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We introduce a monotone to quantify the amount of nonstabilizerness in mixed quantum states. The
monotone gives a necessary and sufficient criterion for detecting the presence of nonstabilizerness for both
pure and mixed states. The monotone is based on determining the boundaries of the stabilizer polytope in
the space of Pauli string expectation values. The boundaries can be described by a set of hyperplane
inequations, where violation of any one of these gives a necessary and sufficient condition for non-
stabilizerness. The monotone is constructed by finding the hyperplane with the maximum violation and is a
type of Minkowski functional. We also introduce a faithful witness based on similar methods. The approach
is more computationally efficient than existing faithful mixed state monotones such as robustness of magic
due to the smaller number and discrete nature of the parameters to be optimized.
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Introduction—The Gottesmann-Knill theorem [1] is one
of the seminal results in the field of quantum computation,
and it states that any quantum circuit that only consists of
Clifford gates can be simulated on a classical computer in
polynomial time [2,3]. The reason for this remarkable result
is that such quantum circuits, called stabilizer or Clifford
circuits, have a special symmetry, where the output of the
circuit can be only one of an enumerable number of stabi-
lizer states. Stabilizer states are simultaneous eigenstates of
Pauli strings, and using the fact that under Clifford trans-
formations such Pauli strings transform into other Pauli
strings, one may efficiently keep track of the evolution in
the quantum circuit [4,5]. Equivalently, in the Heisenberg
picture, the operator evolution greatly simplifies due to the
lack of operator growth thanks to the nature of Clifford
transformations [6,7]. Since such Clifford circuits can be
efficiently evaluated on a quantum computer, it follows that
for a quantum computer to perform a task that is intractable
for a classical computer, it must be capable of non-Clifford
operations or have nonstabilizer states available to it.
Such nonstabilizer states and operations, also called magic
states and gates, can be considered a resource to perform
universal quantum computation [8–11].
A natural task in this context is then to detect and quantify

the amount of nonstabilizerness in a given quantum state.
Restricting our discussion only to qubit systems (as opposed

to qudits), one of the best known definition is the robustness
of magic (RoM), which gives a faithful criterion for the
detection of nonstabilizerness for mixed states, and satisfies
several properties that make it a monotone [11,12]. Relative
entropy of magic [8], and Jensen-Shannon divergence of
magic [13] are distance-based quantifiers that are faithful
measures of magic for mixed states.
Several alternative faithful monotones including the

dyadic negativity were proposed by Seddon, Regula,
Campbell and coworkers [14]. The main drawback of all
these methods are that in an exact calculation they are
highly numerically intensive since they involve the number
of stabilizer states, which grow superexponentially with
the number of qubits. Other quantities tend to be easier to
calculate but have other drawbacks. The stablizer extent
[15–17], stabilizer nullity, dyadic monotone [18], stabilizer
Rényi entropy [19–22], GKP magic [23], and Bell magic
[24] are faithful only for pure states. Sum negativity, mana,
and related measures like Thauma [8,9,25–27] have been
successfully computed using Monte Carlo methods [28,29]
but are not applicable for qubit systems. The stabilizer
norm can be applied to both pure and mixed states, but
gives only a sufficient criterion for nonstabilizerness
(hence is unfaithful) and does not give a very sensitive
criterion in many cases [11,30]. It is therefore desirable to
obtain a quantifier for nonstabilizerness that is faithful for
mixed states and more easily computable than existing
quantifiers.*Contact author: tim.byrnes@nyu.edu
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In this Letter, we introduce a new monotone to detect and
quantify the amount of nonstabilizerness in a given state.
Our approach is based upon determining the boundaries
of the stabilizer polytope, which is the set of states that can
be formed by a probabilistic combination of stabilizer
states. By giving an explicit criterion for the facet hyper-
planes in the space of Pauli string expectation values, we
give necessary and sufficient conditions for a magic state.
This can be formed into a monotone which quantifies
the amount of nonstabilizerness. We also introduce a
witness which is convenient for numerical computation
and show their effectiveness in detecting nonstabilizerness
for mixed states. The main advantage of our approach is
that it is applicable for mixed states, in comparison to many
quantifiers which are only faithful for pure states (see
Supplemental Material [SM] [31]). We find that our
monotone is easier to evaluate than other faithful mixed
state monotones, and thus it constitutes a computationally
viable alternative to quantifiers such as RoM.
Stabilizer states and quantifying nonstabilizerness—

