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I. INTRODUCTION

In recent years, extending what was previously done with
canonical commutation relations, one of us (FB) considered a
deformed version of the canonical anticommutation relation
(CAR) [1], leading to an interesting functional structure:
biorthogonal bases Fϕ = {ϕ0,ϕ1} and F� = {�0,�1} appear,
as well as lowering, raising, and non-self-adjoint number
operators N and N †, whose eigenvectors are exactly the
elements in Fϕ and F� . Also, we find intertwining operators
connecting N and N † which are bounded, invertible, and
self-adjoint. The same structure can be extended to more
pseudofermionic modes, and some applications to optical and
electronic systems have also been proposed [2,3].

Here we discuss systematically how the single-mode
pseudofermions (PFs) can be naturally used, in the context
of some models introduced in recent years in connection with
pseudo-Hermitian systems. Among other aspects, we consider
exceptional points (EPs), trying to characterize them in terms
of our modified CAR. Our main conclusion is that EPs are
linked to the absence of PFs: in all of the models considered
here, we will show that, in correspondence with their EPs,
it becomes impossible to introduce operators satisfying the
required anticommutation rules, while, whenever these rules
[see (2.1) below] are satisfied, we are away from EPs.

The paper is organized as follows: in the next section,
we briefly discuss some basic facts on PFs. Section II A is
devoted to a rather general construction, i.e., to the more
general non-self-adjoint Hamiltonian, which can be discussed
in terms of pseudofermionic operators, whose symmetries
are analyzed in Sec. II B. In Sec. III, we show how this
general Hamiltonian can be used in some recent examples
of 2 × 2 non-self-adjoint Hamiltonians proposed by Bender,
Jones-Smith, Mostafazadeh, and others. Our conclusions are
given in Sec. IV.

II. PSEUDOFERMIONS AND HAMILTONIANS

We begin this section by briefly reviewing the main defini-
tions and results concerning single-mode PFs. The extension
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to higher dimensions will be discussed later on. The starting
point is a modification of the CAR {c,c†} = c c† + c† c = 11,
{c,c} = {c†,c†} = 0, between two operators, c and c†, acting
on a two-dimensional Hilbert space H. The CAR is replaced
here by the following rules:

{a,b} = 11, {a,a} = 0, {b,b} = 0, (2.1)

where the interesting situation is when b �= a†. These rules
automatically imply that a nonzero vector ϕ0 exists in H such
that a ϕ0 = 0, and that a second nonzero vector �0 also exists
in H such that b† �0 = 0 [1]. In general, ϕ0 �= �0.

Let us now introduce the following nonzero vectors:

ϕ1 = bϕ0, �1 = a†�0, (2.2)

as well as the non-self-adjoint operators

N = ba, N = N † = a†b†. (2.3)

We also introduce the self-adjoint operators Sϕ and S� via
their action on a generic f ∈ H:

Sϕf =
1∑

n=0

〈ϕn,f 〉ϕn, S�f =
1∑

n=0

〈�n,f 〉�n. (2.4)

Hence we get the following results, whose proofs are straight-
forward and will not be given here:

(1)
aϕ1 = ϕ0, b†�1 = �0. (2.5)

(2)
Nϕn = nϕn, N�n = n�n, (2.6)

for n = 0,1.
(3) If the normalizations of ϕ0 and �0 are chosen in such a

way that 〈ϕ0,�0〉 = 1, then

〈ϕk,�n〉 = δk,n, (2.7)

for k,n = 0,1.
(4) Sϕ and S� are bounded, strictly positive, self-adjoint,

and invertible. They satisfy

‖Sϕ‖ � ‖ϕ0‖2 + ‖ϕ1‖2, ‖S�‖ � ‖�0‖2 + ‖�1‖2, (2.8)

Sϕ�n = ϕn, S�ϕn = �n, (2.9)

for n = 0,1, as well as Sϕ = S−1
� . Moreover, the intertwining

relations

S�N = NS�, SϕN = NSϕ, (2.10)

are satisfied.
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The above formulas show that (i) N and N behave
essentially as fermionic number operators, having eigenvalues
0 and 1, (ii) their related eigenvectors are, respectively, the
vectors of Fϕ = {ϕ0,ϕ1} and F� = {�0,�1}, (iii) a and b† are
lowering operators for Fϕ and F� , respectively, (iv) b and
a† are rising operators for Fϕ and F� , respectively, (v) the
two sets Fϕ and F� are biorthonormal, (vi) the well-behaved
(i.e., self-adjoint, bounded, invertible, with bounded inverse)
operators Sϕ and S� map Fϕ in F� , and vice versa, and
(vii) Sϕ and S� intertwine between operators which are not
self-adjoint.

