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Quasicrystals (QCs) lack three-dimensional periodicity of atomic arrangement but possess long-range struc-
tural order, which are distinct from periodic crystals and random systems. Here, we show how the ferromagnetic
(FM) order arises in the icosahedral QC (i-QC) on the basis of the Monte Carlo simulation of the Heisenberg
model on the Yb lattice of Cd5.7Yb composed of regular icosahedrons. By finite-size scaling of the Monte
Carlo data, we identified the critical exponents of the magnetization, magnetic susceptibility, and spin cor-
relation length, β = 0.508(30), γ = 1.361(59), and ν = 0.792(17), respectively. We confirmed that our data
satisfy the hyperscaling relation and estimated the other critical exponents α = −0.376(51), δ = 3.68(23), and
η = 0.282(65). These results show a universality class inherent in the i-QC, which is different from those in
periodic magnets and spin glasses. In the i-QC, each Yb site at vertices of the regular icosahedrons is classified
into eight classes with respect to the coordination numbers of the nearest-neighbor and next-nearest-neighbor
bonds. We revealed the FM-transition mechanism by showing that the difference in the local environment of each
site is governed by cooperative evolution of spin correlations upon cooling, giving rise to the critical phenomena.

DOI: 10.1103/4zb8-2zjq

I. INTRODUCTION

Magnetism has been one of the central subjects in the
condensed matter physics. Critical exponents are distinguish-
ing parameters characterizing continuous phase transitions. A
great deal of effort has been devoted to critical phenomena of
magnetic transitions over years and the critical exponents have
been identified in periodic magnets, which has established
the universality class [1–4]. On the other hand, in disordered
systems, the spin alignment is frozen at low temperatures,
where spin glasses are formed [5–7]. The critical exponents
at the spin-freezing temperature in disordered magnets were
also determined and the universality class of the spin glass
was identified [8,9].

Quasicrystals (QCs) are a class of solids, which have no
three-dimensional (3D) periodicity of atoms but possess the
long-range structural order [10]. Hence, crystallographically
QC is distinct from periodic crystal and random system. Af-
ter the discovery of QC in 1984 [11], a stable binary QC
was first synthesized that is the single crystal of Cd5.7Yb
[12]. The structure model of atoms was solved by one of
the present authors [13], and it was revealed that Cd5.7Yb is
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composed of regular icosahedrons and such QCs are referred
to as icosahedral QCs (i-QCs). Then, binary compounds of
rare-earth-based i-QCs Cd-R (R = Gd, Tb, Dy, Ho, Er, and
Tm) [14] and ternary compounds Au-SM-R (SM = Ga, Al, R
= Yb, Gd, Tb, and Dy) were synthesized [15–17].

Notable is that the i-QCs have played a significant role in
advancing condensed matter physics [18–20]. These devel-
opments of materials led to discoveries of quantum critical
phenomena in the i-QC Au-Al-Yb [17] as well as supercon-
ductivity in the i-QC Al-Zn-Mg [21] and lattice dynamics
in the i-QC Al-Pd-Mn [22] and i-QC Zn-Mg-Sc [23], which
have brought about paradigm shift of fundamental concept of
physics ever established in periodic crystals.

One of the long-standing issues unresolved for QCs has
been whether magnetic long-range order is realized in QCs.
Despite intensive studies for nearly four decades, no magnetic
long-range order such as ferromagnetism but only spin-glass
behavior has been observed in rare-earth-based i-QCs, e.g.,
Cd-R (R = Gd, Tb, Dy, Ho, Er, and Tm) [14]. Recent discov-
ery of the FM long-range order in the i-QCs Au-Ga-R (R =
Gd, Tb, and Dy) [15,16] and the antiferromagnetic order in
the i-QC Au-In-Eu [24] calls for theoretical investigation of
the ordering mechanism and the property. The experimental
observations of the magnetization and the magnetic suscepti-
bility in the FM phase of the i-QC Au-Ga-Dy have reported
the critical exponents β = 0.54 and γ = 0.89 [16].

The magnetism in the approximant crystals (ACs), which
are the periodic crystals with the common local atomic config-
urations to those in the QC, has been extensively studied [25].
Recently, experimental identification of the critical exponents
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has been reported in the Gd-based 1/1 ACs [26]. In the AC
Au72.7Si13.6Gd13.7, β = 0.47, γ = 1.12, and δ = 3.60 were
identified, and in the AC Au68.6Si16.0Gd15.4, β = 0.51, γ =
1.00, and δ = 3.38 were identified [26]. These observations
in the i-QC and ACs indicate that the critical exponents of the
magnetization β are close to the mean-field value β = 0.5,
which also calls for theoretical study.

So far, most of the theoretical studies on the magnetism in
QCs have been devoted to the low-spatial dimensions [27–47].
The Ising model on the two-dimensional (2D) QCs such as
Penrose lattice was extensively studied, and it was reported
that the critical exponents are the same as those in the periodic
square lattice [32,36,41–43,47]. In one-dimensional and 2D
QCs, the properties of the magnetic excitations were investi-
gated [48–52]. Until a few years ago, theoretical study of the
magnetism in 3D QCs was not reported except for numerical
studies on small clusters [53–56] and symmetry analysis of
the magnetic i-QC [57,58].

Recently, the formulation of the crystalline electric field
(CEF) in the rare-earth-based QC has been succeeded on the
basis of the point charge model [59]. This has made it possible
to clarify the magnetic anisotropy arising from the CEF for
each rare-earth-based i-QC and AC [60,61]. The noncollinear
Ising model on the i-QC taking into account the magnetic easy
axis due to the CEF has theoretically been studied [60,62].
Noncollinear magnetic state and topological magnets charac-
terized by topological number such as the hedgehog state and
whirling-moment state have been theoretically shown, which
suggests a possibility of i-QC and AC as potential magnetic
materials. Magnetic excitations and their dynamics in the non-
collinearly ordered state in the i-QC have also been revealed
theoretically [63–65].

In the Gd-based i-QC and Eu-based i-QC, where Gd3+ and
Eu2+ with 4 f 7 configuration have the ground multiplet 8S7/2,
the magnetic anisotropy arising from the CEF is expected to
be absent since the total orbital angular momentum is zero,
L = 0. In this study, to gain insight into the magnetism in the
Gd- and Eu-based i-QCs, we perform Monte Carlo simulation
for the classical Heisenberg model on the i-QC. By analyzing
the finite-size scaling of the Monte Carlo data, we identify the
critical exponents.

Organization of this paper is as follows. In Sec. II, we
explain the Yb-lattice structure of the i-QC Cd5.7Yb and in-
troduce the spin model. In Sec. III, we explain the Monte
Carlo method implemented in the present study. In Sec. IV,
the results of the Monte Carlo simulation are presented. By
the finite-size scaling of the Monte Carlo data, we identify
the critical exponents. We analyze how the FM occurs in the
i-QC by showing evolution of the magnetization as well as the
spin correlation at each site under the different environment as
temperature decreases. In Sec. V, we summarize our results
and discuss the relevance to experiments.