Consider an N-qubit system and denote the pure stabilizer
states as jSii, which are simultaneous eigenstates of 2N

commuting Pauli strings taking the form Pk ¼⊗N
n¼1 P

ðlÞ
n ,

where PðlÞ
n ∈ fIn; Xn; Yn; Zng are Pauli matrices on site n

with l∈ ½0; 3�. We order the Pauli strings according to the
digits of k∈ ½0; D2 − 1� in base 4, such that P0 ¼ I⊗N ,
where D ¼ 2N is the Hilbert space dimension. There are a
total of DS ¼ 2N

Q
N
n¼1ð2n þ 1Þ ∼ 2N

2=2 pure stabilizer
states, so that the label runs from i∈ ½1; DS� [32]. More
generally, stabilizer states can be formed by a probabilistic
mixture of pure stabilizer states

ρS ¼
XDS

i¼1

pijSiihSij; ð1Þ

where 0 ≤ pi ≤ 1 are probabilities with
PDS

i¼1 pi ¼ 1. The
set of stabilizer states is known as the stabilizer polytope
and consists of the convex hull of the pure stabilizer states.
A nonstabilizer state can be defined as any state that

cannot be written in the form (1). By allowing pi to take
negative values, it becomes possible to write any arbitrary
state ρ as an affine mixture of pure stabilizer states. Using
this, a suitable quantifier for the nonstabilizerness of a
general state is the robustness of magic (RoM), defined as

RðρÞ ¼ min

(XDS

i¼1

jxij∶ρ ¼
XDS

i¼1

xijSiihSij
)
: ð2Þ

Here, the minimization is performed over the real param-
eters xi, which may be negative in this case. A necessary
and sufficient criterion for presence of nonstabilizerness is
RðρÞ > 1, and all stabilizer mixtures (1) have RðρÞ ¼ 1.
Due to the superexponential number of such parameters

typically this is a highly intensive numerical problem such
that the largest system that can be calculated is N ∼ 5 [11].
Another witness for nonstabilizerness is the stabilizer

norm, defined as [11,30]

kρkst ¼
1

2N

XD2−1

k¼0

jhPkiρj; ð3Þ

where hPkiρ ¼ TrðρPkÞ, and detects nonstabilizerness
when kρkst > 1. For N ¼ 1, this is a necessary and
sufficient criterion for nonstabilizerness and recovers the
well-known octahedral stabilizer polytope which gives the
boundary between magic and stabilizer states:

jhXij þ jhYij þ jhZij ¼ 1: ð4Þ

For N ≥ 2, the stabilizer norm is, however, only a sufficient
condition, and some magic states are missed.
Polytope boundaries—We now formulate a general

method to find stabilizer polytope boundaries, with the
aim of generalizing the result (4) to arbitrary N. First let us
discuss the space which the polytope exists in. We shall
work in the space P defined by the expectation values of
Pauli strings, such that any state ρ is represented by a vector
of length D2,

hP⃗iρ ¼ ðhP0iρ; hP1iρ;…; hPD2−1iρÞ; ð5Þ

where P⃗ denotes a vector formed by all the Pauli string
operators (with þ1 coefficients). The vector hP⃗iρ contains
full information of the density matrix ρ and naturally
generalizes the space which the Bloch sphere exists in
for N ¼ 1.
The pure stabilizer states in P space, defined as

S⃗i ¼ hSijP⃗jSii, take a characteristic form of having D non-
zero elements each taking a value of �1 and the remaining
being zero (see [SM] [31]). The nonzero elements corre-
spond to D mutually commuting Pauli strings, including
the identity. A general mixed stabilizer state (1) in P space
then forms a convex polytope parameterized by the region

hP⃗iρS ¼
XDS

i¼1

piS⃗i; ð6Þ

where 0 ≤ pi ≤ 1. By extending pi to negative values it is
possible to write an arbitrary state as an affine mixture in
the same way as done with RoM.
The boundary of the stabilizer polytope are formed by

hyperplanes [33] that pass through a subset of stabilizer
vectors S⃗i on a face of the polytope. The equation of a
hyperplane is given by

a⃗ · hP⃗iρ ¼ b; ð7Þ
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where a⃗ is aD2 dimensional vector and b is a constant. The
polytope boundaries must take a linear form (as opposed to,
for instance, a curved surface), due to the linear mixture of
the stabilizers along a boundary. Consider a particular face
of the polytope consisting of a mixture of DF stabilizers
F ¼ fjSF1 i;…; jSFDF

ig, which are a subset of all the stabi-
lizers. Along a polytope boundary, we have the mixture