We refer to [1,2] for further remarks and consequences of
these definitions. In particular, for instance, it is shown that Fϕ

and F� are automatically Riesz bases for H, and the relations
between fermions and PFs are also discussed.

Going back to (2.1), as we have discussed in [1], the only
nontrivial possible choices of a and b satisfying these rules are
the following:

a(1) =
(

0 1

0 0

)
, b(1) =

(
β −β2

1 −β

)
,

a(2) =
(

α 1

−α2 −α

)
, b(2) =

(
0 0

1 0

)
,

with nonzero α and β, or, maybe more interestingly,

a(3) =
(

α11 α12

−α2
11/α12 −α11

)
,

b(3) =
(

β11 β12

−β2
11/β12 −β11

)
,

with

2α11β11 − α2
11β12

α12
− eta2

11α12

β12
= 1. (2.11)

Other possibilities also exist, but they are those in which a

and b exchange their roles or those in which a and b are
standard fermion operators. Also, these matrices are not really
all independent, since a(1) and b(1) can be recovered from a(3)
and b(3) taking α11 = 0, α12 = 1, β11 = β, and β12 = −β2.
Notice that this choice satisfies (2.11). Less trivially, we can
also recover a(2) and b(2) from a(3) and b(3). In this case, we
need to take α11 = α, α12 = 1, β11 = x, and β12 = −x2, and
then send x to zero. This means that in order to consider the
more general situation, it is enough to use the operators a(3)
and b(3), endowed with condition (2.11). From now on, this
will be our choice, and we will simply write them a and b.

Remark. For completeness, we have to mention the paper
by Bender and Klevansky [4], where similar generalized
anticommutation rules were introduced, but with a different
perspective.

A. The Hamiltonian

In view of what we have just seen, the most general
diagonalizable Hamiltonian which can be written in terms of
a and b is obviously the operator

H = ωN + ρ11 =
(

ωγα + ρ ωγ

−ωγαβ −ωγβ + ρ

)
, (2.12)

where ω and ρ, in principle, could be complex numbers,
α = α11

α12
, β = β11

β12
, and γ = α12β11 − α11β12 = α12β12(β − α).

Then we can write

a = α12

(
α 1

−α2 −α

)
, b = β12

(
β 1

−β2 −β

)
,

while condition (2.11) can be written as −γ 2 = α12β12. This
also implies that (α − β)γ = 1.

The eigensystem of H is trivially deduced: the eigenvalues
are ε0 = ρ and ε1 = ω + ρ, which are real if and only if ρ and
ω are both real. In this case, ε0 and ε1 are also the eigenvalues
of H † = ωN † + ρ11. From now on, except when explicitly
stated, we will assume that εj ∈ R, for j = 0,1. It might
be interesting to notice that by adopting the same limiting
procedure described above (α11 = α, α12 = 1, β11 = x, β12 =
−x2, and x → 0), we simply recover H = ρ11.

The eigenvectors of N and N †, and of H and H † as a
consequence, are the following:

ϕ0 = Nϕ

(
1

−α

)
, ϕ1 = bϕ0 = γNϕ

α12

(
1

−β

)
, (2.13)

and

�0 = N�

(
1

β
−1

)
, �1 = a†�0 = γ N�

β11

(
α

1

)
, (2.14)

where NϕN� = α12β11

γ
. This choice is dictated by the fact that

〈�0,ϕ0〉 = 1. Let us remind the reader that ϕ0 and �0 are
(almost) fixed by requiring that they are annihilated by a and
b†, respectively: aϕ0 = 0 and b†�0 = 0. Moreover, we have
Nϕj = jϕj and N †�j = j�j , j = 0,1, so that

Hϕj = εjϕj , H †�j = εj�j , (2.15)

j = 0,1. Sometimes it can be useful to write H and H † in
terms of the projectors Pj defined as Pjf = 〈�j,f 〉ϕj , j =
0,1, whose adjoint is P

†
j f = 〈ϕj ,f 〉�j clearly.1 Here, f is

a generic vector in H. Then, H = ε0P0 + ε1P1 and H † =
ε0P

†
0 + ε1P

†
1 .