II. MODEL ON ICOSAHEDRAL QUASICRYSTAL

Let us start with the lattice structure of the i-QC Cd5.7Yb
[13]. On the basis of the method described in Ref. [13], we
generated the Yb sites of the i-QC Cd5.7Yb with the icosa-
hedral lattice parameter aico = 5.6893 Å. The Yb sites are
located at 12 vertices of the regular icosahedron [see Fig. 1(a)]
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FIG. 1. (a) The regular icosahedron at 12 vertices of which Yb
atom is located. (b) The Yb atoms at the vertices of icosahedrons in
the icosahedral QC Cd5.7Yb for N = 20 364 viewed from the z-axis
direction. (c) Regular icosahedrons, at 12 vertices of which the Yb
atoms are located, in the QC Cd5.7Yb. The N.N. bond (orange) with
the length being aico is along the fivefold axis direction. The N.N.N.
bond (gray) with the length being 5.9821 Å is along the twofold axis
direction. The z axis is set along the fivefold axis direction.

and also exist as a pair inside the acute rhombohedron. The
ratios of the former Yb site and latter are about 70% and 30%,
respectively. In the present study, we ignored the latter sites
as a first step of analysis, since the icosahedron is a common
motif in both i-QC and ACs, dominating their magnetism [25].
Namely, we consider all the Yb atoms located at the vertices
of the regular icosahedrons in the i-QC Cd5.7Yb.

In Fig. 1(a), the bonds connecting the neighboring vertices
are along the twofold axis with the edge length of the icosahe-
dron being 5.9821 Å. The diagonal direction penetrating the
two opposite vertices, e.g., the z-axis direction, is along the
fivefold axis. In Fig. 1(b), we show the lattice structure of Yb
atoms in the i-QC Cd5.7Yb for N = 20 364 with N being the
number of Yb sites, which is viewed from the z axis, i.e., the
fivefold axis.

Here, we explain the way of setting the coordinate, as
follows. The basis vector of the i-QC is directed to each vertex
from the center of the icosahedron, which is given by

a1 = (0, 0, aico),

a j =
(

aico sin θ cos

(
2π ( j − 2)

5

)
,

× aico sin θ sin

(
2π ( j − 2)

5

)
,

× aico cos θ

)
( j = 2, ..., 6),
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FIG. 2. Local environment of eight site classes (λ =
1, 2, . . . , 8). The number indicates the site class λ. The site
indicated by arrow is the site, which belongs to the class λ. The
orange bond denotes the N.N. bond along the fivefold axis direction
and the gray bond denotes the N.N.N. bond along the twofold axis
direction.

where θ is given by θ = arccos(1/
√

5). In the present study,
we set the z axis along the a1 direction. Then, the x axis is
taken along the vector obtained by setting the z component of
a2 zero, i.e., (aico sin θ, 0, 0). The y axis is set to be perpen-
dicular to the z and x axes. Namely, the view from the z axis
direction is along the fivefold axis direction [see Fig. 1(b)], as
noted above.

We consider the Heisenberg model

H = −
∑
〈i, j〉

Ji jSi · S j, (1)

where the spin is located at the Yb site and Ji j is taken as
J5f for the nearest-neighbor (N.N.) sites with the bond length
5.6893 Å and J2f for the next nearest-neighbor (N.N.N.) sites
with the bond length 5.9821 Å [see Fig. 1(c)]. The former and
the latter bonds are along the fivefold axis and twofold axis
directions, respectively. The spin Si = (Six, Siy, Siz ) at the ith
site is treated as classical spin with |Si| = 1. We study the FM
interaction case with J = J5f = J2f = 1.

In QC, local environment is different site by site in general.
In the i-QC Cd5.7Yb, each Yb site located at vertices of the
regular icosahedrons can be classified into eight classes by
the coordination numbers with respect to the N.N. bonds and
the N.N.N. bonds [66].

Figure 2 shows the eight local configurations for each Yb
site, which was determined by using the hyperspace formal-
ism, in the lattice structure consisting of the Yb icosahedral
shells [66]. Each configuration is characterized by the number
of the N.N. and N.N.N. Yb sites, as shown in Table I. The
frequency of each is also given in the table.

We show eight-classified sites illustrated by eight different
colors in Fig. 3, which is the enlargement of the central part of
Fig. 1(b), i.e., the N = 20 364 system viewed from the fivefold
axis direction. It looks that different site class is distributed
in a intermixed manner. This is in sharp contrast to periodic
crystals where each site classified as different site class is
distributed periodically if ever. On the other hand, in the i-QC,
the site distribution is not completely random, but obeys a reg-
ular rule, which is the quasi periodicity with self-similarity. In
the random magnet with competing interactions, it is known

TABLE I. Local configuration of Yb atoms. The serial numbers
in the first column represent each local configuration. The numbers
of the N.N. and N.N.N. Yb site for each configuration are listed at
the second and third column, respectively. The frequency of each
configuration is listed at the fourth column (in percentage).

Class Number of N.N. site Number of N.N.N. site Frequency (%)

1 0 5 3.000 805
2 2 5 9.3 055 392
3 4 5 23.468 722
4 0 6 0.718 494
5 2 6 1.4 459 422
6 4 6 28.880 961
7 0 7 10.433 782
8 2 7 22.745 751

that spin distribution is frozen at low temperatures, giving rise
to the spin glass.

In the present system, the collinear FM state is expected to
be realized in the ground state because the FM interactions for
the N.N. bonds and the N.N.N. bonds can contribute to cause
the collinear alignment of all spins without any frustration.
On the other hand, at high temperature, the spins are ex-
pected to be directed randomly by thermal fluctuations, which
is expected to give rise to the paramagnetic phase. These
speculations lead to the following interesting questions: How
the present system composed of different site class shown in
Fig. 3 undergo to the FM order as temperature decreases?
Is there any difference in the nature of the phase transition
from the periodic magnet and the spin glass? To address these
issues, we study the Heisenberg model (1) on the i-QC by the
Monte Carlo method.

III. MONTE CARLO METHOD

We perform the Monte Carlo simulation based on the heat-
bath method [67] and the over-relaxation method [69,70],

1
2
3
4
5
6
7
8

FIG. 3. Each site is classified into eight classes, which are rep-
resented by eight colors. The view is from the z-axis (fivefold axis)
direction.
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which are combined with the replica-exchange method of par-
allel tempering [71]. We set 48 replicas, which have different
temperatures. In each replica, we perform the heat-bath single
spin flip update followed by four times overrelaxation steps
for all sites. The combination of one heat-bath sweep and four
over-relaxation sweeps constitutes our unit Monte Carlo step
(mcs).

In our Monte Carlo simulations, starting from the spin
configuration taken to be random, we performed the 105 mcs,
during which the spin state and the energy at the temperature
of neighboring replicas are exchanged each other following
the replica exchange algorithm [71]. After this thermalization
process, we perform the 105 mcs for all spins with the replica
exchange for parallel tempering, where the physical quantities
are observed. We performed this five times independently by
inputting different random-number seed for the initial spin
configuration and evaluated the average value of the physical
quantities with error bars.

We checked the mcs dependence of the physical quantities
and confirmed that the mcs 105 is sufficient (see Appendix A).