ρF ¼
XDF

j¼1

pjjSFj ihSFj j: ð8Þ

Here DF < DS such that some of the coefficients pi have a
zero value, giving the opportunity for them to turn negative.
In P space, this appears as hP⃗iρF ¼ PDF

j¼1 pjS⃗
F
j , which is a

parametrized form of a hyperplane, equivalent to (7)
for ρ ¼ ρF.
The coefficients of the hyperplane must satisfy certain

conditions in order that they form a valid boundary of the
stabilizer polytope. We define a polytope boundary as any
hyperplane that contains at least one point from the
stabilizer polytope and defines the half-plane such that
the polytope is on one side [see Fig. 1(a)]. Suppose we are
given a particular a⃗ which defines the slope of the hyper-
plane. Then, if we take

bða⃗Þ≡ max
i∈ ½1;DS�

a⃗ ·S⃗i; ð9Þ

this ensures that all mixed stabilizer states satisfy

a⃗ · hP⃗iρS ≤ bða⃗Þ: ð10Þ

Another bound can be obtained by replacing a⃗ → −a⃗,
which corresponds to the lower bound of the polytope
(see [SM] [31]).
Now suppose we start with a candidate subset F of all the

pure stabilizers which form a mixture of the form (8), which
may or may not lie on a polytope boundary. How do we
determine whether F forms a polytope boundary? First find
the equation of the hyperplane that runs through all the
stabilizers in F by demanding that (see [SM] [31])

a⃗ ·
�
S⃗Fj − S⃗F1

� ¼ 0 ð11Þ

for all j∈ ½2; DF�. Depending upon the number of stabi-
lizers M chosen, this may result in an underconstrained or
overconstrained set of equations. In the overconstrained
case, there may be no solution to (11) as no hyperplane
exists to go through all the stabilizers in F, meaning that F
is not a polytope boundary. In the underconstrained case,
this will result in a set of hyperplanes with free parameters.
Once the coefficients that satisfy (11) are found, all a⃗ · S⃗Fj
equal a constant b for all j∈ ½1; DF�. Then to see whether
this is a polytope boundary, we must verify that it satisfies
(10), which can be equally written as

a⃗ · ðS⃗F1 − S⃗iÞ ≥ 0: ð12Þ

for all i∈ ½1; DS�. This condition demands that the hyper-
plane runs on one side of the polytope such that all
stabilizer points are lower than it. Thus if (11) and (12)
can be satisfied, we can conclude that F forms a polytope
boundary.
Polytope boundary symmetries—The stabilizer poly-

topes for multiqubit states possess several symmetries
due to the properties of stabilizer states [34]. First, due
to the fact that Clifford unitaries map a pure stabilizer state
onto another pure stabilizer state UCjSii ∝ jSCðiÞi, a
Clifford transformation of the states on the polytope
boundary (8) gives another polytope boundary UCρFU

†
C.

Given that (10) is a polytope boundary, then the same
inequation with P⃗ → UCP⃗U

†
C is also a polytope boundary,

which is a permutation of the Pauli strings up to sign
changes. Another symmetry is due to the spin flip sym-
metry of individual qubits. Here we consider a spin flip to
be along one of the stabilizer axes X, Y, Z. This consists of

changing sign of one Pauli matrix on a site n, i.e., PðlÞ
n →

−PðlÞ
n for l∈ ½1; 3�. In the Pauli vector P⃗, this will change the

signs of 4N−1 of the Pn. Then, given that (10) is a polytope
boundary, the same inequation with this transformation
is also a polytope boundary. Multiple spin flips can be
applied, in combination with Clifford transformations,
which gives a family of hyperplanes which together define
the boundary of the polytope (see [SM] [31]).
Another important simplification is that the hyperplane

vector a⃗ only takes integer components ak ∈Z. The reason

Z +Z1 2

X Y +Y X 1 2 1 2

X X -Y Y -Z Z1 2 1 2 1 2

(b)(a)