It is a straightforward computation to check that Fϕ and F�

produce, together, a resolution of the identity. Indeed, we have
P0 + P1 = P

†
0 + P

†
1 = 11. Hence, as expected, Fϕ and F� are

biorthogonal bases for H.
The next step consists of finding the explicit expressions

for Sϕ and S� in (2.4). We find

Sϕ = |Nϕ|2
⎛
⎜⎝ 1 +

∣∣∣ γ

α12

∣∣∣2
−α − β

∣∣∣ γ

α12

∣∣∣2

−α − β

∣∣∣ γ

α12

∣∣∣2
|α|2 +

∣∣∣ γβ

α12

∣∣∣2

⎞
⎟⎠ (2.16)

and

S� = |N� |2
⎛
⎜⎝ 1 +

∣∣∣ αγ

β11

∣∣∣2
1
β

+ α

∣∣∣ γ

β11

∣∣∣2

1
β

+ α

∣∣∣ γ

β11

∣∣∣2 ∣∣∣ 1
β

∣∣∣2
+

∣∣∣ γ

β11

∣∣∣2

⎞
⎟⎠ , (2.17)

1Of course, they are not orthogonal projectors, since they are not
self-adjoint, in general, and not even idempotent.
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which are both clearly self-adjoint.2 Using, for instance, the
Sylvester’s criterion, it is possible to check explicitly that if
α �= β, then both Sϕ and S� are positive definite. This can also
be deduced looking at the eigenvalues of the two matrices, or
just using the definition: 〈f,Sϕf 〉 and 〈f,S�f 〉 are both strictly
positive for any nonzero f ∈ H if α �= β. Interestingly enough,
α = β implies that condition (2.11) cannot be satisfied, and
this means, in turn, that we are losing the pseudofermionic
structure described before. In fact, a and b can no longer
satisfy the anticommutation rules in (2.1). Therefore, it is not
surprising that Sϕ and S� do not admit inverse, contrary to what
happens whenever (2.1) are satisfied. We will get a similar
conclusion in explicit models: whenever α and β coincide, our
operators cannot satisfy (2.11) or its equivalent expressions,
and PFs do not appear.

Because of their positivity, there exist unique square-root
matrices S

1/2
ϕ and S

1/2
� , which are also positive and self-adjoint.

They have a rather involved expression, which we give here
for completeness, but which is rather hard to manage:

S1/2
ϕ = |Nφ|√

2p1

(√
p3 p5−√

p2 p4

2 p

p
√

p2 p5−√
p3 p4

2

)
(2.18)

and

S
1/2
� = 1

|Nφ|√2q1

(√
q2 q5−√

q3 q4

2 q

q
√

q3 q5−√
q2 q4

2

)
, (2.19)

where we have defined the following quantities:

p1 = (1 + t − |α|2 − t |β|2)2 + 4|α + tβ|2,
p2 = 1 − √

p1 + t + |α|2 + t |β|2,
p3 = 1 + √

p1 + t + |α|2 + t |β|2,
p4 = 1 − √

p1 + t − |α|2 − t |β|2,
p5 = 1 + √

p1 + t − |α|2 − t |β|2,
p = (

√
p2 − √

p3)(α + tβ),

q1 = (|β|2 + |α11|2 − 1 − |α12|2)2 + 4|β + α|α12||2,
q2 = 1 − √

q1 + |α11|2 + |α12|2 + |β|2,
q3 = 1 + √

q1 + |α11|2 + |α12|2 + |β|2,
q4 = 1 − √

q1 + |α11|2 − |α12|2 − |β|2,
q5 = 1 + √

q1 + |α11|2 − |α12|2 − |β|2,
q = (

√
q3 − √

q2)(β + α|α12|2),

and where t = | γ

α12
|2. Other results which can be explicitly

derived are the following:
(1) Sϕ�n = ϕn and S�ϕn = �n, n = 0,1;
(2) S�N = N †S� and SϕN † = NSϕ ;
(3) calling c = S

1/2
� a S

−1/2
� , we find that c† = S

1/2
� b S

−1/2
�

and that {c,c†} = 11, c2 = 0;
(4) calling N0 = c†c, we have N0 = S

1/2
� N S

−1/2
� =

S
−1/2
� N † S

1/2
� ;

2Notice that, since β11 = β12β, we could rewrite S� using β12 rather
than β11. This could be useful in the following.

(5) e0 = S
1/2
� ϕ0 and e1 = S

1/2
� ϕ1 are eigenstates of N0, with

eigenvalues 0 and 1. Therefore, they are also eigenstates of the
self-adjoint Hamiltonian h = S

1/2
� H S

1/2
ϕ = ωN0 + ρ11, with

eigenvalues ε0 and ε1. The set {e0,e1} is an orthonormal basis
for H.

All of these results are consequences of the pseud-
ofermionic anticommutation rules in (2.1), and have been
deduced and analyzed in [1–3].