The correlation length of spins at the sites belonging to the
same site class λ is defined by [8,72]

ξλ = 1

2 sin
( km

2

)
√

Mλ(0)2

Mλ(k)2
− 1, (2)

where k = (0, 0, km) with km = 2π/L and λ labels the site
class (λ = 1, 2, . . . , 8). Here, we calculate the spin correla-
tion length along the fivefold axis, which is taken as the z axis
and L is the diameter of the system. In Eq. (2), Mλ(k)2 is given
by

Mλ(k)2 =
∑

μ=x,y,z

∣∣∣∣∣ 1

N

Nλ∑
i=1

Siμeik·ri

∣∣∣∣∣
2

, (3)

where the summation
∑

i is taken over the sites belonging
to the same site class λ. The total number of sites is the
summation of each number of the site class N = ∑8

λ=1 Nλ.

IV. RESULTS OF MONTE CARLO SIMULATION

We performed the Monte Carlo simulation for the N =
600, 3168, 10 440, 20 364, 26 412, 30 048, 39 360, 47 520,
and 62 868 systems. In this section, we present the results
and discuss the nature of the FM transition in the i-QC. In
Sec. IV A, we discuss the identification of the transition tem-
perature Tc to the FM order in the bulk limit. In Sec. IV B,
we explain the way to reduce the surface effect in the Monte
Carlo sampling. In Sec. IV C, the temperature dependences of
the internal energy, specific heat, magnetization, and magnetic
susceptibility are presented. Then, the critical exponents of
spin correlation length ν, the magnetization β, the magnetic
susceptibility γ , and the specific heat α are identified in
Secs. IV D–IV G, respectively. In Sec. IV H, we discuss the
universality class of the Heisenberg model on the i-QC and
make a comparison with those on the periodic crystals and the
spin glass. In Sec. IV I, we analyze the magnetization and spin
correlation length for each site classified by the coordination
number, which is characteristic of the i-QC.

2 2.1 2.2 2.3

0.5

0.6

T

U

N
20364 
26412 
30048 
39360 
47520 
62868 

2.16 2.17 2.18
0.49

0.50

0.51

0.52

0.53

T

U

FIG. 4. Temperature dependence of Binder parameter U calcu-
lated for J5f = 1 and J2f = 1 in the N = 20 364, 26 412, 30 048,
39 360, 47520, and 62 868 systems. Inset is enlargement in the
vicinity of T = 2.17.

A. Binder parameter and transition temperature

To identify the magnetic transition temperature Tc in the
bulk limit, the Binder parameter [73]

U = 1 − 1

3

〈M4〉
〈M2〉 (4)

is known to be useful [73], where M is the magnetization
defined by

M =
√

M2
x + M2

y + M2
z (5)

with

Mμ = 1

N

N∑
i=1

Siμ (μ = x, y, z). (6)

In the high-temperature limit, U can be calculated by consid-
ering Gaussian fluctuations around M = 0 as U → 4

9 . For low
temperatures, the magnetic order occurs. In the collinear FM
phase, U is shown to be U → 2

3 for T → 0.
The Binder parameter has the scaling form as [73]

U (T, L) = g(L1/ν (T − Tc)), (7)

where L is the linear size of the system and ν is the critical
exponent for the spin-spin correlation length.

We calculated the Binder parameter U (T, L) for several
system sizes. The results are shown in Fig. 4. We see that
the crossing of U (T, L)s occur around T ≈ 2.17. According
to Eq. (7), at just the transition temperature, i.e., T = Tc, the
system size dependence vanishes in U (Tc, L). This implies
that the temperature at the crossing point of U (T, L) for dif-
ferent system sizes gives the transition temperature Tc. The
inset of Fig. 4 is the enlargement of U (T, L) in the vicinity
of T = 2.17. We see that the data for large system sizes with
N = 20 364, 26 412, 30 048, 39 360, 47 520, and 62 868 cross
within error bars at T = 2.1725, which indicates

Tc = 2.1725. (8)

Next, we proceed to analyze the critical behavior near
T = Tc. In this study, we focus on the bulk properties. Hence,
before going into the detailed analysis, in the next subsection,
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(b)

x y
z

x y
z

FIG. 5. The Yb atoms at the vertices of icosahedrons in the
icosahedral QC Cd5.7Yb for (a) the outer sites and (b) the inner sites
for N = 20 364.

we discuss the way to reduce the surface effect in the Monte
Carlo simulation.

B. Inner sites except for surface icosahedrons

To reduce the effect from the surface, we calculate the
average of physical quantities for the inner sites of the clus-
ter in the Monte Carlo simulation, as recently done in the
two-dimensional aperiodic lattice [33]. Namely, we separate
the two parts of the Yb atoms in the QC Cd5.7Yb. One is
located at the vertices of the outer icosahedrons [Fig. 5(a)]
and the other is those located at the vertices of the inner icosa-
hedrons [Fig. 5(b)]. For example, in the N = 20 364 system,
the numbers of the outer and inner icosahedrons are 284 and
1413, respectively, where the numbers of the Yb sites are
NOUT = 3408 and NIN = 16 956, respectively.

We performed the Monte Carlo simulation for J5f = 1 and
J2f = 1 in the model (1) on the cluster with N sites under the
open boundary condition by updating the spins on all the sites
and take the average of physical quantities for the inner NIN

sites. We compared the results of the averaged values of the
magnetization, magnetic susceptibility, and specific heat for
the inner NIN sites and the total N sites. The results for N =
62 868 are presented and also the results for N = 20 364 are
noted in Appendix B. The data calculated for the total sites

TABLE II. Number of total sites N and innner sites NIN.

Total N Inner NIN

20 364 16 956
26 412 21 864
30 048 26 412
39 360 25 760
47 520 39 360
62 868 55 548

and the inner sites show the similar temperature dependences
but it turned out that there exists a slight deviation (see Fig. 17
in Appendix B).

Therefore, in the following subsections, we will discuss the
average of the physical quantities calculated for the inner sites
to reduce the surface effects. We list the numbers of the total
sites N and the inner sites NIN, which we will use in the Monte
Carlo simulation in Table II.

C. Temperature dependences of internal energy, specific heat,
magnetization, and magnetic susceptibility

We calculated the internal energy E of H in Eq. (1), where
the average 〈E〉 is taken for the inner sites with NIN listed in
Table II. The results per site are plotted in Fig. 6. The error
bars are within the symbol sizes at each temperature. As tem-
perature decreases, the internal energy decreases. Around T =
Tc, the slope becomes steeper. As T → 0, 〈E〉 approaches
N5f bondJ5f + N2f bondJ2f , where N5f bond and N2f bond are the
numbers of the N.N. bonds and the N.N.N. bonds, respec-
tively. This value is the ground-state energy of the collinear
FM state, which will be also confirmed by the snap shot of
spin configuration at low temperature obtained by the Monte
Carlo simulation (see Fig. 10).

