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Testing inhomogeneous cosmography in our cosmic neighborhood
using CosmicFlows-4
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The convergence of the third-order general cosmographic expansion of the luminosity distance is
examined using several versions of a semirealistic model of our local cosmic neighborhood, based on
publicly available density and velocity fields from CosmicFlows-4. The study supports earlier findings that
the general cosmographic expansion diverges at surprisingly low redshifts, often well before z ~ 0.1. By
being based on a realistically placed observer within a data-informed cosmic environment, the results
underscore that convergence must be a central concern when applying the general cosmographic
expansion. By showing all-sky maps of kinematic parameters, the study also highlights the substantial
information we lose when relying solely on standard Friedmann-Lemaitre-Robertson-Walker-based
cosmography. Poor convergence does not necessarily render the information extracted by fitting data
to the general cosmographic expansion meaningless. Rather, it calls for caution in interpreting this
information, particularly regarding the physical meaning of the fitting coefficients, the physical scales they
probe, and the implicit smoothing introduced by the fit.

DOI: 10.1103/6z7w-47rc

I. INTRODUCTION

The ACDM model is the onset for interpreting obser-
vations in standard cosmology. However, observational
data have become so ample and precise that fluctuations in
observations across the sky can be studied for a variety of
observables. An interesting example is the recent array of
studies into the anisotropy of the Hubble diagram [1-9]
(see, e.g., [10] for an overview of the results of these studies
and [11] for a review). These studies illustrate the high
precision of current cosmological observational data, dem-
onstrating that the data have reached a level of detail that
permits us to thoroughly study the anisotropy and inhomo-
geneity. Additionally, in recent years, observational chal-
lenges for the standard ACDM model have appeared. A
striking but somewhat overlooked example is an apparent
disagreement between the dipole anisotropy of the cosmic
microwave background and other distant sources [12—-14]
(see, e.g., [15] for the background for these studies).

Overall, one may argue that the time has come to go
beyond the standard framework of employing Friedmann-
Lemaitre-Robertson-Walker (FLRW) cosmology when
interpreting observations. This is further supported by
studies such as [16], claiming strong tension between
the local Universe with the ACDM model. Such studies
may indicate that the ACDM model and the corresponding
standard tools for data analysis simply are not accurate
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enough to be used with modern astrophysical data, espe-
cially when considering low-redshift observations.
Fittingly, there has been an increased activity among
cosmologists in developing formalisms for taking anisotropy
and inhomogeneity into account in data analyses. A prime
example is the cosmographic expansion of the luminosity
distance for a general spacetime presented in [17]," which has
recently been augmented in the series [19-21] and which
builds on earlier work, such as [22-24]. The formalism of
[17] has been used in studies based on numerical relativity
[25,26] and in N-body simulations based on the weak-field
approximation [27]. The formalism has even been used in
relation to studying real data in, e.g., [3,10]. However,
already in [25,26] it was noticed that the general cosmo-
graphic framework may have an obstacle in terms of a very
low radius of convergence and/or a very slow convergence
rate compared to the FLRW expansions (see, e.g., [28,29]
regarding convergence of cosmographic expansions based
on FLRW spacetimes). Indeed, good convergence at
third order for redshifts up to z = 0.1 was only obtained in
simulations with a smoothing scale as large as 200 Mpc/h.
The obstacle was further confirmed in [30], where the
convergence of the general cosmographic expansion was
studied in various Lemaitre-Tolman-Bondi (LTB) [31-33]
models constructed to resemble our cosmic neighborhood.
This study made it clear that the convergence of the

'Some of the results presented in [17] were earlier derived in
the PhD thesis [18].
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underlying Taylor expansion of the general cosmographic
expansion depends strongly on the local environment, and
that assessments stating that the expansion is suitable up to
around z = 0.1 (as in, e.g., [21]) are simply too optimistic.

The studies listed above indicate that the general cosmo-
graphic expansion only converges at redshifts much lower
than z = 0.1 unless structures are radically smoothed or
expansion terms far beyond third order are included. Firmly
establishing realistic limits of the convergence will, how-
ever, require detailed and realistic models of our cosmic
neighborhood. The goal here is to make exactly such a
model and place realistic limits on the convergence of the
general cosmographic expansion of the luminosity dis-
tance. More precisely, the objective here is to study the
convergence of the general cosmographic expansion
devised in [17], using an array of versions of a model of
our local Universe based on real observations combined
with a weak-field approximation. The section below
presents the constructed models of our local Universe in
detail. Following that, Sec. III provides an overview of the
formalism used to calculate the redshift-luminosity distance
relation and cosmographic expansion for the model.
Section IV presents the results from a numerical inves-
tigation based on the models, while Sec. V provides a
summary, discussion, and conclusions.

II. MODEL SETUP

This section serves to introduce the model that will be
studied in the later sections. The goal is to construct a
realistic model of the local Universe so that the model can
be used to realistically estimate the convergence of the
general cosmographic expansion of the luminosity dis-
tance. Several versions of a model based on the overall
same data will be considered and used in order to under-
stand the significance of model details.

The realistic models are obtained by using the density
and peculiar velocity fields presented in [34] based on the
CosmicFlows-4 data [35]. The CosmicFlows-4 dataset
contains distance and redshift measurements of nearly
56,000 galaxies in our local cosmic neighborhood.
Corresponding peculiar velocities can be extracted from
the data by assuming a background FLRW model (see, e.g.,
[36] for a discussion of this approach). Density fields can
then be estimated based on perturbative expressions. This
was done in [34], with the resulting density and velocity
fields being made publicly available.” Two versions of the
density and velocity fields are available: a grouped and
ungrouped version. In the “ungrouped” dataset, the fields
are determined based on each individual galaxy. In the
“grouped” dataset, the galaxies are bunched into ~38, 000

’The data can be found at https://projets.ip2i.in2p3.fr/
cosmicflows/.

groups, from which average velocity and density fields are
determined (see, e.g., [37] for details on the grouping
procedure). To assess the robustness of the results presented
in Sec. IV, models based on both of these datasets will be
considered. Figure 1 shows the density contrast ¢ :=
p/ppe — 1 and the peculiar velocity field for each model
in a two-dimensional slice going through (SGX,SGY,
SGZ) = (0,0, 0) [our position in supergalactic (SG) coor-
dinates]. As discussed in [34], the data are based on the flat
ACDM model as the background with €, , = 0.3 and
Hy = 74.6 km/s/Mpc, with the Hubble constant value
being equal to the one extracted from the CosmicFlows-4
data in [35]. This is the background model assumed here,
but note that smaller variations of background parameters,
such as H, are not crucial for the results presented
further below.