B. Symmetry of the Hamiltonian

We continue our analysis of H looking for some nontrivial
two-by-two matrix X which commutes with H . Of course,
not to make the situation trivial, we assume here that ω �= 0.
Otherwise, H = ρ11 and [H,X] = 0 for each matrix X. This
also happens when γ = 0, i.e., when α = β (not necessarily
zero). We recall that, in this last case, we lose the rules in (2.1),
so that we are no longer dealing with PFs. This is not a big
surprise, since also in this case H turns out to be just a multiple
of the identity operator, so that each nonzero vector of H is an
eigenstate of H with eigenvalue ρ.

In case ω and γ are both nonzero, X = (x11 x12
x21 x22

)
commutes with H only if the following is true: x11 =
x12(γ 2α11−α2

12β12)+x22γ
2α12

γ 2 , x21 = −x12αβ, x22 = x11 − x12

(α + β), where x11 and x12 are free parameters.
Moreover, if we also ask that X2 = 11, we should further

require that

x11 = −x22 = α + β

α − β
, x12 = 2

α − β
, x21 = − 2αβ

α − β
.

Of course, with these choices, also Y = −X commutes with
H and satisfies Y 2 = 11.

The matrix X can be seen essentially as a generalized
version of the PT symmetry, where

P =
(

0 1

1 0

)
T := complex conjugate. (2.20)

The Hamiltonian H in (2.12) is not generally PT symmetric,
since the condition [PT ,H ] = 0 is not guaranteed in general.
However, H is PT symmetric under the following conditions:

ρ + αγω = ρ − βγω, αβγω = −γω, (2.21)

and, in this case, the Hamiltonian H becomes

H =
(

ωγα + ρ ωγ

ωγ ωγα + ρ

)
. (2.22)

Here it is more convenient to rewrite its eigenvalues ε0

and ε1 as ε± = Re(ρ + αγω) ± √
Q, Q = |γω|2 − [Im(ρ +

αγω)]2, and the relative eigenvectors ϕ0,ϕ1 in (2.13) as

|ε+〉 =
(

iIm(ρ+αγω)+√
Q

γω

1

)
=

(−β−1

1

)
,

|ε−〉 =
(

iIm(ρ+αγω)−√
Q

γω

1

)
=

(−α−1

1

)
,

with an obvious notation and with an appropriate choice of
normalization. The analytic expression for ε± shows that
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the eigenvalues of H can either be real or form a complex
conjugate pair according to the sign of Q.

ThePT symmetry is unbroken for |γω| > |Im(ρ + αγω)|
and, in this case,

PT |ε+〉 = λ+|ε+〉, PT |ε−〉 = λ−|ε−〉,
with λ± = γω

iIm(ρ+αγω)±√
Q

. Notice that |λ±| = 1, and therefore
all of the components of the eigenvectors |ε±〉 have unitary
modulus. This implies that |α| = |β| = 1. We recall that the
eigenvalues of H are actually ρ and ρ + ω, and therefore the
unbrokenPT symmetry is only compatible with the condition
that ρ and ω are both real.

For |γω| < |Im(ρ + αγω)|, the eigenvalues of H become
complex conjugates and the symmetry is broken because

PT |ε+〉 = λ̃+|ε−〉, PT |ε−〉 = λ̃−|ε+〉,
with λ̃± = −i

γω

Im(ρ+αγω)∓
√

Q̃
and Q̃ = −Q. In this case,

|λ̃±| = 1 and, moreover, αβ = 1. The presence of a pair of
complex conjugate eigenvalues of H implies necessarily that ρ
is imaginary and ω = −2iIm(ρ). For |γω| = |Im(ρ + αγω)|,
an EP occurs. The eigenvalues coalesce to the real value ε =
Re(ρ + αγω) = Re(ρ − βγω) = ρ and |ε+〉 = |ε−〉 which,
in turn, implies that α = β so that γ = 0 (we do not consider
here the trivial case ω = 0): in this case, the conditions (2.11)
are not satisfied and no PFs exist. The formation of an EP is
therefore related not only to the absence of the imaginary part
of ρ but also to the nonexistence of PFs.