Next, we calculated the specific heat

C = 〈E2〉 − 〈E〉2

NINT 2
, (9)

which expresses fluctuations of the internal energy. It is noted
that we confirmed that C(T ) calculated by Eq. (9) coin-
cides with the temperature derivative of the internal energy

0 0.5 1 1.5 2 2.5 3

-4

-3

-2

-1

0

T

<
E>

/N

NIN

16956
21864
26412
35760
39360
55548

IN

FIG. 6. Temperature dependence of internal energy per site cal-
culated for J5f = 1 and J2f = 1 in the N = 20 364, 26 412, 30 048,
39 360, 47 520, and 62 868 systems.
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FIG. 7. Temperature dependence of specific heat calculated for
J5f = 1 and J2f = 1 in the N = 20 364, 26 412, 30 048, 39 360,
47 520, and 62 868 systems.

d〈E〉/dT [see Fig. 16(b) in Appendix A]. The results of the
temperature dependences of C for various system sizes are
shown in Fig. 7. A remarkable peak appears at T = Tc(NIN),
where Tc(NIN) is defined as the temperature of the location of
the peak of C(T ) in the system with the inner NIN site, which
is reflected in the steep slope in the 〈E〉–T plot presented in
Fig. 6.

The system size dependences of C(T ) in Fig. 7 indicate
that the specific heat at Tc does not diverge but exhibits a cusp
in the bulk limit NIN → ∞. This will be confirmed later by
analyzing the critical exponent α of the specific heat

C ∼ |T − Tc|−α (10)

in Sec. IV G. Here, Eq. (10) expresses the singular part of the
specific heat in the vicinity of Tc.

The continuous transition is defined as the phase transition
where the nth derivative of the free energy for n � 2 exhibits
discontinuity or divergence at Tc. Since the specific heat is the
quantity obtained by the second derivative of the free energy,
the result in Fig. 7 indicates that the phase transition in the
present system is continuous transition.

Next, we calculated the average of the magnetization 〈M〉,
where M is defined in Eq. (5) and N in Eq. (6) is replaced with
NIN. The temperature dependences of 〈M〉 in various system
sizes are shown in Fig. 8. Around T = Tc, the magnetization

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1.0

T

<
M

>

NIN

16956
21864
26412
35760
39360
55548

FIG. 8. Temperature dependence of magnetization calculated for
J5f = 1 and J2f = 1 in the N = 20 364, 26 412, 30 048, 39 360,
47 520, and 62 868 systems.

increases with the convex curve and reaches the maximum
value for the low-T limit. Namely, the magnetization is fully
polarized, i.e., 〈M〉 → 1 for T → 0, where the collinear FM
state is realized in the ground state. In the bulk limit NIN →
∞, the magnetization becomes finite below Tc, i.e., 〈M〉 = 0
for T > Tc and 〈M〉 	= 0 for T < Tc. Hence, the magnetization
is the order parameter of the FM transition.

The magnetization in the vicinity of Tc is expressed as

〈M〉 ∼ (Tc − T )β, (11)

where β is the critical exponent. We will estimate β by the
finite-size scaling in Sec. IV E.

The magnetic susceptibility

χ = 1

T
(〈M · M〉 − 〈M〉 · 〈M〉) (12)

expresses fluctuations of the magnetization. The singular part
of χ in the vicinity of Tc is expressed as

χ ∼ |T − Tc|−γ , (13)

where γ is the critical exponent. Careful analysis of γ in the
finite-size scaling was discussed for the Heisenberg model
on periodic lattices [74–77]. In this study, following the
argument in Refs. [75–77], we will analyze the criticality
of the magnetic susceptibility in the i-QC as below. In the
high-temperature phase for T > Tc, the true magnetization
vanishes, 〈M〉 = 0. Hence, the magnetic susceptibility where
〈M〉 is set to be 0 in Eq. (12)

χ = 〈M2〉
T

(14)

can be used for the evaluation of γ because as the system size
increases, Eq. (14) correctly approaches the thermodynamic
limit [68]. The detail of the analysis by the finite-size scaling
will be given in Sec. IV F.

To extract the enhancement of the magnetic susceptibility
at Tc(NIN) in finite-size systems, following Refs. [75–78], we
define the magnetic susceptibility

χ̄ = 1

T
(〈M2〉 − 〈M〉2), (15)

where the second term of the numerator is the average of
the absolute value of the magnetization vector M = |M|. The
temperature dependences of χ̄ in various system sizes are
shown in Fig. 9. At T = Tc(NIN), a sharp peak appears and
the hight of the peak develops as the system size increases.
For T → 0, the magnetization saturates 〈M〉 → 1 as shown
in Fig. 8 and the average of the square of the magnetization
vector also leads to 〈M2〉 → 1. Hence, as T decreases toward
absolute zero, χ̄ (T ) is suppressed as χ̄ (T ) → 0.

To see the spin alignment in real space, here we show
the snapshot of the spin state obtained by the Monte Carlo
simulation. Figure 10 shows the spin state at T = 0.1 in the
N = 20 364 system. The spins are denoted by red arrows on
the sites. Here, we show the same lattice geometry presented
in Fig. 3, which is the view from the fivefold axis direction.
We see that all spins tend to be aligned collinearly toward the
right direction.

The results obtained in the finite system sizes shown in
Figs. 6–9 indicate that the phase transition to the collinear
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FIG. 9. Temperature dependence of magnetic susceptibility χ̄

calculated for J5f = 1 and J2f = 1 in the N = 20 364, 26 412, 30 048,
39 360, 47 520, and 62 868 systems.

FM order occurs in the bulk limit, which is validated by the
analysis of the Binder parameter concluding Tc = 2.1725, as
described in Sec. IV A. In the following subsections, we will
perform the finite-size scaling analysis to obtain the critical
exponents.

D. Critical exponent of spin correlation length ν

Near the transition temperature, the spin correlation length
ξ diverges as [79]

ξ ∼ |T − Tc|−ν, (16)

where ν is the critical exponent of spin correlation lengths.
It is known [78,80] that the derivative of cumulant of the

magnetization at Tc obeys

d ln〈Mn〉
dK

∼ L1/ν, (17)

where n is an integer and the inverse temperature K is defined
by K ≡ 1/T . In general, temperature derivative of the average

FIG. 10. The spin state at T = 0.1 obtained as a snap shot of
the Monte Carlo simulation for the N = 20 364 system. Red arrow
denotes the spin at each site illustrated by gray circle. The gray line
denotes the bond between the sites with the bond length 5.9821 Å.
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/d
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)
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FIG. 11. Thermodynamic derivative d ln〈Mn〉
dK calculated at Tc =

2.1725 vs lattice size L in a double-logarithmic plot for n = 1 (circle)
and n = 2 (triangle).

of the physical quantity can be expressed as the average of
correlation of the energy and the physical quantity. The left-
hand side of Eq. (17) is calculated as

d ln〈Mn〉
dK

= 〈E〉 − 〈EMn〉
〈Mn〉 . (18)

In order to estimate ν, we calculate the right-hand side of
Eq. (18) for n = 1 and 2 in various system sizes. The results
for n = 1 and 2 at Tc are shown by the open circles and open
triangles, respectively, in the ln-ln plot in Fig. 11. We set the
linear size L as N1/3

IN , i.e., L = N1/3
IN . The linear fit of the data

for n = 1 gives the inverse slope as 1/ν = 1.2580 ± 0.0320.
The linear fit of the data for n = 2 gives the inverse slope as
1/ν = 1.2674 ± 0.0290. Following the argument in Ref. [75],
from these two estimates we obtain

ν = 0.792 ± 0.017. (19)

E. Critical exponent of the magnetization β

The magnetization at the transition temperature T = Tc

scales as [79]

〈M〉 ∼ L−β/ν, (20)

where β is the critical exponent of the magnetization. To
extract the ratio of the critical exponents β/ν, we plot ln〈M〉
versus ln L in Fig. 12, where we set L = N1/3

IN . The slope of
the straight line is estimated by the linear least-square fit as

β/ν = 0.64171 ± 0.0347. (21)

By using the value of ν estimated as Eq. (19) in Eq. (21), we
obtain β = 0.508(30).