Spacetimes based on these density and velocity fields
will be constructed by introducing a weak-field approxi-
mation inspired by [38]. For this, it is assumed that our
local spacetime can be approximated by the perturbed
FLRW line element in the Newtonian gauge (considering
only scalar perturbations),

ds® = —c*(1 +2®)dr* + a?(1 = 2®)(dx* + dy* + dz?).
(1)

It was argued in [39] that a Newtonian N-body simulation
can be mapped into a perturbed FLRW spacetime by
applying the above line element and combining it with
the 4-velocity u* o (1, v'), where ' is the peculiar velocity
field obtained from the simulation. The metric perturbation
@ is then obtained from the density field of the simulation
through the Poisson equation, V2® = 47Ga*(p — ppg).
This method has, e.g., been found to apply well to LTB
models reproduced with Newtonian N-body simulations
[40,41]. A similar mapping will be used here, using the
peculiar velocity field and density contrast from the
CosmicFlows-4 data instead of simulation data. The space-
time will be considered using the weak-field approximation,
only keeping the leading order terms. Following Table I of
[38], we will thus neglect terms containing the potential
except its second-order spatial derivatives, which are kept at
linear order. The density contrast (proportional to the second
derivative of the metric potential) and the peculiar velocity
field and its derivatives are also kept at linear order.

The velocity and density data of [34] are given on the
interval [—500,500] Mpc/h on a 64-point grid in each
direction. The gridded data must be interpolated to obtain a
smooth field for the ray tracing and computation of
cosmographic parameters. Since the chosen interpolation
scheme may affect the results, three different interpolation
schemes will be used to interpolate between grid points,
namely, linear interpolation, cubic interpolation, and
Steffen interpolation (cubic interpolation that enforces
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Two-dimensional slice of model universe corresponding to
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the middle plot in Fig. 2 of [34]. A star indicates our position at

supergalactic coordinates (SGX, SGY, SGZ) = (0,0, 0). The plot to the left shows the slice for ungrouped data, while the plot to the

right shows the fields for the grouped data.

monotonic behavior between interpolation/grid points).
Each choice of interpolation scheme leads to a distinct
model of our local cosmic neighborhood.

The results also depend on the grid size. Although current
public data are limited to a 643-point grid, higher-resolution
versions (128 and 256° grids) exist as well. However, it is
actually lower resolution that would lead to better conver-
gence of the cosmographic expansion. The relation between
the accuracy of the general cosmographic expansion and the
resolution of simulation data was assessed in Appendix A of
[25] where it was, e.g., gauged that the general cosmographic
expansion would be accurate at percent level in the interval
0.04 <z <0.15 only if the first at least eight terms of the
expansion were used together with a smoothing scale of
~200 Mpc/h. Better accuracy can be obtained with fewer
terms if the smoothing is done on larger scales and/or smaller
redshift intervals are considered. To study the impact of grid
resolution we, therefore, also introduce smoothed versions of
the CosmicFlows-4 data using simple downsampling, where
grid values of the coarser grid are obtained by averaging over
the original grid values covering the same spatial region.

The resulting models of our local cosmic neighborhood
are clearly only approximate. One may, for instance, notice
that the density contrast becomes smaller than—1 in Fig. 1,
indicating a negative density field, which is obviously
unphysical. A density contrast below—1 is also seen in
Fig. 2 of [34] and is presumably due to a breakdown of
the linear approximation used to go from a peculiar velocity
field to density contrast. However, the negative density does
not have any significant consequences for the results (viz. no
striking effects occur when comparing results along light
rays that go through regions with negative density compared
to light rays propagating through positive density only).

A further approximation comes into the model from
the uncertainty of distance measures, which for the

CosmicFlows-4 data typically have an error of ~15%.
This error propagates into the density and peculiar velocity
estimates, as discussed in, e.g., [35,36]. These uncertainties
will not be taken into account here since it is expected that a
15% change in the fields will not make a significant differ-
ence regarding the overall conclusions.

Lastly, it is worth noting that the model, as described so
far, does not include considerations of time dependence.
Since the region probed by the CosmicFlows-4 data is
fairly small and light will only be propagated to z = 0.1 in
the following, the time evolution can largely be ignored,
and the supergalactic grid described above will be con-
sidered a purely spatial grid, although the small time
evolution occurring along light rays is automatically taken
(roughly) into account on this grid. In the following
section, explicit time derivatives of the velocity field will,
however, be required, but since these are expected to be
subdominant (see, e.g., [27]), we will use the approxi-
mation v, = 0. To include a time evolution of the density
field, we could use linear perturbation theory to estimate a
time dependence for the density contrast as 6, = —60 ~
—0,v' (see, e.g., Chapter 10 in [42]), where 5O is the
fluctuation in the local expansion rate and the second
equality is valid to first order in the weak-field approxi-
mation used here. It has been verified along individual
light rays that the results presented further below do not
depend significantly on whether or not the density con-
trast is explicitly evolved according to this equation when
ray tracing.

Itis not the claim that the resulting models constitute exact
replicas of our local neighborhood. The models are merely
approximations of our local Universe, expected to be realistic
and detailed enough to capture the dominant characteristics
of the redshift-distance relation and corresponding cosmo-
graphic expansions realistically through ray tracing.
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III. LIGHT PROPAGATION

This section serves to introduce the formalism used for
ray tracing through the model universes, as well as
specifying the utilized general cosmographic expansion.

A. Cosmographic expansion

Using a Taylor expansion in the redshift around z = 0,
the luminosity distance can be written as

D, ~ D(Ll)z + D(Lz)z2 + D(L3)Z3, (2)
where the expansion coefficients D(Li) depend on the chosen
cosmological model. Following [17], we will define gen-
eralized versions of the Hubble (H), deceleration (Q), and

jerk (J) parameters and a generalized spatial curvature
term (R). These are given by

eta

Hz%@—l—e"e”am— cﬂ’
2 dH
Q=-1- 7.
JzEf—;%—w—&
R=110- o MR (3)

where e = u¥/c — ck¥/(—u,k®) is the spatial direction
vector of the light ray, as seen by an observer comoving
with the dust, 6, is the shear tensor, and © is the expansion
rate of the matter. E = —u“k, is the energy in the matter
frame, and a# = u*V, u* is the 4-acceleration of the matter.
Their explicit expressions in the models considered here are
shown in Appendix A. For the results shown in Sec. IV, the
derivatives dH/dA and d*H/dA*> were computed numeri-
cally using forward finite differences along the light rays.
The former derivative is confirmed to be reliable by
comparing it with its analytical expression, while both
derivatives are validated by comparing between finite
differences of varying orders and different step sizes.

In [17], it was shown that the coefficients of the
cosmographic expansion for a general spacetime can be
written as

(1) ¢
DY) = —.
L Ho
) 1-09p
DY =c—2,
L=,
—1+39y,? - R
D(Ls)zc +3Q0" "+ Qv —Jo+ 0’ (4)

6Ho

assuming that the redshift is monotonous along the light ray,
and where subscripted O’s indicate evaluation at the observer.