Going back to our matrix X above, it does not, as stated,
have the structure of a PT operator, meaning with this that
even if [X,H ] = [PT ,H ] = 0, X cannot be identified with
PT . This is not a major problem since, in the literature (see,
for instance, [5,6]), extended versions of PT symmetry exist,
where it is not required that [P,T ] = 0 or that P = P†. One
such extension has the form

P̃ =
(

0 x

1/x 0

)
, (2.23)

with x �= 0. If we take x real, the P̃T -symmetry condition
[P̃T ,H ] = 0 is satisfied for the following conditions:

ρ + αγω = ρ − βγω, x2αβγω = −γω, (2.24)

which extend those in (2.21). It is possible to generalize
our previous results to this situation: in fact, taking into
account (2.24), the eigenvalues of H are εx± = Re(ρ +
αγω) ± x−2√Qx , and the relative eigenvectors are

|εx+〉 =
(

ix2Im(ρ+αγω)+√
Qx

γω

1

)
,

|εx−〉 =
(

ix2Im(ρ+αγω)−√
Qx

γω

1

)
,

where Qx = x2|γω|2 − x4[Im(ρ + αγω)]2. For Qx > 0, we
are in the domain of the unbroken P̃T symmetry, and the
condition |α| = |β| = x−2 holds. The broken PT symmetry
occurs for Qx < 0, and in this case αβ = x−2 holds. An EP
occurs for Qx = 0, i.e., when |γω| = x2|Im(ρ + αγω)|, and
as in the specific case of the PT symmetry, the eigenvalues
coalesce to εx = ρ and |εx+〉 = |εx−〉, which implies that α = β

with γ = 0. This condition is again incompatible with the ex-
istence of pseudofermions because (2.11) is no longer verified.

III. EXAMPLES FROM THE LITERATURE

In this section, we show how the above general framework
can be used in the analysis of several concrete models
introduced over the years by several authors. In other words,
we will see that many simple systems considered by many
authors fit very well into our framework.

A. An example by Das and Greenwood

The first example we want to consider was discussed in [5]
and, in a slightly different version, by others. The Hamiltonian
is

HDG =
(

reiθ seiφ

te−iφ re−iθ

)
, (3.1)

where r,s,t,θ , and φ are all real quantities. In particular, to
make the situation more interesting, we will assume that r,s,
and t are nonzero. We will briefly comment on this possibility
later on. HDG coincides with our general H in (2.12) with
two different choices of the parameters α, β, ρ, and μ = ωγ :

μ = seiφ,

α± = ie−iφ

{
r sin(θ )

s
∓

√[
r sin(θ )

s

]2

− t

s

}
,

(3.2)

β± = ie−iφ

{
r sin(θ )

s
±

√[
r sin(θ )

s

]2

− t

s

}
,

ρ± = re−iθ + is

{
r sin(θ )

s
±

√[
r sin(θ )

s

]2

− t

s

}
.

Moreover, the related values of ω± and γ± can be deduced
by recalling that, in general, γ = α12β11 − α11β12 =
α12β12(β − α), −γ 2 = α12β12, and that (α − β)γ = 1. Then,
we deduce that whenever [ r sin(θ)

s
]2 �= t

s
,

α12β12 = e2i�

4
{[

r sin(θ)
s

]2 − t
s

} , (3.3)

so that, with a particular choice of the square root,

γ± = ±ieiφ

2
√{[

r sin(θ)
s

]2 − t
s

} , (3.4)

and therefore

ω± = seiφ

γ±
= ∓2is

√{[
r sin(θ )

s

]2

− t

s

}
. (3.5)

032113-4



MODEL PSEUDOFERMIONIC SYSTEMS: CONNECTIONS . . . PHYSICAL REVIEW A 89, 032113 (2014)

These results show that if [ r sin(θ)
s

]2 �= t
s
, we can always recover

a pseudofermionic structure for HDG, so that all of the results
deduced and listed previously hold true for this model. The
situation changes drastically when [ r sin(θ)

s
]2 = t

s
. In this case,

in fact, γ± = 0 necessarily, so that (2.11) cannot be satisfied: in
this case, no PFs can appear. This is intriguingly related to the
existence of EPs in the model, since under this condition the
two eigenvalues E± = r cos(θ ) ±

√
st − r2 sin2(θ ) of HDG

coalesce: E+ = E− = r cos(θ ). We also would like to note
that since s ∈ R, ω± are real only if [ r sin(θ)

s
]2 < t

s
(unbroken

phase). On the other hand, if [ r sin(θ)
s

]2 > t
s
, ω+ and ω− are

purely imaginary, and one is the adjoint of the other (broken
phase).

For completeness, we specialize here the relevant quantities
deduced previously. In particular, the eigenvectors of N and
N † are given as in (2.13) and (2.14):

ϕ
(±)
0 = Nϕ

(
1

−α±

)
, ϕ

(±)
1 = bϕ

(±)
0 = γ±Nϕ

α12

(
1

−β±

)
,

(3.6)

and

�
(±)
0 = N�

(
1

β±
−1

)
, �

(±)
1 = a†�(±)

0 = γ± N�

β11

(
α±
1

)
.