F. Critical exponent of the magnetic susceptibility γ

The magnetic susceptibility at the transition temperature
T = Tc scales as [79]

χ ∼ Lγ /ν, (22)

where γ is the critical exponent of the magnetic susceptibility.
To extract the ratio of the critical exponents γ /ν, we plot ln χ

versus ln N1/3
IN in Fig. 13. Here, we used χ defined in Eq. (14).
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FIG. 12. Magnetization 〈M〉 calculated at Tc = 2.1725 vs lattice
size L in a double-logarithmic plot.

The slope of the straight line is estimated by the linear least-
square fit as

γ /ν = 1.7183 ± 0.0648. (23)

By using the value of ν estimated as Eq. (19) in Eq. (23), we
obtain γ = 1.361(59).

From Eqs. (21) and (23), we obtain 2β/ν + γ /ν =
3.0017 ± 0.1342. When the hyper scaling relation holds, the
critical exponents and the spatial dimension d should satisfy
the relation 2β/ν + γ /ν = d [78], where d = 3 in the present
system. Hence, our results satisfy the hyper scaling relation
within the margin of error.

With use of the scaling relation η = 2 − γ /ν, from the re-
sult of Eq. (23), we obtain the critical exponent η = 0.2817 ±
0.0648.

We also estimate the other critical exponent δ with use of
the scaling relation δ = β+γ

β
. By inputting the values of β/ν

in Eq. (21) and γ /ν in Eq. (23) into this equation, we obtain
δ = β/ν+γ /ν

β/ν
= 3.68(23).

G. Critical exponent of the specific heat α

The specific heat at the transition temperature T = Tc

scales as

C ∼ Creg + aLα (24)

3.2 3.3 3.4 3.5 3.6 3.7
4.2

4.4

4.6

4.8

5.0

5.2

ln(NIN)/3

ln
χ

FIG. 13. Magnetic susceptibility χ calculated at Tc = 2.1725 vs
lattice size L in a double-logarithmic plot.

with the critical exponent α, where Creg is a regular back-
ground term and a is a coefficient. In the analyses of the
critical exponents β and γ , direct evaluations of 〈M〉 and χ

as well as χ̄ made it possible to extract the values of β/ν

and γ /ν in the ln-ln plots of Eqs. (20) and (22), respectively.
However, in the case of the specific heat, large contribution
from the nonuniversal background terms Creg makes it difficult
to extract the value of α.

Hence, we evaluate α by using the hyper scaling rela-
tion α = 2 − dν. By employing the value of ν estimated in
Eq. (19), we obtain α = −0.376(51). The negative value of
α indicates that the specific heat does not diverge at T = Tc

but has a cusp (see Fig. 7). This implies that the sign of the
coefficient a in Eq. (24) is negative.

It is noted that our estimates of α = −0.376(51), β =
0.508(30), and γ = 1.361(59) yield α + 2β + γ = 2.001 ±
0.158, which satisfies the Rushbrook’s relation [81] α + 2β +
γ = 2 within the margin of error.

H. Universality class of Heisenberg model
on icosahedral quasicrystal

The critical exponents obtained in this study is summarized
in Table III. The critical exponents in the classical Heisenberg
model on the 3D periodic crystal [3] and spin-glass system
[9] are also listed in Table III for comparison. The critical
exponent γ in the i-QC is the similar value of the periodic
crystals, while ν is larger than the value of the periodic crystal
but is much smaller than that in the 3D spin glass system.
The critical exponent β is close to the mean-field value. The
critical exponent η is estimated to be one-order of magnitude
larger than that in periodic crystals.

I. Magnetization and correlation length for each site class

To gain further insight into the magnetism of the i-QC, we
calculate the magnetization for each site class (see Table I and
Fig. 3) Mλ defined by

Mλ = 1

NIN

Nλ∑
i=1

Si, (25)

where λ labels each class with NIN = ∑8
λ=1 Nλ. The average

of the Monte Carlo sampling is taken for the inner sites.
The result of the temperature dependence of Mλ for the
N = 62 868 system is shown in Fig. 14(a). As temperature
decreases, the magnetization of each class Mλ(T ) increases
simultaneously below Tc(NIN) with NIN = 55 548 indicated by
the vertical dashed line. This is more clearly visible when we
plot each magnetization scaled by each frequency Nλ/N in
Fig. 14(b). All the scaled magnetization for λ = 1, . . . , 8 start
to increase sharply below Tc(NIN), indicating cooperative de-
velopment of each magnetization Mλ. For the low-temperature
limit, the magnetization for each class reaches the maximum
as limT →0 Mλ(T ) = Nλ/NIN, indicating full polarization at
each site. It is noted that convex curves are drawn with the
filled symbols (λ = 3, 6, and 8) being almost overlapped for
whole temperatures, whose frequencies share 76% in total.
The convex curves are also drawn with the open symbols
(λ 	= 3, 6, and 8), whose trajectories are beneath those with
the filled symbols.
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TABLE III. Critical exponents for universality class of the 3D Heisenberg model in periodic crystal [4], spin glass [9], and icosahedral
quasicrystal.

Class α β γ δ ν η

3D Heisenberg −0.12 0.36 1.39 4.9 0.71 0.04
3D spin glass −1.6 0.45 2.7 7.0 1.2 −0.25
Icosahedral quasicrystal −0.376(51) 0.508(30) 1.361(59) 3.68(23) 0.792(17) 0.282(65)

We also calculated the temperature dependence of the cor-
relation length ξλ between the spins at the sites belonging to
the same class λ on the basis of Eq. (2). The result of the
temperature dependence of ξλ(T ) scaled by the diameter L of
the system with N = 62 868 is shown in Fig. 15(a). At high
temperatures than Tc(NIN), the data scatter with large error
bars, while below Tc(NIN) denoted by the vertical dashed line,
all correlation length ξλ (λ = 1, . . . , 8) increases simultane-
ously as T decreases. In Fig. 15(b), we plot the temperature
dependence of the spin correlation length scaled by the one
at the lowest temperature T = 0.1, which is regarded as the
correlation length of the sites for the class λ. As shown in
Fig. 3, each site labeled λ = 1, . . . , 8 is distributed in the
intermixed manner. Since for T → 0 all spins are aligned
collinearly, ξλ(T → 0) is regarded as the effective distance
of each site with the same class λ. Hence, the spin correlation
length ξλ(T ) scaled by the effective distance for each class
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FIG. 14. (a) Temperature dependence of site-dependent magne-
tization Mλ, where λ is the label classifying each site by local
environment in the N = 62 868 system. (b) Temperature dependence
of Mλ normalized by each frequency Nλ/NIN = Mλ(T → 0), which
is equal to the lowest-temperature limit of magnetization for each
class. In panels (a) and (b), a vertical dashed line denotes Tc(NIN ).

is interpreted as the mean value of the spin correlation for
the site class λ. For T < Tc, all ξλ(T )/ξλ(T = 0.1) follow
the same trajectory with steep increase just below Tc(NIN)
indicating the cooperative phenomena.