B. Ray tracing

To compute the redshift-distance relation using the
models of our cosmic neighborhood introduced in
Sec. II, we must solve the geodesic equations. Since the
metric scalar perturbation and its first derivatives are
neglected, the geodesic equations are simply those of the
FLRW metric, which we can write as

dk!

S CH(k),

dki .

= —2HKK (5)

The luminosity distance, Dy, is obtained from the angular
diameter distance, D,, through the reciprocity relation.
The angular diameter distance is computed as the square
root of the determinant of the distortion matrix, D. The
distortion matrix is obtained by solving the transport
equation

— =1TD, 6
where 7 is the tidal matrix with components based on
R =-1/2R, k*k* and F = —1/2C,,(€")*k’(e*)7k*
according to

TZ(R—RdD

Im(F)
Im(F) ) o

R +Re(F)

The transport equation is solved simultaneously with the
geodesic equations and the parallel transport equation of the
screen space basis vectors EY and E5, which are orthogonal
to each other, as well as k# and the observer velocity u.’ The
screen space basis vectors are combined into ¢# = Ef + iE
when computing F. However, the Weyl contribution to the
angular diameter distance may be dropped since we are only
interested in the dominant contributions to the distance
fluctuations given by the gravitational and Doppler con-
vergence, which are encapsulated already in R and the
redshift 1 + z = (u"k,)|,/(u.k")|o- Indeed, at low redshift,
we could even neglect the gravitational convergence and
only consider the Doppler convergence (see, e.g.,
[41,44,45] for discussions and demonstrations of this
point). The results presented in the next section were
obtained by considering both the Doppler and gravitational
convergence, but it has been verified that the gravitational
convergence is subdominant and that the results and
conclusions presented below are unchanged if the

3As discussed in [43], we may assume an arbitrary velocity
field here, and thus that the 4-velocity orthogonal to the screen
space basis vectors is parallel transported along the light rays.
Assuming this, we can obtain the basis vectors along the light
rays by parallel transporting them along the null geodesics.

123516-4



TESTING INHOMOGENEOUS COSMOGRAPHY IN OUR COSMIC ...

PHYS. REV. D 111, 123516 (2025)

gravitational convergence is neglected. For the model
spacetime, we have

3 4rGp

R = T (ulk,)?. (8)

c

IV. NUMERICAL RESULTS

This section serves to present results from propagating
light rays through the different versions of the model of our
cosmic neighborhood introduced in Sec. IL

We will begin by studying the more naive models based
on linear interpolation on the original grid with 64° grid
points, using both the grouped and ungrouped data to see
how grouping affects results. For this, we will consider two
selected light rays (“ray 1” and “ray 2”), each highlighting
important points. Figure 2 shows the cosmographic expan-
sion relative to the exact redshift-distance relation along the
two fiducial light rays in these two models. The plots to the
left show the results from a light ray, along which the
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deviations between the exact and cosmographic results
remain fairly small for the entire studied redshift interval.
There are noticeable deviations between the exact and
cosmographic expansions but they are only of a few percent
and do not grow significantly along the light ray, until at
7~ 0.05. These deviations are, therefore, expected to
largely represent the lack of precision of the model, i.e.,
imprecision due to computing derivatives using finite-
difference formulas, linear interpolations on the grid, and
neglecting higher-order terms. The plots to the right in
Fig. 2 show a very different behavior. In these plots, the
deviation between the cosmographic expansion and the exact
redshift-distance relation grows strongly with the redshift.
Along this line of sight, it is clear that the cosmographic
expansion breaks down long before z = 0.1 is reached. The
figure to the left might similarly be revealing the beginning of
divergence of the cosmographic expansion for z > 0.05,
where the deviation between the exact redshift-distance
relation and the cosmographic expansions seem to begin
to grow. The results are very similar for the grouped versus
ungrouped model.
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FIG. 2. Density contrast and relative deviations between exact redshift-distance relation and cosmographic expansions (denoted as
“cosmo”) along two fiducial lines of sight in a model based on linear interpolation and N = 64.
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TABLEI. Expansion coefficients of two selected light rays in the grouped and ungrouped models. The fractions of
neighboring coefficients are also shown.

Model D}’ D’ D} D/} D/}
Ray 1, ungrouped 4170 799 —11228 5.2 -0.0712
Ray 1, grouped 4314 —280.8 —17164 15 0.0165
Ray 2, ungrouped 3899 42975 909204 0.0907 0.0473
Ray 2, grouped 4239 43590 633489 0.0972 0.0688

Figure 2 also shows the density contrasts along
the corresponding light rays. From this, it is clear that
the density contrast has a much steeper gradient near the
observer along the light ray where the cosmographic
expansion most clearly seems to break down. It is not
surprising that such strong gradients lead to a significantly
reduced radius of convergence or slow convergence rate of
a Taylor expansion. Table I shows the expansion coef-
ficients for the four light rays. The table also shows the
fractions of the coefficients. These are included in the table
because the radius of convergence, R, can be computed as
R =1lim,_ |a,/a, |, where a, are the coefficients of the
expansion.

Comparison of Table I and Fig. 2 reveals that the
diverging cosmographic expansion appears along the line

of sight, where D(L3 is about 1 order of magnitude larger

than D(Lz), which again is 1 order of magnitude larger than

D<Ll). In this case, the third order of the Taylor expansion
begins to dominate over the first-order expression when

R \/D(Ll) / D(L3> ~ 0.065 (using values for the ungrouped
model). This value is clearly too optimistic when compared
with Fig. 2, where the divergence appears to begin already
at z ~ 0.0075. We can understand this simply as a reminder
that the true radius of convergence cannot be estimated
without including more expansion coefficients. This is also
indicated by the coefficient fractions in Table I—to
estimate the radius of convergence, the fractions would
first need to converge toward a specific value, which clearly
has not happened in Table L.

The same caveat remains for light ray 1, where we also
cannot reliably estimate the radius of convergence. One
may, nonetheless, note that for this line of sight, the third-
order term is closer to the same order of magnitude as the
first-order term, and the third-order term begins to domi-

nate over the first-order term when z ~ \/D(L]> / D(L3) ~ 0.6

(again using data for the ungrouped model). This is an order
of magnitude larger than the estimate for light ray 2, which
is consistent with the fact that the divergence happens at
lower redshift along light ray 2 than along light ray 1.
Since we cannot make a mathematically precise estimate
of the radius of convergence, it is not possible to determine
whether the problem actually is a very small radius of
convergence or if it is merely a very slow rate of

convergence. In the latter case, a better agreement between
the cosmographic expansion and the exact redshift-distance
relation would be achieved simply by adding more terms to
the cosmographic expansion. Either way, it is important to
understand to what extent the cosmographic expansion is
affected by the chosen interpolation method and to what
extent divergence of the cosmographic expansion can be
remedied by using a coarser grid. This is, therefore, studied
in the next subsection.

