from spectral
line observations [22,31,105,106].
Figure 6 illustrates the variation of f-mode frequencies

with compactness (C), i.e., the f–C relation, for EoS with
different compositions. The solid lines represent results
without phase transitions, while the dashed lines represent
results with a phase transition to quark matter.
While compactness determines the overall gravitational

binding, exotic degrees of freedom alter the internal
structure, modifying the restoring forces for oscillations.
Purely nucleonic stars exhibit the lowest f-mode frequen-
cies due to their shallower density profiles, whereas those
containing hyperons and Δ baryons become more centrally
condensed. Even at fixed compactness, composition plays a
crucial role in shaping oscillation properties, leading to
systematically higher f-mode frequencies in EoSs with
exotic matter. The presence of a phase transition alters
the f−C relationship. For a given compactness value, the
frequencies in the phase transition models tend to be
different from their nonphase transition counterparts.
This reflects the fundamental changes in the EoS when
quark matter appears in the stellar core. The phase
transition models show a more limited range of stable
compactness values as compared to the one without. This is
consistent with the understanding that phase transitions
generally soften the EoS, reducing the maximum stable
mass and altering the mass-radius relationship. Our results
align with those of Ref. [42], but our study explicitly
accounts for full general relativistic effects, ensuring a more
accurate description of NS oscillations.
Besides the basic properties such as mass, radius, and

compactness, dimensionless tidal deformability serves
as a crucial observable for constraining the NS EoS. By
separately measuring the f-mode frequency and tidal
deformability, we obtain insightful data that enhances

TABLE IV. Comparison between the fundamental frequencies
(in kHz) calculated using GR (fGR) and Cowling approximation
(fcow), at 1.40M⊙, 1.80M⊙, and at the maximum mass without
and with phase transition. The percentage error (P. E.) between
GR and Cowling is also shown.

Composition Mass fGR fcow P. E. (%)

N 1.40 1.6130 2.0491 27.03
1.80 1.7266 2.1317 23.46
2.46 2.1205 2.3734 11.93

Nþ Δ 1.40 1.7312 2.1520 24.31
1.80 1.8980 2.2908 20.70
2.28 2.1865 2.4915 13.95

Nþ H 1.40 1.6133 2.0491 27.01
1.80 1.7666 2.1593 22.23
2.04 2.2043 2.4811 12.56

Nþ Hþ Δ 1.40 1.7328 2.1529 24.24
1.80 1.9644 2.3419 19.22
2.00 2.2269 2.5422 14.16

N (0.90,1.25) 1.40 1.6130 2.0491 27.03
1.80 1.7266 2.1317 23.46
2.29 1.9110 2.2441 17.43

Nþ Δ (0.90,1.25) 1.40 1.7300 2.1520 24.39
1.80 1.8980 2.2908 20.70
2.25 2.1662 2.4876 14.84

Nþ H (0.65,133) 1.40 1.6133 2.0491 27.01
1.80 1.7666 2.1599 22.27
1.95 2.0018 2.3166 15.73

Nþ Hþ Δ (0.65,133) 1.40 1.7329 2.1529 24.24
1.80 1.9648 2.3422 19.21
1.98 2.2018 2.5225 14.57

FIG. 6. Stellar compactness (C ¼ M=R) vs fundamental fre-
quency of nonradial oscillation modes for EoS with different
hadronic compositions. Solid (dashed) lines represent results
without (with) phase transition to the quark matter.
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our understanding of NSs internal structure. Figure 7
illustrates the relationship between f-mode frequencies
and the dimensionless tidal deformability. Our results for
the f-mode frequency lie well within the limits obtained
from the GW170817 observation which is estimated
between 1.43 kHz and 2.90 kHz for the more massive
NS and between 1.48 kHz and 3.18 kHz for the less
massive one. Furthermore, analysis of the f-mode frequen-
cies with respect to tidal deformability reveals a conver-
gence phenomenon: beyond a tidal deformability parameter
Λ ≈ 300, the f-mode frequencies become effectively indis-
tinguishable across all studied compositions, as illustrated
in Fig. 7. This convergence persists regardless of whether
phase transitions to quark matter are present in the EoS.
Such behavior indicates that in this high-deformability
regime, the f-mode oscillations no longer serve as effective
discriminators between EoSs with and without phase
transitions, suggesting that the influence of compositional
differences on oscillation properties becomes negligible
at these deformability values. The inset shows a more
detailed description of the plot at low tidal deformability, to
distinguish between the results without and with phase
transition to the quark matter.