As temperature decreases, spin correlation for each site
class evolves and when all the spin correlation length nor-
malized by the effective distance of each site class exceeds a
threshold, the magnetization scaled by the frequency for all
site class λ starts to increase simultaneously. These results
imply that the difference in local environment of each site is
governed by cooperative development of spin correlations on
cooling, which gives rise to the FM transition.

V. SUMMARY AND DISCUSSION

In summary, we have studied the nature of the FM phase
transition in the i-QC by performing the Monte Carlo sim-
ulation for the classical Heisenberg model in the Cd5.7 Yb.
By applying the finite-size scaling to the Heisenberg model
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FIG. 15. (a) Temperature dependence of spin correlation length
ratio ξλ/L for each class λ in the N = 62 868 system. (b) Temperature
dependence of spin correlation length normalized by the value at T =
0.1 for each class. In panels (a) and (b), a vertical dashed line denotes
Tc(NIN ).
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for the N.N. interaction J5f = 1 and the N.N.N. interaction
J2f = 1, we have identified the FM transition temperature
Tc = 2.1725 and the critical exponents ν = 0.792(17), β =
0.508(30), and γ = 1.361(59). Within the statistical error,
we have confirmed that the hyper scaling relation holds.
With use of the hyper scaling relation, we have obtained
α = −0.376(51), δ = 3.68(23), and η = 0.282(65). The ob-
tained results of α, β, and γ satisfy the Rushbrooke’s scaling
relation within the statistical error. From these results, we
have revealed the universality class of the i-QC, which
is ditinct from those of the periodic crystal and the spin
glass.

In this study, to clarify the universality class of the i-QC,
we studied the Heisenberg model for J5f = 1 and J2f = 1 as
a typical parameter. As noted in Fig. 1(c), the bond lengths
of the fivefold-axis and twofold-axis directions are about 5%
different. Hence, the J2f/J5f ratio may be slightly deviate from
1 in real materials. However, since the variation of J2f/J5f is
small, the critical exponents clarified in this paper, i.e., the
list for the i-QC in Table III, are considered to capture the
essential values.

In the Cd5.7Yb, each Yb site at the vertex of the icosa-
hedron is classified into eight classes with respect to the
coordination numbers of the N.N. and N.N.N. bonds. As tem-
perature decreases, spin correlation for each site class evolves
individually. When all the correlation length scaled by the
effective distance for each site class exceed the threshold, all
the magnetization starts to increase, which gives rise to the
FM transition.

Recently, experimental identification of the critical expo-
nents has been reported in the Gd-based approximant crystals
[26]. In Au72.7Si13.6Gd13.7, β = 0.47, γ = 1.12, and δ = 3.60
were identified and in Au68.6Si16.0Gd15.4, β = 0.51, γ = 1.00,
and δ = 3.38 were identified [26]. In both materials, the crit-
ical exponents of the magnetization β were close to the mean
field value β = 0.5. The present study based on the i-QC
composed of regular icosahedrons has explained the value
of β = 0.5 observed in the 1/1 approximant crystals, which
consist of icosahedrons.

Experimentally, the FM long-range order was discov-
ered in the i-QC Au-Ga-Gd [15]. It is interesting to
observe the critical exponents to make a comparison
with our theoretical results. The Gd-based QC with Gd3+

and also Eu-based QC with Eu2+ have 4 f 7 configura-
tion whose ground multiplet is 8S7/2. These materials
are candidates for comparison with our theoretical re-
sults, where the magnetic anisotropy arising from the CEF
is absent.
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APPENDIX A: MONTE CARLO STEPS

In this Appendix, we show the mcs dependence of phys-
ical quantities in our Monte Carlo simulations. As noted in
Sec. III, we performed the Monte Carlo simulation based on
the heat-bath method and the over-relaxation method, which
are combined with the replica exchange method of paral-
lel tempering. We calculated the internal energy 〈E〉/NIN,
the specific heat C, the magnetization M, and the magnetic
susceptibility χ̄ for J5f = 1 and J2f = 1 with the mcs 104 (di-
amond), 5 × 104 (square), and 105 (circle) in the N = 62 868
system, as shown in Figs. 16(a)–16(d), respectively. Here, the
average of the physical quantities are taken for the inner sites
with NIN = 55 548. The error bars are within the size of each
symbol at each temperature in Figs. 16(a)–16(d).

In Fig. 16(a), we see that all the symbols are overlapped
each other at each temperature. The lowest temperature limit
of the data reaches the exact value of the ground-state energy
per site

ε0 = N5f bondJ5f + N2f bondJ2f

NIN
(A1)

of the collinear FM state (cross), where N5f bond is the number
of the N.N. bonds and N2f bond is the number of the N.N.N.
bonds. These results imply that the calculation with the mcs
104 already provides the correct value of the internal energy.

In Fig. 16(b), we plot the temperature dependence of
the specific heat C. We also plot the temperature derivative
of the internal energy d〈E〉

dT (cross) by performing a finite-
difference derivative of the 〈E〉 data. We see the similar
curves of C and d〈E〉

dT , although the latter is obtained by a
finite-difference derivative numerically, which confirms that
the calculation of the specific heat by Eq. (9), i.e., fluctuations
of the energy is correctly done. The data of C for mcs 104,
5 × 104, and 105 are overlapped in the whole temperature
range.

In Fig. 16(c), we see that all symbols at each temperature
are overlapped, which indicates that the mcs 104 is enough to
calculate the magnetization 〈M〉 for whole temperatures.

In Fig. 16(d), we plot the temperature dependence of χ̄ .
We see that all results for mcs 104, 5 × 104, and 105 show
the similar curves in the whole temperature range, and the
symbols for mcs 5 × 104 and 105 are overlapped even near
Tc(NIN).

From these results, we confirmed that the mcs 105 is suffi-
cient for the calculations of the physical quantities. Then, we
performed the Monte Carlo simulations with the mcs 105 in
the present study.
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FIG. 16. Temperature dependences of (a) internal energy per site
〈E〉/NIN, (b) specific heat C, (c) magnetization 〈M〉, and (d) magnetic
susceptibility χ̄ for J5f = 1 and J2f = 1 obtained by the Monte Carlo
simulations with the mcs 104 (diamond), 5 × 104 (square), and 105

(circle) in the N = 62 868 system. In panel (a), the exact ground-state
energy for the collinear FM state ε0 is denoted by cross symbol. In
panel (b), d〈E〉/dT calculated with mcs 104 (black cross), 5 × 104

(green cross), and 105 (red cross) are plotted.
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FIG. 17. Temperature dependences of (a) specific heat C,
(b) magnetization 〈M〉, and (c) magnetic susceptibility χ̄ for J5f = 1
and J2f = 1 in the N = 62 868 system. Average for the Monte Carlo
sampling is taken in the total sites (open square) and in the inner sites
with NIN = 55 548 (cross).