A. Significance of grid resolution
and interpolation scheme

The same two light rays,4 ray 1 and ray 2, have been
studied in the models based on linear, cubic, and Steffen
interpolation and with grids downsampled to 16, 83, and 4°
egrid points (hereafter referredtoas N = 16, N = 8,and N =
4 grids, respectively). The former grid resolution corresponds
to grid cells/a smoothing length of 62.5 Mpc/h, the N = 8
grid yields a smoothing length of 125 Mpc/h, andthe N = 4
grid yields a smoothing length of 250 Mpc/h.

Figures 3 and 4 compare the accuracy of the cosmo-
graphic expansions when using the different interpolation
schemes with the N = 16 and N = 8 grids along the two
light rays. Although the plots from the different models do
not coincide exactly, the difference between them is not too
striking. In all cases, the cosmographic expansions become
visibly more accurate when the grid is coarsened. For the
N = 16 grid, the third-order cosmographic expansions now
reproduce the exact redshift-distance relation to around
percent precision up to z = 0.02. At higher redshifts, the
cosmographic expansions begin to deviate significantly
from the exact relation. For the N = 8 grid, the third-order
cosmographic expansions agree with the exact redshift-
distance relation within 10 percent up to redshift z ~ 0.1
(the entire studied redshift interval), except for the
ungrouped data with Steffen interpolation along ray 1.
The accuracy of the cosmographic expansion is around 1%
for several versions of the ray in the entire redshift interval.
Along ray 2, there is a general trend of the cosmographic
expansion to become better at higher order when the N = 8

4Light rays are here consider “the same” if they have the same
initial conditions, i.e., if they correspond to the same observer
position and the same line of sight.
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FIG. 3. Relative deviation between the exact luminosity distance (D, ) and the cosmographic expansion (“cosmo”) at first, second, and

third order along ray 1 using N =8 and N = 16 and different interpolation schemes. The results are shown both using grouped
(“grouped”) and ungrouped (not indicated) data.

grid is used, but this trend is not seen along ray 1. This

indicates that even when using a smoothing length of
125 Mpc/h, the cosmographic expansion is not reliable in

giving accurate reproductions of the true redshift-distance

relation.
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For the interested reader, the densities along the light

rays using the different interpolations schemes and the
grids N = 8 and N = 16 are shown in Appendix B.

The cosmographic expansions not only deviate from the
exact redshift-distance relation but also to some extent from
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FIG. 4. Relative deviation between the exact luminosity distance (D; ) and the cosmographic expansion (“cosmo”) at first, second, and
third order along ray 2 using grids with N = 8 and N = 16 and different interpolation schemes. Results are shown both using grouped

(“grouped”) and ungrouped (not indicated) data.

each other, implying that their respective cosmographic
parameters are not the same. This is confirmed in Table II,
which shows the cosmographic coefficients and the param-
eters Hop, Qp, Jp, and Rp. The table reveals that the
@) and D(L3)

cosmographic coefficients D} in some cases vary

significantly when changing the interpolation scheme or grid
resolution, and can even change sign. The value of DE” is
much more “stable,” i.e., it changes much less when

changing interpolation scheme and/or grid resolution. This
is because D22> and D<L3) depend on higher-order derivatives,
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TABLEIIL. Expansion coefficients for ray 1 and ray 2, as well as Hp, Qp, J o, and R for all considered models, i.e., models based on
grouped (gp) and ungrouped data, using both linear, cubic, and Steffen interpolation, with N = 64, 16, 8, and 4. Values of Hy and Qp
obtained from polynomial fitting along the redshift-distance relation are also shown. These are indicated as “fit,” while Hp and Qp
obtained by direct computation along the light rays are denoted as “true.” H is given in km/s/Mpc.

Model p!"  p¥ pY Ho (ue)  He (fity  Qp (rue)  Qp (fit) Jo Ro
Ray 1 linear 64 4170 799 —11228 71.90 70.96 0.617 1.675 18.1 1.168
Ray 1 cubic 64 4165 53864 —1230934  71.97 71.5 26.86 1.37 3991 274
Ray 1 Steffen 64 4149 36981 —5851997 7225 71.45 18.82 1.40 9562 19.4
Ray 1 linear 16 4043 5918 ~1358 74.15 70.57 -1.93 1.842 8.87 —1.400
Ray 1 cubic 16 4000 18055 87562 74.95 68.5 —8.028 2780 45.49 —7.46
Ray 1 Steffen 16 3997 10307 93048 75.00 70.1 —4.157 1.89 —96.59  -3.6l
Ray 1 linear 8 4205 2585 —654 713 71.1 ~0.230 2.20 0.0486  0.1865
Ray 1 cubic 8 4285  —109 —34812 69.97 70.8 1.05 2.17 53.41 1.30
Ray 1 Steffen 8 4315 1280  —116171 69.48 70.17 0.407 2.79 162.2 0.742
Ray 1 linear 4 3985 3063 —955 75.2 74.99 ~0.537 —0.498 0.822 0.056
Ray 1 cubic 4 3974 3061 -2.30 75.4 75.11 —0.541 —0.557  —0.580  0.08044
Ray 1 Steffen 4 3975 3042 1613 75.43 75.28 -0.531 0708  —3.04  0.0748
Ray | gp linear 64 4314  —281 ~17164 69.49 72.10 1.13 2.239 29.4 1.592
Ray | gp cubic 64 4347 —33641 —3487493  68.97 724 16.48 2.06 5661 16.9
Ray | gp Steffen 64 4399  —36691 —1416616  68.15 72.48 17.68 2.03 20227 18.1
Ray | gp linear 16 4004 48112 ~2932 74.88 724 —1.40 1.81 703 —0.8677
Ray | gp cubic 16 4078 14886  —324610 7351 69.9 -6.3 3.43 583.6 -5.76
Ray | gp Steffen 16 4010 7686  —146157 74.76 71.7 -2.83 2.22 236.7 -2.29
Ray 1 gp linear 8 4001 2933 ~1134 74.9 73.7 —0.466 1.01 0.892  0.005200
Ray 1 gp cubic 8 4044 1465 ~15687 74.12 73.6 0.276 1.30 23.28 0.609
Ray | gp Steffen 8 4014 2670 —4901 74.68 732 ~0.33 1.62 6.42 0.0940
Ray 1 gp linear 4 3986 3085 -950 75.2 74.9 —0.548 -0.516 0.827 0.0449
Ray | gp cubic 4 3963 3034 1458 75.65 75.2 ~0.531 ~0.571 —265  0.0912
Ray | gp Steffen 4 3967 3036 1714 75.58 75.20 -0.531 —0.656  —320  0.0764
Ray 2 linear 64 3899 42975 909204 76.88 70.63 —21.04 ~2.29 ~113 —20.4
Ray 2 cubic 64 3888 125636 8360875 77.10 68.98 —63.62 ~1.21 -886  —63.02
Ray 2 Steffen 64 3819 127333 12965992 78.5 69.09 —65.68 ~1.28 —7560  —65.1
Ray 2 linear 16 4036 2733 44512 74.28 74.94 ~0.354 —445  —6697  0.174
Ray 2 cubic 16 3932 —8480 54367 76.24 80.92 531 —9.05 —739 5.89
Ray 2 Steffen 16 3965 1159 368439 75.6 76.16 0.415 -567  =556.6 0972
Ray 2 linear 8 4231 3888 —4215 70.85 71.57 ~0.838 —0.247 5.81 ~0.429
Ray 2 cubic 8 4333 8071 —48996 69.18 69.56 -2.73 ~0.342 83.9 —2.49
Ray 2 Steffen 8 4332 6784 ~59537 69.2 70.05 213 —0.00400  91.2 ~1.80
Ray 2 linear 4 4001 3288 ~1200 74.93 74.77 —0.644 0818  —-135  —0.0527
Ray 2 cubic 4 3995 3425 ~1750 75.03 74.58 —0.714 —0.666 235  —0.0979
Ray 2 Steffen 4 3997 3486 —901 75.00 74.57 —0.744 —0.693 1.13 ~0.143
Ray 2 gp linear 64 4239 43590 633489 70.72 74.38 -19.57 —2.90 213 ~19.1
Ray 2 gp cubic 64 4288 131781 4784052 69.92 73.08 —60.03 —2.12 4154 ~60.02
Ray 2 gp Steffen 64 4290 140084 5741691 69.9 73.23 —63.87 —2.23 4249 ~63.9
Ray 2 gp linear 16 3979 1782 7292 75.35 76.67 0.104 -3.53 —11.2 0.646
Ray 2 gp cubic 16 3994  —7100 72659 75.06 80.35 4.56 —6.16 -382 5.11
Ray 2 gp Steffen 16 3957  —1038 166334 75.8 77.64 1.52 —425 —243 2.08
Ray 2 gp linear 8 4030 3447 -733 74.40 74.68 -0.733 ~1.21 0650  —0.247
Ray 2 gp cubic 8 4085 5448 —22826 73.30 73.32 -17 -0.97 37.9 -1.35
Ray 2 gp Steffen 8 4042 3624 —5241 742 74.83 ~0.793 ~1.45 7.50 ~0.377
Ray 2 gp linear 4 4000 3221 ~1059 74.94 74.67 —0.611 —0.613 1.08  —0.0205
Ray 2 gp cubic 4 3985 3367 —225 75.23 7472 —0.69 —0.661  0.00733  —0.0709
Ray 2 gp Steffen 4 3985 3354 11.90 75.22 74.71 ~0.683 —0.637  —0381  —0.0795
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and these change significantly when the grid resolution and/
or interpolation scheme is changed.