V. GRAVITATIONAL WAVE
ASTEROSEISMOLOGY-UNIVERSAL RELATIONS

Neutron star asteroseismology aims to connect the
oscillation modes’ angular frequencies and GW damping
timescales to the star’s core properties, including mass,
radius, and rotational frequency. By using inverse aster-
oseismology, it is possible to derive relationships that are
largely independent of the specific EoS. This approach
leverages GW observations in combination with the star’s
global properties—particularly its rotational frequency,

which plays a crucial role in rapidly rotating neutron
stars—to infer internal structure and dynamics. The con-
cept of GW asteroseismology was initially introduced
by Andersson and Kokkotas [105] for certain polytropic
EoSs and later explored for some realistic EoSs [31].
They derived an empirical asteroseismology relation
between f-mode frequency as a function of average density
of the star, namely,

fðkHzÞ ¼ aþ b

ffiffiffiffiffiffi
M̄
R̄3

r
; ð41Þ

in terms of the dimensionless parameters M̄ ¼ M
1.4M⊙

and

R̄ ¼ R
10 km. This was further probed with some EoSs

containing exotic phases such as hyperons and quarks
by Benhar et al. [22]. More studies with exotic phases,
quarks, and dark matter were also carried out in
Refs. [35,38,107–109]. But no work in the context of Δ
baryons has been carried out for the f-mode frequency,
especially with a hadron-quark phase transition considered.
To facilitate a comprehensive comparison with prior studies
and provide detailed discussion, we include Cowling
approximation results alongside the GR results, as this
approach has been utilized in the literature.

FIG. 7. Dimensionless tidal deformability (Λ) vs fundamental
frequency of nonradial oscillation modes for EoS with different
hadronic compositions. Solid (dashed) lines represent results
without (with) phase transition to the quark matter. The inset
shows the low Λ region in detail.

FIG. 8. Average density of the star vs fundamental frequency of
nonradial oscillation modes for EoS with different hadronic
compositions. The lower (upper) plot represents results from
the full general relativistic (Cowling) treatment. The dot-dashed
lines in the upper plot correspond to the fits from various studies
whereas the dotted line corresponds to the fit from our work.

NONRADIAL OSCILLATION MODES IN HYBRID STARS WITH … PHYS. REV. D 112, 023013 (2025)

023013-13



In Figs. 8 and 9, we present the empirical asteroseismol-
ogy relation for f-mode frequencies as a function of the
average density of the star, respectively for the scenarios
without and with a phase transition. The upper panels
present fitting relations based on the Cowling approxima-
tion, while the lower panels display results from the full GR
framework. Dot-dashed lines represent fits from previous
studies [22,31,35,109,110], and the dotted line corresponds
to the fit obtained from our work. All the different values of
a and b for the above-fit relation are shown in Table V. For
the Cowling approximation fit, the values of a and b from
our fit are 1.32 and 1.18 kHz, respectively, without a phase
transition, and 1.29 and 1.22 kHz, with a phase transition.
They are named as Fit w=o PT-1 and Fit w PT-1 for without