APPENDIX B: EFFECTS OF SURFACES ON PHYSICAL
QUANTITIES

In this Appendix, we discuss the effect of the surface of
the i-QC in the Monte Carlo simulation. As explained in
Sec. IV B, we performed the Monte Carlo simulation for the
system with N sites. To reduce the surface effects, we took
the average of the physical quantities for the inner NIN sites
listed in Table II. Here, we compare the results obtained by
the Monte Carlo sampling for the total sites and for the inner
sites.
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We show both the data of the temperature dependences
of the specific heat C, the magnetization 〈M〉, and the mag-
netic susceptibility χ in Figs. 17(a)–17(c), respectively, in
the N = 62 868 system as a representative case. The data
obtained by the Monte Carlo sampling for the total sites
N = 62 868 are denoted by open square symbols and for
the inner sites NIN = 55 548 are denoted by cross symbols.
The error bars are within the sizes of each symbol at each
temperature.

Figure 17(a) shows that the specific heat C(T ) around Tc

calculated for the inner sites is slightly larger than that calcu-
lated for the total sites. The magnetization 〈M(T )〉 calculated

for the total sites and the inner sites are almost overlapped in
the vicinity of Tc and T → 0, while a slight deviation appears
in the intermediate temperature regime below Tc, as shown in
Fig. 17(b). The magnetic susceptibility χ̄ calculated for the
inner sites is slightly larger than that calculated for the total
sites around Tc, as shown in Fig. 17(c).

We also made a comparison in the N = 20 364 system with
the inner NIN = 16 956 sites. The similar tendency as above
was seen in the data of the specific heat C and the magneti-
zation 〈M〉, while the data of the magnetic susceptibility χ̄

calculated for the total sites and the inner sites are almost
overlapped around Tc.
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[34] E. S. Sørensen, M. V. Jarić, and M. Ronchetti, Ising model on
Penrose lattices: Boundary conditions, Phys. Rev. B 44, 9271
(1991).

[35] D. Ledue, D. P. Landau, and J. Teillet, Static critical behavior
of the ferromagnetic Ising model on the quasiperiodic octagonal
tiling, Phys. Rev. B 51, 12523 (1995).

[36] D. Ledue, T. Boutry, D. P. Landau, and J. Teillet, Finite-size
behavior of the three-state potts model on the quasiperiodic
octagonal tiling, Phys. Rev. B 56, 10782 (1997).

[37] S. Wessel, A. Jagannathan, and S. Haas, Quantum antiferromag-
netism in quasicrystals, Phys. Rev. Lett. 90, 177205 (2003).

[38] E. Y. Vedmedenko, H. P. Oepen, and J. Kirschner, Decagonal
quasiferromagnetic microstructure on the Penrose tiling, Phys.
Rev. Lett. 90, 137203 (2003).

[39] E. Y. Vedmedenko, Y. U. Grimm, and R. Wiesendanger, Non-
collinear magnetic order in quasicrystals, Phys. Rev. Lett. 93,
076407 (2004).

[40] S. Thiem and J. T. Chalker, Magnetism in rare-earth quasicrys-
tals: RKKY interactions and ordering, Europhys. Lett. 110,
17002 (2015).

[41] S. Thiem and J. T. Chalker, Long-range magnetic order in
models for rare-earth quasicrystals, Phys. Rev. B 92, 224409
(2015).

[42] A. Jagannathan, A. Szallas, S. Wessel, and M. Duneau,
Penrose quantum antiferromagnet, Phys. Rev. B 75, 212407
(2007).

[43] Y. Komura and Y. Okabe, High-precision Monte Carlo simu-
lation of the Ising models on the Penrose lattice and the dual
Penrose lattice, J. Phys. Soc. Jpn. 85, 044004 (2016).

[44] A. Koga and H. Tsunetsugu, Antiferromagnetic order in the
Hubbard model on the Penrose lattice, Phys. Rev. B 96, 214402
(2017).

[45] A. Koga, Antiferromagnetically ordered state in the half-filled
Hubbard model on the socolar dodecagonal tiling, Mater. Trans.
62, 360 (2021).

[46] A. Koga and S. Coates, Ferrimagnetically ordered states in the
Hubbard model on the hexagonal golden-mean tiling, Phys.
Rev. B 105, 104410 (2022).

[47] Y. Okabe, K. Niizeki, and Y. Araki, Ising model on the aperiodic
Smith hat, J. Phys. A: Math. Theor. 57, 125004 (2024).

[48] J. A. Ashraff and R. B. Stinchcombe, Dynamic structure factor
for the Fibonacci-chain quasicrystal, Phys. Rev. B 39, 2670
(1989).

[49] J. A. Ashraff, J-M. Luck, and R. B. Stinchcombe, Dynamical
properties of two-dimensional quasicrystals, Phys. Rev. B 41,
4314 (1990).

[50] S. Wessel and I. Milat, Quantum fluctuations and excitations
in antiferromagnetic quasicrystals, Phys. Rev. B 71, 104427
(2005).

[51] T. Inoue and S. Yamamoto, Optical observation of quasiperiodic
Heisenberg antiferromagnets in two dimensions, Phy. Status
Solidi (b) 257, 2000118 (2020).

[52] S. Yamamoto and T. Inoue, Magnon confinement on the two-
dimensional Penrose lattice: Perpendicular-space analysis of
the dynamic structure factor, Crystals 14, 702 (2024).

[53] M. Axenovich and M. Luban, Exact ground state properties of
the classical Heisenberg model for giant magnetic molecules,
Phys. Rev. B 63, 100407(R) (2001).

[54] N. P. Konstantinidis, Antiferromagnetic Heisenberg model on
clusters with icosahedral symmetry, Phys. Rev. B 72, 064453
(2005).

[55] A. Hucht, S. Sahoo, S. Sil, and P. Entel, Effect of anisotropy
on small magnetic clusters, Phys. Rev. B 84, 104438
(2011).

[56] S. Suzuki, R. Tamura, and T. Sugimoto, Classical and quantum
magnetic ground states on an icosahedral cluster, Mater. Trans.
62, 367 (2021).

[57] R. Lifshitz, Symmetry of magnetically ordered quasicrystals,
Phys. Rev. Lett. 80, 2717 (1998).

[58] R. Lifshitz, Magnetic quasicrystals: What can we expect to see
in their neutron diffraction data? Mater. Sci. Eng. A 294–296,
508 (2000).

[59] S. Watanabe and M. Kawamoto, Crystalline electronic field
in rare-earth based quasicrystal and approximant: Analysis
of quantum critical Au-Al-Yb quasicrystal and approximant,
J. Phys. Soc. Jpn. 90, 063701 (2021).

[60] S. Watanabe, Topological magnetic textures and long-range or-
ders in terbium-based quasicrystal and approximant, Proc. Natl.
Acad. Sci. USA 118, e2112202118 (2021).

[61] S. Watanabe and T. Iwasaki, Crystalline electric field and
magnetic anisotropy in Dy-based icosahedral quasicrystal and
approximant, Phys. Rev. B 108, 045110 (2023).