It is expected that the cosmographic coefficients change
at least when the grid resolution does, since the spacetime
along the individual light rays depends strongly on the grid
coarseness. The more important result to highlight is,
therefore, that the value of Hy is fairly stable when
comparing results from models with the same grid reso-
lution but different interpolation schemes. The same is not
true for Qp, which can even change sign when changing
interpolation scheme. When using a lower grid resolution,
this is mitigated, but even for N = 4 the values of Oy
obtained using the different interpolation schemes vary by
the order of 10%.

1. A comment on polynomial fitting

The fundamental question this manuscript seeks to
address is whether the Taylor expansion converges in
realistic, anisotropic models based on observational data.
This question can only be meaningfully answered by
comparing the actual Taylor series (using the true cosmo-
graphic coefficients) to the exact redshift-distance relation.
However, when dealing with real-world data, these true
coefficients are unknown. Indeed, the goal of a cosmo-
graphic analysis of real-world data would be to constrain
the cosmographic parameters. In practice, this would
occur by fitting the data to a third-order polynomial of
the form p(z) = c,z+ c2z> + c3z°. Table I, therefore,
also includes coefficients from fitting a third-order poly-
nomial of the form p(z) to the individual redshift-distance
relations. Since polynomials typically provide good fits to
smooth data, such a fit will clearly be very accurate.
However, since the third-order Taylor expansions do not
accurately reproduce the exact redshift-distance relation,
the fitted coefficients ¢y, ¢, and c; will not generally
approximate the corresponding Taylor expansion coeffi-
cients D<Ll), D<Lz>, and D(L3). This mismatch implies that the
values of Hp, Qp, J 0, and R derived from a polynomial
fit will not, in general, reflect their true values® for the given
gridded spacetime. This is also illustrated in Table II, which
includes a comparison of the true values of Hy and Qp
with the values obtained from fitting a third-order poly-
nomial to the corresponding redshift-distance data. From
this fit, H is obtained as ¢ /c, and Qp by 1 —2Hpc,/c.
As the table shows, the fitted values deviate significantly
from the true ones, especially Qp, which depends on
higher-order derivatives. Hy is stable at percent order
when going between the cubic and Steffen interpolation
schemes with N = 8 and, in these cases, the fitted value of

>The “true” values of 'H o, etc., refer to their actual values when
calculated directly through their definitions. These values re-
present the actual/true values of the parameters along the
individual light rays in the given model, including grid and
interpolation choice.

Hp is also very close to the true values. For the N = 4 grid,
both Hy and Q) are similar when comparing the true and
fitted values along a given line of sight and “merely”
deviate from each other at percent level. Most importantly,
however, the table shows that the fitted coefficients change
as the grid is smoothed. As noted above, the fitted
coefficients correspond to the results one would obtain
from fitting real-world observations to the cosmographic
expansion. In [27], such fits were made to synthetic data
from a simulation, and it was suggested that the fitted
coefficients could be interpreted as those corresponding to
a smoothed spacetime. The results presented here empha-
size that it is not clear that one can fit a third-order
polynomial to data of arbitrary detail and consider the
fitted coefficients as representing the cosmographic coef-
ficients of a corresponding smoothed spacetime. Such an
interpretation becomes even more problematic when
remembering that real data do not typically yield the
redshift-distance relation along individual light rays but
rather represent discrete points, each corresponding to a
different light ray. This is discussed further in Sec. V.

B. Multiple light rays

The previous results overall show that the cosmographic
expansions are very ‘“unstable”: the coefficients depend
strongly on the interpolation scheme, grid resolution, and
grouping of data, and are not generally well approximated
by fitted coefficients. However, for the lowest grid reso-
lution considered (N = 4), the “true” values of Hy and Qp
are fairly stable against changes in the interpolation
scheme, and for N = 8§ this is also true, although only
for He. In this section, we will, therefore, consider how
these quantities vary across the sky. For this, 768 light rays
are in each of these models, distributed across the observed
sky using HEALPix.® We will consider only the ungrouped
data here, as the initial study based on ray 1 and ray 2
indicates that the results are very similar in the grouped
versus ungrouped models. This is also the conclusion when
considering 768 lines of sight for the simplest model with
linear interpolation and N = 64, for which results are
shown later in this section.