X
Y

Z

FIG. 1. Stabilizer polytope boundaries (10) according to
various choices of a⃗. (a) The polytope boundaries for N ¼ 1
corresponding to �hXi �0 hYi � �0hZi ≤ 1, where �;�0 can be
chosen independently (inner octahedron). Also shown is the
polytope boundary hXi þ hYi ≤ 1 (vertical plane). The surface of
the outer octahedron defines planes of constantMðρÞ ¼ 1.2. The
Bloch sphere showing the boundary of all states is also shown.
(b) The polytope boundaries for N¼2 corresponding to −3 ≤
hX1X2 − Y1Y2 − Z1Z2i � hX1Y2 þ Y1X2i �0 hZ1 þ Z2i ≤ 1.
The dots correspond to points with WðρÞ ¼ 0 for the Werner
state ρ ¼ ð1 − μÞI=Dþ μjψihψ j with jψi ¼ cosðθ=2Þj00i þ
eiϕ sinðθ=2Þj11i.
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for this originates from the fact that the stabilizer vectors
only have components that are ½S⃗i�k ∈ f0;�1g, such that
any hyperplane running through them must also take
coefficients that are integral (see [SM] [31]). This also
implies that bða⃗Þ∈Z.
Example polytope boundaries—Figure 1 shows some

example polytope boundaries determined by the above
procedure. Figure 1(a) shows the familiar single qubit
case. Choosing any three nonorthogonal stabilizers for F
gives the 8 hyperplanes corresponding to the faces of the
octahedral stabilizer polytope. Choosing two stabilizers
(e.g. along the hXi and hYi axis) defines a boundary only
along one edge of the polytope, but nevertheless it is a valid
polytope boundary. For N ¼ 2 [Fig. 1(b)], we use a similar
procedure to construct a subset F that corresponds to a fully
constrained problem. This is performed by starting with a
seed set of stabilizers which are in the vicinity of a state of
interest, and then continue to add stabilizers until (11) and
(12) are fully constrained. For the example shown, we find
that 33 stabilizers fully constrain the hyperplane, each
giving a solution of a⃗ with 7 Pauli strings with equal
weight. An example of eight such hyperplanes is shown in
Fig. 1(b), which forms part of the polytope boundary in
the 16-dimensional space, in agreement with Ref. [35]
obtained with alternative methods. It is noteworthy to
add that for systems consisting of 2 or more qubits,
the stabilizer polytope boundaries are given by several
families of hyperplanes which are not related to one
another by any of the Clifford symmetries. Plotting zero
magic Werner states for the states cosðθ=2Þj00i þ
eiϕ sinðθ=2Þj11iwe find that all fall within the hyperplanes.
However, in the negative hX1X2 − Y1Y2 − Z1Z2i direction,
there are other polytope boundaries (not plotted), which is
the reason that Werner state does not reach the edge of the
octahedron.
Necessary and sufficient conditions—In deriving (11)

and (12), we took the approach of deriving the polytope
boundary that passes through a given subset of stabilizers
F. In fact, it is not necessary to specify F to obtain a valid
polytope boundary since given any a⃗, the bound may be
evaluated by (9). The stabilizer polytope is then defined by
the set of points in P space, which satisfies

SPN ¼ �
a⃗ · hP⃗iρ ≤ bða⃗Þ; ∀a⃗∈ZD2�

: ð13Þ

A violation of (13) is then a necessary and sufficient
condition for the detection of nonstabilizerness. This is a
sufficient condition as already shown, since any stabilizer
mixture must follow (10). It is also a necessary condition
because no magic states can exist inside the stabilizer
polytope (see [SM] [31]).
Magic monotone—Based on the above we can define the

magic monotone,

MðρÞ ¼ max
fa⃗∈ZD2

;a0¼0g

�
a⃗ · hP⃗iρ
bða⃗Þ

�
; ð14Þ

where the maximization is performed over all a⃗. Since
hP0i ¼ 1 for any state, we may take a0 ¼ 0 leaving the
remaining D2 − 1 variables to be optimized. For a⃗ ¼ 0⃗, we
take the argument of the maximization to be 1, which
guarantees that MðρÞ ≥ 1. The quantity to be maximized
is (10), such that if there is any hyperplane which shows a
violation, we will have MðρÞ > 1. This is a necessary and
sufficient criterion for nonstabilizerness when MðρÞ > 1.
The quantifier defined above possesses key properties
that make it a valid monotone [36]: (1) MðρÞ ≥ 1;
(2) invariance under Clifford unitaries MðρÞ ¼
MðUCρU

†
CÞ; (3) faithfulness MðρÞ ¼ 1 iff ρ ¼ ρS, other-

wise MðρÞ > 1; (4) monotonicity MðEðρÞÞ ≤ MðρÞ,
where E is a stabilizer channel; (5) convexity
MðPk pkρkÞ ≤

P
k pkMðρkÞ (see [SM] [31]).