[62] S. Watanabe, Magnetism and topology in Tb-based icosahedral
quasicrystal, Sci. Rep. 11, 17679 (2021).

[63] S. Watanabe, Magnetic dynamics of ferromagnetic long
range order in icosahedral quasicrystal, Sci. Rep. 12, 10792
(2022).

[64] S. Watanabe, Magnetic dynamics of hedgehog in icosahedral
quasicrystal, Sci. Rep. 12, 15514 (2022).

[65] S. Watanabe, Magnetic dynamics and nonreciprocal excitation
in uniform hedgehog order in icosahedral 1/1 approximant crys-
tal, Sci. Rep. 13, 14438 (2023).

[66] F. Kumazawa, Master thesis, Classification of atomic site in
the Tsai-type icosahedral quasicrystal, Tokyo University of Sci-
ence, Tokyo, 2021.

[67] Y. Miyatake, M. Yamamoto, J. J. Kim, M. Toyonaga, and O.
Nagai, On the implementation of the ‘heat bath’ algorithms for
Monte Carlo simulations of classical Heisenberg spin systems,
J. Phys. C 19, 2539 (1986).

[68] K. Binder and D. W. Heermann, Monte Carlo Simulation in Sta-
tistical Physics: An Introduction (Springer, Switzerland, 2019).

[69] M. Creutz, Overrelaxation and Monte Carlo simulation, Phys.
Rev. D 36, 515 (1987).

043113-13

https://doi.org/10.1103/PhysRevB.33.6460
https://doi.org/10.1103/PhysRevB.36.5493
https://doi.org/10.1088/0305-4470/20/4/013
https://doi.org/10.1103/PhysRevB.111.L020411
https://doi.org/10.1007/BF01020574
https://doi.org/10.1088/0305-4470/20/13/043
https://doi.org/10.1143/JPSJ.57.1536
https://doi.org/10.1103/PhysRevB.44.9271
https://doi.org/10.1103/PhysRevB.51.12523
https://doi.org/10.1103/PhysRevB.56.10782
https://doi.org/10.1103/PhysRevLett.90.177205
https://doi.org/10.1103/PhysRevLett.90.137203
https://doi.org/10.1103/PhysRevLett.93.076407
https://doi.org/10.1209/0295-5075/110/17002
https://doi.org/10.1103/PhysRevB.92.224409
https://doi.org/10.1103/PhysRevB.75.212407
https://doi.org/10.7566/JPSJ.85.044004
https://doi.org/10.1103/PhysRevB.96.214402
https://doi.org/10.2320/matertrans.MT-MB2020003
https://doi.org/10.1103/PhysRevB.105.104410
https://doi.org/10.1088/1751-8121/ad2f70
https://doi.org/10.1103/PhysRevB.39.2670
https://doi.org/10.1103/PhysRevB.41.4314
https://doi.org/10.1103/PhysRevB.71.104427
https://doi.org/10.1002/pssb.202000118
https://doi.org/10.3390/cryst14080702
https://doi.org/10.1103/PhysRevB.63.100407
https://doi.org/10.1103/PhysRevB.72.064453
https://doi.org/10.1103/PhysRevB.84.104438
https://doi.org/10.2320/matertrans.MT-MB2020011
https://doi.org/10.1103/PhysRevLett.80.2717
https://doi.org/10.1016/S0921-5093(00)01071-6
https://doi.org/10.7566/JPSJ.90.063701
https://doi.org/10.1073/pnas.2112202118
https://doi.org/10.1103/PhysRevB.108.045110
https://doi.org/10.1038/s41598-021-97024-w
https://doi.org/10.1038/s41598-022-14796-5
https://doi.org/10.1038/s41598-022-19870-6
https://doi.org/10.1038/s41598-023-41292-1
https://doi.org/10.1088/0022-3719/19/14/020
https://doi.org/10.1103/PhysRevD.36.515


WATANABE, YAMADA, TAKAKURA, AND FUJITA PHYSICAL REVIEW RESEARCH 7, 043113 (2025)

[70] J. L. Alonso, A. Tarancón, H. G. Ballesteros, L. A. Fernández,
V. M. -Mayor, and A. M. Sudupe, Monte Carlo study of O(3)
antiferromagnetic models in three dimensions, Phys. Rev. B 53,
2537 (1996).

[71] K. Hukushima and K. Nemoto, Exchange Monte Carlo method
and application to spin glass simulations, J. Phys. Soc. Jpn. 65,
1604 (1996).

[72] F. Cooper, Solving ϕ4
1,2 field theory with Monte Carlo, Nucl.

Phys. B 210, (1982).
[73] K. Binder, Finite size scaling analysis of Ising model block

distribution functions, Z. Phys. B 43, 119 (1981).
[74] T. T. A. Paauw, A. Compagner, and D. Bedeaux, Monte-Carlo

calculation for the classical FCC Heisenberg ferromagnet, Phys.
A 79, 1 (1975).

[75] P. Peczak, A. M. Ferrenberg, and D. P. Landau, High-accuracy
Monte Carlo study of the three-dimensional classical Heisen-
berg ferromagnet, Phys. Rev. B 43, 6087 (1991).

[76] C. Holm and W. Janke, Critical exponents of the classical three-
dimensional Heisenberg model: A single-cluster Monte Carlo
study, Phys. Rev. B 48, 936 (1993).

[77] K. Chen, A. M. Ferrenberg, and D. P. Landau, Static critical
behavior of three-dimensional classical Heisenberg models: A
high-resolution Monte Carlo study, Phys. Rev. B 48, 3249
(1993).

[78] P. D. Solanki and M. S. Ramkarhik, Analysis of the three
dimensional ferromagnetic J1-J2 spin model using mean field
and Monte Carlo techniques, Phys. Lett. A 484, 129079 (2023).

[79] M. E. Barber, in Phase Transitions and Critical Phenomena,
edited by C. Domb, J. L. Lebowitz (Academic Press, New York,
1983), Vol. 8.

[80] A. M. Ferrenberg and D. P. Landau, Critical behavior of the
three-dimensional Ising model: A high-resolution Monte Carlo
study, Phys. Rev. B 44, 5081 (1991).

[81] G. S. Rushbrooke, G. A. Baker, Jr., and P. J. Woods, in
Phase Transitions and Critical Phenomena, edited by C. Domb,
M. S. Green (Academic Press, New York, 1974), Vol. 3,
p. 245.

[82] K. Momma and F. Izumi, Three-dimensional visualization of
crystal, volumetric and morphology data, J. Appl. Crystallogr.
44, 1272 (2011).

043113-14

https://doi.org/10.1103/PhysRevB.53.2537
https://doi.org/10.1143/JPSJ.65.1604
https://doi.org/10.1016/0550-3213(82)90240-1
https://doi.org/10.1007/BF01293604
https://doi.org/10.1016/0378-4371(75)90084-9
https://doi.org/10.1103/PhysRevB.43.6087
https://doi.org/10.1103/PhysRevB.48.936
https://doi.org/10.1103/PhysRevB.48.3249
https://doi.org/10.1016/j.physleta.2023.129079
https://doi.org/10.1103/PhysRevB.44.5081
https://doi.org/10.1107/S0021889811038970