and with phase transition, respectively. Unlike earlier
works, our results differ significantly from previous studies
because we included Δ baryons in our analysis. This
consideration alters the equation of state, leading to the
observed variations in the fit relations. For the GR fit, the
values of a and b are 0.44 and 1.72 kHz, respectively,
without phase transition, and 0.39 and 1.79 kHz with phase
transition. They are named Fit w=o PT-2 and Fit w PT-2 for
without and with phase transition, respectively. As dis-
cussed in Refs. [43,111,112], while empirical relations are
designed to be independent of the underlying EoS, they still
retain some degree of model dependence. Given that the NS
masses are among the most precisely measured global
properties, their combination with mode frequency obser-
vations can aid in distinguishing between different EoS
models and provide insights into the behavior of matter at
high densities. In essence, these empirical fits serve not
only as tools for estimating global observables but also as a
means to constrain EoS stiffness and identify possible
signatures of exotic matter. Pradhan and Chatterjee [35]
obtained values of a ¼ 1.075 and b ¼ 1.412 using the
Cowling approximation for a nucleonic-hyperonic compo-
sition. In contrast, our fit yields a ¼ 1.32 and b ¼ 1.18 (Fit
w=o PT-1), which is expected due to the additional presence
of Δ baryons in our EoSs. This difference highlights the
impact of Δ baryons on the fit parameters. Under full GR
calculation, our fitted relation gives a ¼ 0.44 and b ¼ 1.72
(Fit w=o PT-2), whereas Pradhan et al. [43] report 0.535
and 1.643.
Unlike the fitting relations in Eq. (41) which exhibit

some model dependence, certain universal relations remain
largely independent of the EoS. These relations are
particularly useful for inferring the NS properties from
QNM observations. Previous studies from Refs. [35,43]
have demonstrated that the mass-scaled angular frequency
ωM follows a universal trend with stellar compactness.
Extending this idea, prior research on g-modes has shown a
similar universal relation between ωM and compactness,
M=R [113]. In this work, we examine how these relations
are influenced by the presence of hyperons, Δ baryons, and
their combination along with a phase transition to the quark
phase, focusing on the behavior of angular frequency when
scaled by mass and radius.
In Figs. 10 and 11, we present the mass-scaled angular

frequency (ωM) as a function of stellar compactness.
Figure 10 shows the analysis without phase transitions,
whereas Fig. 11 includes a phase transition to quark matter.
The lower (upper) panels display the results from the full
general relativistic (Cowling) treatment. The universal
relation between ωM and M=R is given by

ωM ¼ a

�
M
R

�
− b; ð42Þ

where a and b are fitting coefficients in kHz · km. In the
upper plot, dot-dashed lines represent fits from various

FIG. 9. Same as Fig. 8, but with phase transition to the quark
matter at different quark model parameters (C;D1=2).

TABLE V. Values of fitting coefficients a and b in kHz for
Eq. (41) from different works and our results.

Reference a (kHz) b (kHz)

Benhar et al. [22] 0.79 1.500
Andersson and Kokkotas [31] 0.78 1.635
Das et al. [109] 1.185 1.246
Pradhan and Chatterjee [35] 1.075 1.412
Doneva et al. [110] 1.562 1.151

Our results
Fit w=o PT-1 1.32 1.18
Fit w=o PT-2 0.44 1.72
Fit w PT-1 1.29 1.22
Fit w PT-2 0.39 1.79
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studies, while the dotted line in both upper and lower plots
corresponds to the fit derived from our work. Although the
fit from Pradhan and Chatterjee [35] matches very closely
to our fit, the one from Das et al. [109] differs. This can be
attributed to the fact that their study incorporates the
presence of dark matter, whereas ours focuses on the
inclusion of delta baryons in the composition. The values
of a and b obtained in these references are provided, along
with our results, in Table VI. These numbers show that
empirical fits developed for purely nucleonic stars or the
ones with dark matter may not be accurate whenΔ-baryons
are considered. The effect of Δ-baryons in the case of a
phase transition leads to a more noticeable deviation in the
fit compared to the ones reported in Refs. [35,109]. This
implies that the fits from this work in both the Figs. 10 and
11 accurately capture these changes while other fits do not.
Such a finding emphasizes the need for an updated
empirical relation incorporating both Δ-baryons and phase
transitions.
Figures 12 and 13 illustrate the relationship between ωR

(the product of the f-mode frequency ω and radius R) and
the compactness (M=R), respectively without and with a
hadron-quark deconfinement transition. The universal rela-
tion takes the same form as Eq. (42),