(3.7)

The lowering and raising operators are also doubled:

a± = α12

(
α± 1

−α2
± −α±

)
, b± = β12

(
β± 1

−β2
± −β±

)
,

(3.8)
as well as the operators S(±)

ϕ and S
(±)
� , which can be deduced

by (2.16) and (2.17) specializing the form of the parameters
as in (3.2), (3.3), and (3.4) and writing the following values of
α12 and β11 used also to recover the conditions in (3.2):

α12 = 2α11μ

∓2is

√{[
r sin(θ)

s

]2 − t
s

} + 2ir sin(θ )
,

(3.9)

β11 = st

4
[
st − r2 sin2(θ )

]
α11

.

Therefore,

S(±)
ϕ = |Nϕ|2

⎛
⎜⎝ 1 + 1

4

∣∣ s(x±
rr)

α11μ
√

xr

∣∣2 −ieiφ

16

[
4
∣∣ s(x±

rr)2

α11μ
√

xr

∣∣2x∓
rr + 16x±

rr

]
ie−iφ

16

[
4
∣∣ s(x±

rr)
2

α11μ
√

xr

∣∣2
x∓

rr + 16x±
rr

] ∣∣x±
rr

∣∣2 + 1
4

∣∣ s(x±
rr)

2

α11μ
√

xr

∣∣2

⎞
⎟⎠ (3.10)

and

S
(±)
� = |N� |2

⎛
⎝ 1 + 4

∣∣ sα11x
±
rr

√
xr

t

∣∣2 −ie+iφ
(

1
x∓

rr
+ 4x±

rr

∣∣ sα11x
±
rr

√
xr

t

∣∣2)
ie−iφ

(
1

x∓
rr

+ 4x±
rr

∣∣ sα11x
±
rr

√
xr

t

∣∣2) 1

|x∓
rr |2 + 4

∣∣ sα11x
±
rr

√
xr

t

∣∣2

⎞
⎠ , (3.11)

where we have introduced xr = [ r sin(θ)
s

]2 − t
s

and x±
rr =

r sin(θ)
s

∓ √
xr .

Needless to say, S(±)
ϕ and S

(±)
� have all of the properties

we have discussed in Sec. II A and, in particular, they admit

square roots S(±)
ϕ

1/2
and S

(±)
�

1/2
as in (2.18) and (2.19). For

the sake of concreteness, we consider the following particular
choice of the parameters of HDG:

r = 1, s = 0.5, t = 1, θ = φ = π/6,

and we restrict here to the â–â choice, fixing also α11 = 1.
Then, our operators look like

S(−)
ϕ = |Nϕ|2

(
1
2 −0.317 + 1.549i

−0.317 − 1.549i 3

)
,

S
(−)
� = 1

2|Nϕ|2
(

3 0.317 − 1.549i

0.317 + 1.549i 1
2

)

and

S(−)
ϕ

1/2 = |Nϕ|
(

1.076 −0.117 + 0.572i

−0.117 − 0.572I 1.63

)
,

S
(−)
�

1/2 =
√

2

2|Nϕ|
(

1.63 0.117 + 0.572i

0.117 + 0.572i 1.076

)

and we get

hDG = S
(−)
�

1/2
HDG S(−)

ϕ

1/2

=
(

0.832 0.393 + 0.306 i

0.393 − 0.306 i 0.9

)
,

which is the self-adjoint counterpart of the Hamiltonian

HDG = (
1
2 (

√
3 + i) 1

4 (
√

3 + i)
1
2 (

√
3 − i) 1

2 (
√

3 − i)
).

Remark. Of course, we can obtain the self-adjoint Hamil-
tonian hDG only because ρ and ω are real. For the particular
values of the parameters in HDG considered here, we obtain
ρ = 1.366 and ω = −1.

A particular choice of parameters. It is interesting to
recall that taking φ = 0 and s = t in HDG, we recover the
Hamiltonian

Hpart =
(

reiθ s

s re−iθ

)
,

considered, for instance, in [7]. Our previous formulas spe-
cialize here in an obvious way. In this case, in particular, EPs
are recovered for r sin(θ)

s
= ±1. Also,

ω± = ∓2is

√[
r sin(θ )

s

]2

− 1
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is real only if [ r sin(θ)
s

]2 < 1. Otherwise, ω+ and ω− are purely
imaginary, and one is the adjoint of the other. EPs appear when
r sin(θ)

s
= ±1 and, in this case, PFs are absent.