Figure 5 shows the relative deviation between the exact
redshift-distance relation and the cosmographic expansion at
first, second, and third order for the model based on cubic
interpolation on the N = 4 grid. The second-order cosmo-
graphic expansion makes a visibly better reproduction of the
exact redshift-distance relation, while little is changed when
going to third order. This is presumably because the grid is
smoothed to 250 Mpc/h, and thus higher-order derivatives
entering into the third-order coefficient are small. If consid-
ering only 1 standard deviation, the second- and third-order
cosmographic expansions reproduce the exact redshift-dis-
tance relation to within one percent.

f’https://healpix.sourceforge.io/
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First order cosmographic expansion, N = 4
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FIG. 5. Relative deviation between the exact luminosity dis-
tance (D;) and the cosmographic expansion (“cosmo”) at first,
second, and third order using cubic interpolation on the N = 4
grid. Hatched areas show the fluctuation along all light rays,
while the shaded area shows a standard deviation around the
mean, which is also plotted.
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FIG. 6. Relative deviation between the exact luminosity dis-
tance (D;) and the cosmographic expansion (“cosmo”) at first,
second, and third order using cubic interpolation on the N = 8
grid. Hatched areas show the fluctuation along all light rays,
while the shaded area shows a standard deviation around the
mean, which is also plotted. To ease reading of the plots, lines are
shown at +0.05.
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FIG. 7. All-sky maps of H for the considered observer, depicted relative to the background value of Hy. The sky maps are shown for
the models based on cubic interpolation and the grids N = 4 and N = 8. The plots show both the exact/true H» and the deviation

between its true and fitted values.

The relative deviation between the exact redshift-dis-
tance relation and cosmographic expansions for the model
based on cubic interpolation and N = 8 are shown in Fig. 6.
At second and third order, the cosmographic expansion is
clearly poorer for the N = 8 grid than for the N = 4 grid,
and divergence of the expansion from the exact redshift-
distance relation begins much before z = 0.1 is reached.
Already at z ~ 0.03, the second- and third-order expansions
become incorrect above 5%. The third-order expansion is
also clearly seen to be worse than the second-order
expansion (except possibly at very low redshifts), again
indicating that the Taylor expansion is not converging.

Figure 7 shows the generalized Hubble parameter, H,
for the model based on cubic interpolation and the grids
N =4 and 8. The fluctuations are shown relative to the
background Hubble constant, H, = 74.6 km/s/Mpc. For
the grid N = 4 model, the grid has been smoothed to such
an extent that the generalized expansion rate fluctuates by
only a few percent across the entire sky. In this case, the
value of H, obtained from fitting to a polynomial [with the
form of p(z)] corresponds very well with the true value. For
the N = 8 grid, H fluctuates significantly more across the
sky, although still below 10%. In this case, the deviation
between the true and fitted values of Hy reaches about a
factor of 30 higher than in the N =4 case, and the

deviations now reach a few percent at maximum. As a
side remark, one may note that the value of Hp is
consistently above the background value for the N =4
grid, while it is consistently below the background value for
N = 8. This is an important reminder that smoothing has a
significant impact on the results, especially when gradients
are being calculated.

Figure 8 shows Qp across the sky, depicted relative to
the background deceleration parameter —0.55. The fluctu-
ations in Q) are much stronger than in H and reach over
50% in the most extreme patches of the sky even for the
N = 4 grid. For this parameter, even for the N = 4 grid, the
fitted values deviate by up to around 30% compared to
the true value. For the N = 8 grid, Oy fluctuates signifi-
cantly more across the sky, reaching several hundred
percent. In this case, the true and fitted values of 9
deviate from each other more than a factor of 10 above the
deviation found in the N = 4 case. When assessing the
importance of this result, it should be remembered that for
the N = 8 grid, the value of Qy depends significantly on
the chosen interpolation scheme.

Lastly, we will consider the results obtained when using
the naive model based on using linear interpolation together
with the N = 64 grid for comparison with the results
obtained using N =4 and N = 8.
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All-sky maps of Q, for the considered observer, depicted relative to the background value, g,. The sky maps are shown for the

models based on cubic interpolation and the grids N = 4 and N = 8. The plots show both the true Q. and the deviation between its true
and fitted values. Note that for N = 8§, the plot showing the deviation between true and fitted values is shown on a log-scale.

Figure 9 shows the deviations between the exact lumi-
nosity distance versus the first-, second-, and third-order
cosmographic expansions along all lines of sight for the
ungrouped data. The results have been reproduced using
grouped data. Since the results obtained using grouped and
ungrouped data are very similar, the results obtained with
the grouped data are not shown. The maximum fluctuations
are quite large (above 5-10%) already at very low redshifts
7~ 0.005-0.01. Only considering 1 standard deviation
around the mean (very) roughly halves the amplitude of
the scatter. In addition, as already discussed when consid-
ering individual light rays above, the precision of the
numerical investigation is quite low, and a 5% error should
not be considered particularly problematic, as it can simply
be due to using the finite difference on a very crude grid
combined with linear interpolation. The important results
appear when considering the second- and third-order
expansions, where the deviations from the exact redshift-
distance relation increase very rapidly and become of order
50-100% before z ~ 0.05. These values are approximately
halved when only considering 1 standard deviation around
the mean. For the third-order cosmographic expansion, the
mean even seems to diverge, indicating that the lines of
sight with divergent cosmographic expansions dominate

the statistical results. This is in line with the skewness seen
in the figure, which shows that the divergence typically is
such that the cosmographic expansion is larger than the
exact luminosity distance.

The main point of Fig. 9 is to emphasize that the
cosmographic expansion does not, in general, converge
unless the inhomogeneities are smoothed very strongly, as
in the N = 8 and N = 4 cases. Even so, it is interesting to
see how significant the fluctuations are in the exact H and
Qp when using the naive model based on linear interpo-
lation and N = 64. Figure 10, therefore, shows the all-sky
distributions of Hy for the model based on linear inter-
polation and N = 64. We see that H, reaches up to
approximately 18% larger than the background value
and 11% smaller along the most extreme lines of sight
(for the model based on the grouped data, these fluctuations
reduce to roughly 12% and 10%, respectively). Remember
here that when using N = 64, the results depend strongly
on the chosen interpolation scheme. The main point,
therefore, simply is that, qualitatively speaking, the fluc-
tuations in Hy are significantly larger here than for the
N =4 and N = 8 grids considered earlier.

Figure 11 shows the all-sky distributions of Q, for the
model. As seen, the values along the 768 lines of sight
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First order cosmographic expansion, N = 64
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FIG. 9. Relative deviation between the exact luminosity dis-
tance (D) and the cosmographic expansion (“‘cosmo”) at first,
second, and third order for the model based on linear interpo-
lation and N = 64. Hatched areas show the fluctuation along all
light rays, while the shaded area shows a standard deviation
around the mean, which is also plotted and appears as the slightly
curving line in the plots. To ease interpreting the plots, the figures
include lines at £5%.
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FIG. 10. All-sky map of Hy for the considered observer,
depicted relative to the background value of H,,.
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FIG. 11. All-sky map of 9, for the considered observer,
depicted relative to the background value, ¢.

fluctuate around the background value by approximately a
factor of £40. For the model based on the grouped data, the
fluctuations are only slightly smaller (not shown).