ωR ¼ a

�
M
R

�
þ b: ð43Þ

The lower panels depict results obtained from full GR
calculations, which account for both fluid and gravitational
perturbations, providing the most accurate theoretical
predictions. In contrast, the upper panels show results
under the Cowling approximation, where gravitational
perturbations are neglected. This simplification leads to
an overestimation of ωR, evident from the consistently
higher values compared to the GR results. The overesti-
mation is more pronounced at lower compactness and
reduces as compactness increases, reflecting the stronger
coupling of surface fluid perturbations to the tidal field in
more compact stars. The dotted line in both panels
corresponds to the universal fit derived from the current
study. In the upper panel, the dot-dashed line represents the

FIG. 10. Stellar compactness vs the angular frequency
(ω ¼ 2πf) scaled by mass (ωM) for EoS with different hadronic
compositions. The lower (upper) plot represents results from the
full general relativistic (Cowling) treatment. The dot-dashed lines
in the upper plot correspond to the fits from various studies,
whereas the dotted line in both the upper and lower plot
corresponds to the fit from our work.

FIG. 11. Same as Fig. 10, but with phase transition to the quark
matter at different quark model parameters (C;D1=2).

TABLE VI. Values of the fitting coefficients a and b for
Eq. (42) from different works and from our results.

Reference a ðkHz kmÞ b ðkHz kmÞ
Das et al. [109] 190.48 2.98
Pradhan and Chatterjee [35] 197.30 3.84

Our results
Fit w=o PT-1 199.40 3.66
Fit w PT-1 200.00 3.88
Fit w=o PT-2 179.61 6.63
Fit w PT-2 180.65 6.92
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fit from the previous study by Das et al. [109], providing a
comparative reference. In Table VII we present the values
of the coefficients a and b obtained from our fittings.
The presence of Δ-baryons modifies the relation but

within the expected smooth trends of nucleonic EoS.
Their inclusion alongside a phase transition leads to a

significantly altered behavior in ωR, possibly introducing
more abrupt changes or shifts due to density-dependent
transitions. Our fits better account for these transitions and
particle degrees of freedom, and offer a more refined model
for neutron star oscillations.
Our results extend the findings of Pradhan and Chatterjee

[35], Pradhan et al. [45], Pradhan and Chatterjee [114]
by systematically analyzing the impact of Δ baryons on
neutron star oscillations. Unlike previous works, which
focused on nucleonic and hyperonic EoSs, we incorporate
Δ baryons and explore their influence on f-mode frequen-
cies, compactness, and tidal deformability. Our study
reveals that Δ baryons introduce noticeable deviations in
universal relations, particularly in the average density of the
star vs f-mode frequency (see Figs. 8 and 9) as well as in
the f-mode frequency vs. compactness relation (see Fig. 6),
which were not observed in prior studies. Additionally,
we compare results from the Cowling approximation and
full general relativity, demonstrating that the frequency
discrepancies are more pronounced in EoSs containing Δ
baryons, without and with phase transition to the quark
matter. These differences suggest that gravitational wave
asteroseismology could provide a means to detect the
presence of Δ baryons in neutron stars, a possibility not
considered in previous analyses.

VI. SUMMARY AND CONCLUSIONS

In this work, we investigated the effects of Δ baryons on
the equation of state (EoS), f-mode oscillations, and
universal relations in neutron stars. Using the density-
dependent relativistic mean-field (DD-RMF) model with
the DDME2 parameter set, we constructed different EoSs
including nucleonic, hyperonic, and Δ-admixed matter.
Additionally, we considered hybrid stars with a hadron-
quark phase transition, modeled via the density-dependent
quark mass (DDQM) approach.
Our results show thatΔ baryons soften the EoS, reducing

the maximum neutron star mass while modifying the
stiffness at high densities. This leads to significant changes
in mass-radius relations and the speed of sound in neutron
stars. When incorporating a phase transition, we observe
that the hybrid EoS with Δ baryons exhibits delayed
quark matter onset compared to purely nucleonic or
hyperonic models, influencing the hybrid star’s core
composition.

FIG. 12. Same as Fig. 10 but angular frequency scaled by radius
(ωR) as function of compactness.

FIG. 13. Same as Fig. 11 but angular frequency scaled by radius
(ωR) as function of compactness.

TABLE VII. Values of the fitting coefficients a and b for
Eq. (43) from our results.