B. A Hamiltonian by Gilary et al.

This Hamiltonian was introduced quite recently in [8], and
can be rewritten as

HGMM =
(

ε1 − i�1 ν0

ν0 ε2 − i�2

)
, (3.12)

where �1 and �2 are positive quantities, ε1 and ε2 are real, and
ν0 is complex valued. It is a simple exercise to show that HGMM

can be written as in (2.12) with the following identification:

ωγ = ν0,

α± = 1

2ν0

[ − �ε + i�� ∓
√

(−�ε + i��)2 + 4ν2
0

]
,

(3.13)

β± = 1

2ν0

[ − �ε + i�� ±
√

(−�ε + i��)2 + 4ν2
0

]
,

ρ± = 1

2

[
ε − i� ±

√
(−�ε + i��)2 + 4ν2

0

]
,

where �ε = ε2 − ε1, �� = �2 − �1, ε = ε2 + ε1, and � =
�2 + �1. Since γ± = α12β12(β± − α±) and γ 2

± = −α12β12, we
find that whenever α± �= β±, taking

α12β12 = −ν2
0

(−�ε + i��)2 + 4ν2
0

,

the pseudofermionic main condition is satisfied: HGMM admits
a pseudofermionic representation. On the other hand, this is
not possible if α± = β±, which is true when (−�ε + i��)2 =
−4ν2

0 . Looking at the eigenvalues of HGMM , this is exactly the
condition which makes its two eigenvalues coalesce. In this
case, we have E1 = E2 = 1

2 (ε − i�).
The explicit expressions for the relevant eigen-

vectors and operators can be deduced, as usual,
from (2.13), (2.14), (2.16), (2.17), and (3.8).

C. An example by Mostafazadeh and Özcelik

The model we consider now is different from those
above because of the absence of EPs. Then, as we will

see, it will always be possible to have PFs for all possible
values of the parameters of the model.

The Hamiltonian considered in [9] is

HMO = E

(
cos θ e−iφ sin(θ )

eiφ sin(θ ) − cos θ

)
, (3.14)

where θ,φ ∈ C, Re(θ ) ∈ [0,π ), and Re(φ) ∈ [0,π ). For obvi-
ous reasons, we restrict to E �= 0 and to θ �= 0. We can deduce
two different set of values of α, β, etc. for H in (2.12) such
that the two Hamiltonians coincide. These choices are

μ = E sin(θ ) eiφ, α± = eiφ

sin(θ )
[cos(θ ) ∓ 1] ,

(3.15)

β± = eiφ

sin(θ )
[cos(θ ) ± 1] , ρ± = ±E.

The corresponding pseudofermionic operators look like those
in (3.8), with

α12β12 = − 1
4 sin2(θ ) e−2iφ.

Also, there exists no possible condition which makes γ± =
α12β12(β± − α±) = 0: contrary to what happens for HDG

and for HGMM , this model always allows a pseudofermionic
description. The eigenvectors of N and N † are

ϕ
(±)
0 = Nϕ

(
1

eiφ

sin(θ) [cos(θ ) ∓ 1]

)

ϕ
(±)
1 = ∓Nϕ

cos(θ ) − 1

2α11

( −1
eiφ

sin(θ) [cos(θ ) ± 1]

)
,

�
(±)
0 = N�

(
1{

eiφ

sin(θ) [cos(θ ) ± 1]
}−1

)

�
(±)
1 = ∓2N�

α11eiφ

sin(θ )

(
eiφ

sin(θ) [cos(θ ) ∓ 1]

1

)
.

In particular, restricting here to the “−” choice, we find that
HMOϕ

(−)
0 = −Eϕ

(−)
0 , which means that ε

(−)
0 = −E. More-

over, since ε
(−)
1 = ε

(−)
0 + ω−, and since ω− = μ

γ−
= 2E, we

deduce that ε
(−)
1 = E. Notice that we have used here

γ− = α12β12(β− − α−) = 1
2 sin(θ ),e−iφ.