C. Comparison to earlier work

In [25], the general cosmographic expansion was used in
low-resolution simulations with a density contrast ampli-
tude of ~0.05 made with the Einstein Toolkit [46]. The
authors found that even in a simulation with such small
density contrast, random observers see sky variance of Hy
of typically 2% and of Q of roughly 120%. The fluctua-
tions found here for H, are about a factor of 5-10 higher
when using the N = 64 grid. For Q, the all-sky fluctua-
tions in Q, have a maximum amplitude about of the order
of 4000 percent around the background value of —0.55.
This is significantly more than the fluctuations found in
[25], but considering that higher density contrasts are used
here, this is not particularly troublesome. When smoothing
the resolution and using N = 4 and 8, we find fluctuations
in Hy similar to those found in [25].
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In [27], the general cosmographic expansion was recast
using the Padé approximant [47] and used in combination
with simulations made with gevolution [48] and a randomly
placed observer. The main simulation studied had a
resolution of 1.75 Mpc/h [49], but the study included a
comparison with a “smoothed” version of the simulation.
From Figs. 68 in [27], it is seen that the components of the
expansions can overall only be constrained accurately/
correctly when considering very low redshifts and/or using
the smoothed version of the simulation. The only somewhat
consistently good results are obtained for the smoothed
simulation using data only at z < 0.025. This is in line with
the results of [26], where it was found that even in a
smoothed simulation made with the Einstein Toolkit
(equivalent to the smoothed simulation used in [27]), the
cosmographic expansion (to third order) was inaccurate
above ~10% for z > 0.04. The results of [26] also
demonstrate that the accuracy of the cosmographic expan-
sion decreases significantly when the simulations include
successively more structure. These results are overall in
agreement with the results found here, where the cosmo-
graphic expansion is found to break down along a signifi-
cant portion of the lines of sight long before z = 0.1 is
reached when considering the model with N = 64 and
down to N = 8. Only the models based on N =4 have
redshift-distance relations reproduced accurately by the
cosmographic expansions up to z = 0.1.

It is worth noting that the results obtained here, in [27],
and in [25,26] are based on different approximations. The
approximations made in the current work include the weak-
field assumption, setting v, = 0, and neglecting perturba-
tions to the light paths. These approximations were are also
included in [27]. The results presented in [27] were
additionally obtained by assuming, for simplicity, that
Ho’(To—Ro—1) =0, with the remark that in the
ACDM model, Jp:=TJ0—-Ro—1~10"* As shown
in Fig. 12, this combination of parameters fluctuates across
the sky with maximum fluctuation amplitude of order
102-103 for the N = 64 grid model, i.e., the values found
here are up to 107 orders of magnitude above the value of
the standard ACDM model. For the N=8 and N =4
erids, the fluctuations are reduced to order of 100 and 1-10,
respectively. This is still orders of magnitude above the
estimate in [27]. It is, therefore, not clear that the constraint
H@3j o = 0 is prudent. However, it must be stressed that
even for fixed N, the value of j o depends strongly on the
interpolation scheme. Even for the N = 4 case, the value
and even sign of J» depend strongly on the interpolation
scheme. The value of R is more stable when changing the
interpolation scheme (see Table II). For this specific model,
the deviation between true and fitted values has nonetheless
also been studied, where the fitted value is obtained as
Fom =390* + Qo? —2 — 6Hplcs/c. Already here (for
N = 4), there is a significant difference between the value

-944.762 1053.85

-32.5295 125.028

-7.01766 3.3205

FIG. 12. All-sky maps of 7, for the considered observer. The
sky maps are shown for the models based on linear interpolation
with N = 64, and cubic interpolation with N = 4 and 8.

of J¢ obtained from fitting and its true value. This is
shown in Fig. 13.

In [25,26], none of the approximations listed above were
used. Instead, the redshift and distances were computed
according to the exact metric of the simulation. The
inhomogeneity of the simulation used in [25,26] is, how-
ever, significantly less than in the other models discussed.

Despite the models studied here and in [25-27] being
quite different, the cosmographic expansion is consistently
found to only be valid at very low redshifts, with z of order
0.01 at most, unless structures are smoothed to very small
amplitude/on very large scales.
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FIG. 13. All-sky map of deviation between true and fitted
values of J» for the model based on cubic interpolation with
N = 4. The color bar is logarithmic.

In [30], the general cosmographic expansion was studied
using various LTB models made to mimic our cosmic
neighborhood. It was found that the radius of convergence
was very low (or the rate of convergence very slow) for most
of these models, and that the second- and especially third-
order cosmographic expansion quickly became very large,
leading to the cosmographic expansions deviating by many
orders of magnitude from the exact luminosity distance long
before z = 0.1 was reached. Although the cosmographic
expansion is also found here to converge only at very low
redshifts when truncating at third order, the deviations
between the cosmographic expansion and the exact lumi-
nosity distance are much less significant here than in the most
extreme cases found in [30]. The main reason for this is
presumably that the gradients of the relevant spacetime
quantities were steeper in the given LTB models than in
the models studied here. The fluctuations of Hy and Qp
found here are also much smaller than what was found in [30].

V. SUMMARY, DISCUSSION, AND CONCLUSIONS

The convergence properties of the general cosmographic
expansion introduced in [17] (see also [18]) were analyzed in
a semirealistic model of our cosmic neighborhood. This
model combines a weak-field relativistic framework with
data from CosmicFlows-4. By evaluating the cosmographic
expansion along individual lines of sight, it was shown that
the expansion can remain nondivergent up to redshifts of
z ~ 0.1 along certain, special lines of sight. However, along
other lines of sight, the expansion diverges at significantly
lower redshifts. Except for the smoothest case (N = 4), the
results depend strongly on the chosen interpolation scheme.
The results also depend quantitatively but not qualitatively on
whether grouped or ungrouped CosmicFlows-4 data are
used. When examining 768 different lines of sight from a
single, realistically placed observer, the mean behavior of the
expansion is dominated by those directions where divergence
occurs at very low redshifts, because the divergence is so

extreme. These results persist when smoothing the studied
model by downsampling the grid, unless a very coarse grid
is used.

Even when N = 8, the cosmographic expansion diverges
at low redshifts, and the third-order cosmographic expan-
sion deviates from the exact redshift-distance relation
above 5% from z=0.03 when considering the most
extreme lines of sight. However, for an N =4 grid,
corresponding to a smoothing length of 250 Mpc/h, the
second- and third-order cosmographic expansions deviate
by less than a percent for nearly all light rays up to z = 0.1.