Fitting a ðkHz kmÞ b ðkHz kmÞ
Fit w=o PT-1 114.54 157.36
Fit w PT-1 145.93 151.15
Fit w=o PT-2 286.57 78.50
Fit w PT-2 307.54 75.12
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We confirm the well-known discrepancy between
f-mode frequencies computed using the Cowling approxi-
mation and full GR calculation, with the Cowling approxi-
mation overestimating the frequencies by about 10% to
30%. While this has been shown in previous studies, our
results demonstrate that the discrepancy remains significant
even in the presence of additional degrees of freedom such
as hyperons, Δ baryons, and a phase transition to quark
matter. We observe that the discrepancy generally decreases
with increasing stellar mass; however, near the maximum
mass, this trend depends on the EoS. For EoSs without a
phase transition, the discrepancy reduces at the maximum
mass, consistent with earlier findings. In contrast, for EoSs
involving a phase transition to quark matter, the discrep-
ancy increases by a few percent compared to the case
without a phase transition. This feature emphasizes the
necessity of using full GR calculation to accurately model
neutron star oscillations, particularly in the presence of a
phase transition.
Our study provides important implications for gravita-

tional wave detections from neutron star oscillations. The
presence of Δ baryons systematically shifts the f mode
frequencies and modifies the empirical relations that con-
nect them to neutron star compactness and tidal deform-
ability. Given that current and future gravitational wave
detectors (e.g., LIGO-Virgo-KAGRA, Einstein Telescope,
Cosmic Explorer) aim to constrain neutron star properties
with unprecedented precision, our results suggest that Δ
baryons could leave measurable imprints on observed
mode frequencies. Furthermore, the inclusion of Δ baryons
in hybrid stars alters the expected frequency range of
postmerger oscillations, which could be relevant for inter-
preting signals from future multimessenger events.
In addition, we examined f-mode frequencies as func-

tions of stellar compactness and tidal deformability, estab-
lishing universal relations that extend previous results. The
inclusion of Δ baryons introduces deviations in these
relations, suggesting potential observational signatures in
gravitational wave data. Empirical fits for f-mode frequen-
cies were derived for both the Cowling and the GR
frameworks, demonstrating the influence of exotic baryons
on neutron star oscillations and constraints on the EoS.
In this work, the quark matter parameters C and D1=2

were selected to ensure the presence of coexistence point
with the chosen hadronic EoS. As outlined in Ref. [47], the
position of the phase transition is highly sensitive to these
parameters. A different choice for the pair (C;D1=2) would
alter the quark EoS, which in turn would affect key stellar
properties such as the maximum mass, radius, tidal deform-
ability, and hence the oscillation frequencies. Since our
results—spanning different particle compositions and
phase transitions to quark matter with varying values of
C and D1=2—consistently show that the universal relations,
particularly those derived within the GR framework, are
robust, we conclude that reasonable variations in quark

matter parameters do not significantly affect these relations.
The fits derived remain consistent across models, indicating
that while specific stellar quantities may shift with different
parameter choices, the overall universality and qualitative
features of the relations will remain preserved.
In summary, our study underscores the role of Δ baryons

in neutron star structure and dynamics. Their impact on
f-mode oscillations, particularly in hybrid stars, provides
new insights into dense matter physics and gravitational
wave asteroseismology. These findings contribute to
ongoing efforts to connect theoretical models with astro-
physical observations, advancing our understanding of
neutron star interiors and the QCD phase diagram.
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APPENDIX

Here we describe the Cowling approximation and dis-
cuss the f-mode frequency calculations with and without a
phase transition. The corresponding values of the frequency
are compared with the GR framework and are shown in
Table IV.