The definition (14) shows how the magic states are
distributed in P-space. Consider the set of states with equal
nonstabilizerness MðρÞ ¼ r. This defines a set of hyper-
planes a⃗ · hP⃗iρ ¼ rbða⃗Þ, which corresponds to an enlarged
polytope that has the same shape as the stabilizer polytope
(Fig. 1(a)). The form of (14) is consistent with a Minkowski
functional [37], which is a way of measuring the distance of
a point from the stabilizer polytope by seeing howmuch the
polytope has to be scaled up in order for it to just include
the point. As a result, this measure inherits the same
symmetries as the underlying stabilizer polytope.
An interesting point here is that this structure precludes

alternative definitions of monotones based on, for instance,
Euclidean distance of states in P space from the polytope.
Such a measure would result in a polytope with rounded
edges and corners when finding points with constant non-
stabilizerness, which is inconsistent with points of constant
RoM even for N ¼ 1. It would also not be comparable
without rescaling between points whose nearest hyper-
planes belong to different families for multiqubit systems,
due to Euclidean distance being spherically symmetric.
Numerical demonstration—We now show some explicit

numerical examples using our methods to show its utility in
a mixed state context. In addition to explicitly calculating
MðρÞ, we also use the necessary and sufficient conditions
(13) to construct a faithful witness,

WðρÞ ¼ max
fjakj≤1;a0¼0g

�
a⃗ · hP⃗iρ − bða⃗Þ	; ð15Þ

which is a nonnegative, Clifford invariant, and faithful
quantity. We note that it is stronger than conventional
witnesses, which are not necessarily faithful. Here, we
normalized the vector a⃗ such that all coefficients lie in the
range jakj ≤ 1 (see [SM] [31]). While this means that
strictly ak takes only rational values, numerically there is
little benefit of this constraint and we treat ak as a real
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parameter. We find that for the small scale systems as
plotted here, the maximization for both MðρÞ and WðρÞ
can be calculated within a few minutes with modest
computational resources. Using heuristics to evaluate (9),
we estimate that the typical complexity is approximately
Oð4NÞ (see [SM] [31]). This is much faster than evaluating
RoM, which involves a nonlinear optimization over
DS ∼ 2N

2=2 real variables. While RoM is in principle a
faithful measure of nonstabilizerness, the large computa-
tional overhead effectively can give false positives as a
magic detector, due to the imperfect optimization giving a
decomposition with negative coefficients.
Figure 2 shows a comparison of various quantifiers for

various Werner states. We see that both our magic witness
and monotone successfully detects nonstabilizerness in the
same region as RoM for N ¼ 2 [Figs. 2(a) and 2(b)] and
gives consistent results for N ¼ 5 [Figs. 2(c) and 2(d)].
Both of these quantities often shows an improvement in the
detection range over the stabilizer norm, which is only a
sufficient condition for nonstabilizerness. Examining the
expression for the stabilizer norm (3), we can see that this is
a particular case of our criterion where a⃗ ¼ sgnðhPniÞ and
bða⃗Þ ¼ 2N . This would correspond to one particular choice
of hyperplane, which may not correspond to the polytope
boundary giving the tightest bound. By running over all
polytope boundaries, our witness is able to detect magic
states that are missed by the stabilizer norm.
Conclusions—We have introduced an approach to detect

and quantify the amount of nonstabilizerness in an arbitrary

quantum state by finding the hyperplane equations defining
the stabilizer polytope. By testing all possible hyper-
planes, one can obtain a necessary and sufficient criterion
for detecting nonstabilizerness. This can be adapted into
a magic monotone which quantifies the amount of non-
stabilizerness according to the scale factor required to
enlarge the polytope such that it falls on its boundary.
We find that the approach works well numerically, where
mixed magic states can be detected much more efficiently
than other faithful mixed state monotones such as RoM.
We note we have only compared RoM evaluations using
conventional methods which are limited to N ≤ 5 due to
computational costs. Using more advanced methods RoM
can be evaluated up to N ≤ 8 [38]. There are numerous
ways that this approach can be developed further, and
thereby improving methods for magic detection. A better
understanding of the polytope boundaries for a given N
would allow one to further constrain the maximization
in (14), to reduce the search space of the hyperplanes.
Improvements in obtaining the bound bða⃗Þ, which in a
brute force approach involves a discrete maximization over
DS, would lead to further improvements in efficiency, since
the remaining optimization in (14) involves a smaller
D2 − 1 variables. By further developing these techniques
it is likely that the nonstabilizerness in larger systems can
be quantified more efficiently.
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