The results obtained here are consistent with previous
studies based on more idealized models, such as LTB
spacetimes or simulations using randomly placed observers,
which also find that the cosmographic expansion tends to
break down at z ~ 0.01 or below. Only when the Universe is
assumed to be nearly smooth, with fluctuations of order § ~
0.05 or on the scale of 125 — 250 Mpc/h, can the expansion
provide accurate approximations at higher redshifts.

Since only the first three coefficients of the cosmo-
graphic expansion were considered, the radius of conver-
gence of the cosmographic expansion was not computed
explicitly. It is, therefore, possible that the breakdown of the
expansion is not due to a small radius convergence. Instead,
the problem may merely be a slow rate of convergence. In
this case, obtaining better agreement between the cosmo-
graphic expansion and the exact redshift-distance relation
simply requires adding more terms in the expansion.

The redshift at which the cosmographic expansion
ceases to be accurate depends on several factors, such as
the model universe, its resolution, the observer’s position,
and the specific line of sight. Therefore, any practical
application of the general cosmographic expansion should
be accompanied by explicit convergence tests tailored to
the data and model being used. For simulations, such
studies are straightforward. For real data, a similar analysis
can be performed by constructing a semirealistic model
combining observational input with a weak-field approxi-
mation, similar to what was done here.

Even though the cosmographic expansion itself failed at
low redshift in the studied model, the generalized Hubble and
deceleration parameters Hp and Qg could be computed
directly for each line of sight. Their definitions are not
contingent on the convergence of the expansion. In the
present analysis, H ¢ was found to vary by 10-20% relative to
the background when using the N = 64 grid and linear
interpolation, while Q» showed variations of up to 4000%
compared to the background deceleration value of
qo = —0.55. These fluctuations reduced by several orders
of magnitude when coarsening the grid to N = 4 to obtain a
cosmographic expansion that converged in the entire studied
interval.

This work reinforces the conclusion that the general
cosmographic expansion of the luminosity distance breaks
down at surprisingly low redshifts in realistic cosmic
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environments. However, it also underscores the substantial
information lost when relying solely on the standard FLRW
cosmographic framework. In the semirealistic model stud-
ied here, the generalized cosmographic parameters vary
across the sky by orders of magnitude, from tens to
thousands of percent, when considering the model with
the finest grid (N = 64). Such variations are completely
masked by the FLRW-based expansion, which averages
over these fluctuations. This highlights the importance of
understanding how the convergence of the general cosmo-
graphic expansion can be improved. Recasting the expan-
sion into a different form or simply including more terms
could lead to better performance. Moreover, different
observational datasets effectively smooth the Universe at
different scales. Consequently, some datasets may exhibit
better convergence properties. For instance, the Pantheon +
dataset used in conjunction with the general cosmographic
expansion in [3] may have a larger radius of convergence or
a faster rate of convergence than CosmicFlows-4.

It is important to note that it is currently unclear how the
lack of convergence of the cosmographic expansion actually
affects constraints, e.g., of Hpy and O, obtained using the
expansion. Specifically, expansion coefficients obtained
from a fit of data to the general cosmographic expansion
are not useless even if the cosmographic expansion repro-
duces the exact redshift-distance relation poorly. The poor
convergence rather means that care must be taken when
interpreting results, including determining at what scales the
coefficients are probing the Universe. When we fit data to a
cosmographic expansion, we are in reality “merely” fitting
the data to a third-order polynomial (with a vanishing
constant term). The fitting coefficients only correspond to
those of the cosmographic expansion if the expansion is a
good approximation of the redshift-distance relation.
However, as pointed out in [27], the fitting procedure may
be considered as including an implicit smoothing of the data,
where the redshift range of the dataset sets the smoothing
scale. Thus, the obtained H» and Q» may be interpreted as
representing values in our Universe smoothed on some scale.
However, as demonstrated here in Table II, the fitted
coefficients obtained with a fine grid cannot, in general,
be expected to correspond to the actual cosmographic
coefficients of a smoothed version of the space. This is
important to bear in mind because the cosmographic coef-
ficients have physical meaning, and the results obtained here
mean that fitted coefficients cannot readily be attributed this
same meaning, even in some smoothed sense. Thus, while
the idea of [27] to consider fitted coefficients as representing
the expansion of a smoothed spacetime has merit, the exact
procedure for smoothing must be established. In relation to
this, it may be noted that the smoothing used here was simple
downsampling. Using a more sophisticated smoothing
method, such as removal of Fourier modes, might lead to
better agreement between the fitted coefficients of the

unsmoothed grid and the true coefficients of the smoothed

grid. However, extending a smoothing procedure to construct
a coherent, direction-dependent sky map of cosmographic
parameters is nontrivial. The challenge becomes even greater
in realistic observational settings, where we do not observe
continuous (z, D;) relations along light rays, but rather a
discrete and sparse distribution of sources across the sky. In
such cases, we aim to extract direction-dependent cosmo-
graphic parameters from a set of unconnected data points
rather than from smooth curves. Furthermore, the implicit
smoothing has implications for handling large datasets—
although more data might offer better statistics, it does not
guarantee improved precision or accuracy if the fitting
procedure inherently smooths the data over large scales.
Therefore, careful consideration should be given to how the
general cosmographic expansion benefits from increased
data volume in the presence of such smoothing.
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APPENDIX A: EXPRESSIONS FOR
GENERALIZED HUBBLE PARAMETER,
DECELERATION PARAMETER, JERK, AND
SPATIAL CURVATURE TERM

This appendix serves to explicitly show the expressions
used for computing the coefficients for the cosmographic
expansion of the luminosity distance.

To compute H, we need expressions for the expansion
rate, shear, and acceleration. The expansion rate is, for the
considered weak-field model, given by
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© =V u*~3H + o,u’, (A1)
where u®~ (1,2") at first order (with »' the peculiar
velocities obtained from the CosmicFlows-4 data). The
nonvanishing components of the shear are

_ 2 j
0 = ga 0,-1}’,

1 . )
Gll(l?é]) = Eaz(aizﬂ —+ ajvl), (AZ)

where sums over repeated indexes are not implied. The 4-
acceleration has components given by

a, = —aa, Z(Ui)27

a; = 2aa.t1}i + a2(atvi + Ujajvi)» (AS)

where sums are implied over repeated indexes and where
v, = 0 was assumed during computations.

With the above, we can compute H, Q, and J. To
compute R, we further need

. 87nG B 1
Ktk R}w = 7,0](”]( <M”uy +2g,w)
87Gp
= 5720 (k2 (Ad)

where the first equality comes from employing Einstein’s
equation.

APPENDIX B: DENSITY FIELD

For the interested reader, the density fields along the two
fiducial light rays (ray 1 and ray 2) are shown in Fig. 14 for
the N = 8 grid using three different interpolation schemes
(linear, cubic, and Steffen).
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FIG. 14. The density contrasts along rays 1 and 2 using N = 8 and 16 grids with different interpolation schemes.
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