1. Relativistic Cowling approximation

In the Newtonian framework of stellar pulsations, when
the perturbation of the gravitational potential caused by
matter fluctuations is ignored, the resulting simplification is
referred to as the Cowling approximation [115]. This
significantly reduces the complexity of the fluid perturba-
tion equations. Analogously, in the context of general
relativity, neglecting the perturbations of the spacetime
metric leads to what is known as the relativistic Cowling
approximation. The relativistic Cowling equations are
obtained by setting H0 ¼ H1 ¼ K ¼ 0 in Eqs. (33)–(35),
and furthermore, omitting the term −4πðεþ pÞ2eðνþλÞ=2W
in Eq. (38), leading to
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dW
d ln r

¼ −ðlþ 1Þ½W − leνþλ=2U�

−
eλ=2ðωrÞ2

c2ad

�
U −

eλ=2Q
ðωrÞ2 W

�
; ðA1Þ

dU
d ln r

¼ eλ=2−ν½W − leν−λ=2U�; ðA2Þ

where W ¼ eλ=2r1−lξr and U ¼ −e−νV ¼ r−lω−2δp=
ðεþ pÞ, ξr are radial Lagrangian displacements defined
in Eq. (32) and δP is the Eulerian perturbation of pressure,
which is related to the Lagrangian perturbation by
ΔP ¼ δP − ðεþ pÞ dΦdr ξr. The boundary conditions can
be written explicitly as,

W
U

				
r¼0

¼ leνjr¼0 ðA3Þ

W
U

				
p¼0

¼ ω2R3

GM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2GM
c2R

r
: ðA4Þ

These equations govern the eigenmode frequencies of
stellar oscillations within the framework of the relativistic
Cowling approximation. A more comprehensive derivation
of this approximation is provided in Ref. [116].
Figure 14 shows the f-mode frequency–mass relations

computed using the Cowling approximation, enabling
direct comparison with the full GR results in Fig. 5. For
the purely nucleonic EoS without a phase transition, the
frequency increases from 2.05 kHz at 1.4M⊙ to 2.37 kHz at
the maximum mass. When a phase transition is included,
the frequency at maximum mass decreases to 2.24 kHz. As
expected, the Cowling approximation consistently over-
estimates the f-mode frequencies compared to full GR
calculation, with the relative error decreasing from 27% at
1.4M⊙ to 11.93% at the maximum mass for the nucleonic
case. However, for EoSs with a phase transition, the relative

error at maximum mass increases compared to the purely
hadronic case. This trend is consistent across all EoS
models studied, as summarized in Table IV, and confirms
that discrepancies between the two methods are more
pronounced at lower masses and tend to diminish with
increasing mass—except in the presence of a phase
transition, where the error becomes more pronounced again
near the maximum mass.
Figure 15 presents the f-mode frequency as a function of

stellar compactness computed under the relativistic
Cowling approximation. Compared to the full GR results
shown in Fig. 6, all curves exhibit a systematic upward shift
in frequency. This offset, typically in the range of 0.3–
0.5 kHz, arises due to the omission of gravitational back-
reaction, which effectively increases the stiffness of the
restoring force in the oscillation equations. Despite this
quantitative discrepancy, the Cowling approximation
retains the qualitative features of the GR treatment and
the impact of the phase transition to quark matter is clearly
visible through the dashed segments that deviate from the
solid lines near the maximum compactness. Notably, the
relative error introduced by the Cowling approximation is

FIG. 14. Same as Fig. 5, but using Cowling approximation.

FIG. 15. Same as Fig. 6, but using Cowling approximation.

FIG. 16. Same as Fig. 7, but using Cowling approximation.
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larger at low compactness, reaching up to ∼30%, but
decreases to ∼10−15% near the maximum-mass configu-
rations. This trend suggests that while the Cowling
approximation may overestimate absolute frequencies, it
remains a useful and computationally efficient tool for
studying massive neutron stars, especially in exploratory
analyses where full GR treatment is computationally
expensive.
Figure 16 shows the f-mode frequencies as a function of

the dimensionless tidal deformability computed using the

Cowling approximation. The frequencies remain within the
range inferred from the GW170817 event. Similar to the
full GR results, we observe a convergence of f-mode
frequencies beyond Λ ≈ 300, where differences across
various EoSs, including those with and without a phase
transition to quark matter, become negligible. This suggests
that at high deformability, the Cowling approximation also
loses sensitivity to compositional effects. The inset high-
lights the low-Λ region, where distinctions between EoSs
with and without a phase transition are more apparent.
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