The intertwining operators S(−)
ϕ and S

(−)
� now look as follows:

S(−)
ϕ = |Nϕ|2

⎛
⎜⎜⎝ 1 + ∣∣ cos(θ)−1

2α11

∣∣2
e−iφ

( [1−cos(θ)]
∣∣ cos(θ )−1

α11

∣∣2
−cos(θ)−1

4 sin(θ)

)
eiφ

{ [1−cos(θ)]
∣∣ cos(θ )−1

α11

∣∣2
−cos(θ)−1

4 sin(θ)

}
e−2
(φ)

{∣∣ [cos(θ)−1]2

2α11 sin(θ)

∣∣2 + ∣∣ cos(θ)+1
sin(θ)

∣∣2}
⎞
⎟⎟⎠ ,

S
(−)
� = |N� |2

⎛
⎝

∣∣ α11

sin2
(

θ
2

) ∣∣2 + 1 e−iφ
[∣∣ 2α11

sin(θ)

∣∣2 cos(θ)+1
sin(θ) − cot

(
θ
2

)]
eiφ

[∣∣ 2α11
sin(θ)

∣∣2 cos(θ)+1
sin(θ) − cot

(
θ
2

)]
e2
(φ)

[∣∣ 2α11
sin(θ)

∣∣2 + ∣∣ sin(θ)
cos(θ)−1

∣∣2]
⎞
⎠ .
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Moreover, if we fix the parameters θ = π
3 + i

2 , φ = π
4 −

i, E = 1 in HMO and α11 = 1, we obtain the following
representation of S

1/2(−)
ϕ and S

1/2(−)
� :

S1/2(−)
ϕ = |Nϕ|

(
1.076 −0.709 − 0.005i

−0.709 + 0.005i 4.532

)
,

S
1/2(−)
� = 1

|Nϕ|

(
1.035 0.162 + 0.001i

0.162 − 0.001i 0.245

)
.

The self-adjoint counterpart of the Hamiltonian HM0 is

hMO = S
1/2(−)
� HMO S1/2(−)

ϕ

=
(

0.695 0.523 − 0.492i

0.523 + 0.492i −0.695

)
.

D. A relativistic example

We now briefly consider the Hamiltonian introduced in [10]
and further considered in [11]:

Hrel =
(

mc2 cpx + v

cpx − v −mc2

)
. (3.16)

Here we are assuming that m, v, c, and px are all real quantities.
If c2p2

x �= v2, then Hrel can be seen as a particular case of

the Hamiltonian HMO , fixing first θ = arctan( c2p2
x−v2

m2c4 ), then

taking E = mc2

cos(θ) and finally φ = arccos[ cpx

E sin(θ) ]. Something

interesting happens if c2p2
x = v2 �= 0. In this case, it is easy

to check that Hrel and HMO are different for any possible
choice of the parameters. This is because, while only one
nondiagonal matrix element in Hrel can be different from zero,
the analogous elements in HMO are both zero or both not
zero. Hence the two models, in this case, are really different.
However, it is still possible that Hrel coincides with H in (2.12).
And, in fact, we find that this is so if cpx = v. In this case,
it is enough to fix ωγ = 2v, α = 0, β = mc2

v
, and ρ = mc2

or ωγ = 2v, α = mc2

v
, β = 0, and ρ = −mc2. On the other

hand, because of the asymmetry between the (1,2) and the
(2,1) elements in H , there is no such possibility if cpx = −v:
in this case, PFs are absent.

If cpx �= −v, the eigenvectors of Hrel , its expression in
terms of pseudofermionic operators, and the intertwining
operators can all be deduced by adapting our general results
to the present situation.

IV. CONCLUSIONS

We have shown how the general setting of PFs can be
used in the analysis of different physical systems introduced
over the years in connection with pseudo-Hermitian quantum
mechanics. The procedure proposed here, other than being
rather general and, in our opinion, useful for many other
models, provides a set of simple rules and useful results
linked to the anticommutation rules in (2.1). It could be
worth mentioning that our analysis does not include all of the
two-by-two matrices introduced over the years in our context.
For instance, in [12], other examples are given, even in higher

dimensions. However, the Hamiltonian HJSM = ( a ib

ib −a),
mentioned in [12], where a ∈ R and b ∈ R \ {0}, is a particular
case of HMO : we just have to take φ = π

2 , and then relate E

and θ to a and b.
In our opinion, it is also interesting to stress that the

existence of pseudofermionic operators appears to be deeply
related to the existence of EPs: in fact, in all of the models
considered here, a lack of validity of (2.1) implies coalescence
of eigenvalues. This is expected, since a pseudofermionic
structure is intrinsically connected with the existence of
noncoincident eigenvalues. We believe this nice, simple result
can be extended to more pseudofermionic modes (i.e., to
Hilbert spaces with dimension 2N , for some natural N ) and
to the much more complicated situation of pseudobosons,
where (2.1) are replaced by a deformed version of canonical
commutation rules [13]. This will be part of our future analysis.
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